
Stefano Montanelli
Department of Computer Science

Università degli Studi di Milano
stefano.montanelli@unimi.it

Coding for Data Science and Data Management
Module of Data Management

SQL

• SEQUEL
• (Structured English QUEry Language)

• ‘70-’80
• Language developed for System R, the IBM Relational

DBMS (San Jose, CA, USA)
• ‘86

• First SQL standard (ANSI)
• Valid DML functionalities
• Limited DDL functionalities

SQL (Structured Query Language)

2

• ‘89
• Extension of the standard (support to referential

integrity SQL-89
• ‘92

• Second version of the standard (introduction of a
number of DDL functionalities) SQL-92 or SQL-2

• Today
• Third version of the standard with many extensions

(e.g., trigger, composite types, recursive views, support
to very large objects – BLOB/CLOB) SQL-99 or SQL-3

SQL (Structured Query Language)

3

• Notation:
• Primary keys are underlined in bold
• Foreign keys are in italic
• Fields with possible null values are labeled with a star *

Example: the moviedb schema

4

Example: the moviedb schema

5

COUNTRY(iso3, name)
MOVIE(id, official_title, budget, year, length, plot)
PERSON(id, bio, first_name, last_name, birth_date, death_date*)
GENRE(movie, genre)
CREW(person, movie, p_role, character*)
LOCATION(person, country, d_role, city, region)
RATING(source, movie, check_date, scale, score, votes)
PRODUCED(movie, country)
RELEASED(movie, country, released, title)
SIM(movie1, movie2, cause, score)
MATERIAL(id, description, language, movie)
MULTIMEDIA(material, url, type, runtime*, resolution*)
TEXT(material, content)

Stefano Montanelli
Department of Computer Science

Università degli Studi di Milano
stefano.montanelli@unimi.it

Coding for Data Science and Data Management
Module of Data Management

SQL
Data Definition Language

»6

• A database is created through the following
statement

CREATE SCHEMA [schema name]
[AUTHORIZATION Username]
[{schema elements}]

• Schema name is the name of the created object
• Username is the name of the database owner
• Schema elements are the database structures

to insert in the database schema

Schema creation

7

• The following schema elements can be created
within a database schema through the
corresponding SQL statement:
• Domain (CREATE DOMAIN)
• Table (CREATE TABLE)
• Assertion (CREATE ASSERTION)
• View (CREATE VIEW)
• User (CREATE USER)
• Provileges (GRANT / REVOKE)

Content of a database schema

8

• Most of the DBMSs also provide the CREATE

DATABASE statement that is NOT a standard

SQL statement

CREATE DATABASE DBname

[[WITH] [OWNER [=] Username]

[ENCODING [=] encoding]]

• DBname is the name of the database to create

• Username is the name of the database owner

• Encoding is the character encoding to use in the

database (e.g., SQL_ASCII, UTF8)

The CREATE DATABASE statement

9

• The relation between schema and database
depends on the DBMS

• Example
• Oracle Express Edition
• Only one database (CREATE DATABASE is not

supported) containing all the independent database
schemas created through CREATE SCHEMA

• PostgreSQL
• Many databases can be created through CREATE

DATABASE and each database can contain many
schemas created through CREATE SCHEMA

Schema vs. database

10

CREATE TABLE TableName (
AttributeName Domain [DefaultValue]

[constraints (attribute level)]
{, AttributeName Domain [DefaultValue]

[constraints (attribute level)]}
[further constraints (table level)]

)

Table creation

11

Elementary data types (domains)

12

Numeric exact
(fix point)

Integer
Integer
Smallint

Integer and
decimal

Numeric
Decimal

Numeric
approximate
(floating point)

Real
Comparisons between pairs of
values are not possible

Double
precision
Float

Elementary data types (domains)

13

Textual
Character (char)
Character varying (varchar)

Boolean
Bit, Boolean
Bit varying

Temporal
Date
Time
Timestamp

• A default clause is set to specify the value to
assign to an attribute instead of null

• In a CREATE TABLE:
…
AttributeName Domain DEFAULT value
…

• The value is user-defined and it is compatible
with the attribute domain

• The value can be a fixed constant or the result of
dynamic expression

Default values

14

• An intra-table constraint represents a condition
that needs to be satisfied by all the tuples of the
table on which the constraint is specified

• An intra-table constraint can be specified for a
single attribute or a set of attributes

• In the latter case, the constraint has to be
satisfied by the set of attribute as a whole

Intra-table constraints

15

AttributeName Domain NOT NULL
• It specifies that the null value is not possible for

the associated attribute
•

AttributeName Domain UNIQUE
• It specifies that different tuples cannot have the

same value on the associated attribute
• The null value is not considered by the unique

constraint

Intra-table constraints

16

AttributeName Domain PRIMARY KEY
• It specifies the primary key of the table
• It can be used one-and-only-one time within a

table
• Two or more primary keys in a single

relation/table are NOT possible nor meaningful

Intra-table constraints

17

• Inter-table constraints are relational integrity
constraints

• A relational integrity constraint is defined
between a single (or a set of) attribute aR of a
referring table R with a single (or a set of)
attributes aT of a referred table T

• In the CREATE TABLE of R:
aR Domain REFERENCES T(aT)

Inter-table constraints

18

• A relational integrity constraint ensures that:
• for each tuple of R, the value of the attribute aR exists

as value of the attribute aT (if aR is not null)

• The attribute aT MUST be unique in T (in other
words, the attribute aT must be a key of T)

• Typically, the attribute aT is the primary key of T

Inter-table constraints

19

• Referential integrity allows to specify an action to
execute on the referring table R when a violation
of the integrity constraint occurs on the referred
table T

• Actions are triggered on update/delete
operations on values on the referred attribute aT
of the foreign key

Referential integrity

20

id official_title year length
0816692 Interstellar 2014 169

• Consider an update/delete operation of a value
vT in the referred attribute aT of a foreign key

• What happens to the value vR of the foreign key
aR in the referring table R?

Violation of referential integrity

21

p_sequence

sequence_species?

1375666

(R table)

(T table)

movie person role character
0816692 0634240 director

• Possible actions:
• CASCADE: the value(s) vR of the foreign key aR are

updated/deleted (the action executed on vT is applied
also to vR in a cascade manner)

• SET NULL: the value(s) vR of the foreign key aR are
set to the NULL value

Violation of referential integrity

22

• Possible actions:
• SET DEFAULT: the value(s) vR of the foreign key aR

are set to the default value specified for aR (if any,
otherwise the SET NULL action is executed)

• NO ACTION: the update/delete operation on the
attribute value vT in the referred attribute aT is
rejectedto preserve database integrity (this is the
predefined option)

Violation of referential integrity

23

• It is possible to specify user-defined constraints
on the attribute values of a specific table

• The constraint is represented as a (combination
of) boolean predicate

• In the CREATE TABLE:
attribute Domain CHECK (condition)

• User-defined constraints about attributes of
different tables require the specification of an
ASSERTION

User-defined integrity constraints

24

• In addition to predefined domains, it is possible
to specify custom attribute domains:

CREATE DOMAIN DomainName AS
BaseDomain [DefaultValue] [{Constraints}];

• DomainName is the user-defined domain name
• BaseDomain is the reference DBMS domain

upon which the new domain is generated
• DefaultValue and Constraints represent custom

conditions to require according to the
conventional SQL syntax

User-defined domains

25

• The ALTER statement is defined in SQL to
change the structure of schema elements
previously defined

• Explore the DBMS guide for a complete syntax
of the ALTER statement

• Example:
ALTER TABLE member ADD COLUMN
annual_ticket decimal(8, 2) DEFAULT 0;

Edit of database schema

26

• The DROP statement is defined to
delete/remove schema elements from a
database
DROP

<SCHEMA | DOMAIN | TABLE | VIEW | ASSERTION>
ElementName

Deletion of schema elements

27

Stefano Montanelli
Department of Computer Science

Università degli Studi di Milano
stefano.montanelli@unimi.it

Coding for Data Science and Data Management
Module of Data Management

SQL
Data Manipulation Language

• SQL expresses queries in a declarative way
• queries specify the properties of the result, not the way

to obtain it
• The DBMS (query processing and query

optimizer modules) translates SQL queries into
internal procedural language for query execution

SQL as a query language

29

SELECT Target List
FROM Table list
[WHERE Condition]

• SELECT: attributes whose values have to be
retrieved and shown in the query result

• FROM: relations on which the query is evaluted
• WHERE: boolean expression providing the

condition to satisfy by the relations tuples to be
included in the query result

SQL queries

30

• Retrieve the title of movies with length higher
than 120 minutes

SELECT official_title AS ‘movie title’
FROM movie
WHERE length > 120;

• Attributes can be renamed in the query result
through the AS operator

Simple SQL query (example)

31

• The star (*) operator specifies to retrieve in the
result all the attributes of the relations in the
FROM clause

• Example: retrieve all the information about
movies with length higher than 120 minutes

SELECT *
FROM movie
WHERE length > 120;

The * operator in the SELECT clause

32

• The SELECT clause can contain expressions to
manipulate the attribute values

SELECT annual_ticket/12 AS ‘monthly ticket’
FROM member;

Attribute expressions

33

• The WHERE clause is a conjunction/disjunction
of boolean predicates expressing conditions on
tuples
• AND: all the tuples that satisfy all the predicates in the

clause are retrieved in the result
• OR: all the tuples that satisfy at least one predicate in

the clause are retrieved in the result

• The NOT operator is also available:
• all the tuples that DO NOT satisfy the predicate in the

clause are retrieved in the result

WHERE clause

34

• Retrieve the movies with length higher than 120
minutes released in 2010

SELECT id, official_title
FROM movie
WHERE length > 120 AND year = ‘2010’;

Predicate conjunction

35

• Retrieve the movies with length of 120 or 240
minutes

SELECT id, official_title
FROM movie
WHERE length = 120 OR length = 240;

• We can use parenthesis to build complex
boolean predicates combining AND, OR, NOT

Predicate disjunction

36

• In the WHERE clause, predicates based on
pattern matching are allowed through the user of
the LIKE operator

[NOT] LIKE pattern

• To set string patterns:
• underscore ‘_’ to denote an arbitrary character
• percent ‘%’ to denote a string of arbitratry length

Pattern matching

37

• Retrieve the movies about ‘star wars’

SELECT *
FROM movie
WHERE official_title like ‘%star wars%’;

Pattern matching

38

• In SQL, it is possible that duplicate tuples are
retrieved

• The DISTINCT keyword can be used to remove
duplicate tuples from the result

SELECT DISTINCT official_title
FROM movie
WHERE year = ‘2010’ OR length > 120;

Duplicates

39

• The JOIN operator is provided for retrieving
corresponding tuples belonging to different
tables

R JOIN S ON aR = aS
• The JOIN operator has the goal to «combine»

the tuples of R with the corresponding tuples of S
• Corresponding tuples are those with the same

value on the attributes aR of R and aS of S
• aR is a foreign key of R referring the key aS of S or

viceversa

The JOIN operator

40

• SQL-2 introduced a syntax for explicitly
expressing joins in the FROM clause

• Different kinds of JOIN are supported
• INNER JOIN
• NATURAL JOIN
• RIGHT, LEFT, FULL OUTER JOIN

The JOIN operator

41

• The INNER JOIN between R and S returns the
joined tuples of R and S where the condition aR =
aS is satisfied

R INNER JOIN S ON aR = aS

• The NATURAL JOIN works as the INNER JOIN
without requiring to specify the equality condition
• Tuples are joined by considering the value equality

between attribute pairs of R and S with the same name
R NATURAL JOIN S

INNER and NATURAL JOIN

42

• Retrieve the first and last name of actors that
played in the movie ‘Interstellar’ (id = 0816692)

SELECT first_name, last_name
FROM person INNER JOIN

crew ON
person.id = crew.person

WHERE p_role = ‘actor’ AND
movie = 0816692;

• Question: how to filter according to the movie title instead
of the movie.id? (hint: need of one more join operation)

INNER JOIN example

43

• LEFT OUTER JOIN extends the INNER JOIN
with the tuples of R (the relation on the left of the
JOIN) that do NOT have matching tuples in S

R LEFT OUTER JOIN S ON aR = aS

• RIGHT OUTER JOIN extends the INNER JOIN
with the tuples of S (the relation on the right of
the JOIN) that do NOT have matching tuples in R

R RIGHT OUTER JOIN S ON aR = aS

OUTER JOINS

44

• Retrieve all the movies with related ratings

SELECT movie.id, official_title, score
FROM movie LEFT OUTER JOIN

rating ON movie.id = rating.movie;

• Also movies that are not associated with any
rating are included in the result

OUTER JOIN example

45

• The WHERE clause can contain conditions to
test the presence (or not) of NULL values for
attributes

WHERE attribute IS NULL
• The predicate is evaluated TRUE for a tuple if

the attribute contains a NULL value
• The IS NOT NULL condition can be used to

retrieve the tuples with a NON-NULL value

Queries with NULL values

46

• Retrieve the persons without a bio

SELECT *
FROM person
WHERE bio IS NULL;

Example

47

• SQL-89 uses a two-valued logic (TRUE, FALSE)
• a comparison with a NULL value returns FALSE

• SQL-2 uses a three-valued logic (TRUE, FALSE,
UNKNOWN)
• a comparison with a NULL value returns UNKNOWN

• In query result:
• Tuples for which the WHERE condition is evaluated

TRUE are retrieved
• Tuples for which the WHERE condition is evaluated

FALSE/UNKNOWN are not retrieved

Management of NULL values

48

• The ORDER BY clause si provided to specify the
ordering of tuples in the results

• The ORDER BY clause is specified at the end of
the query

ORDER BY attribute [ASC | DESC]
{, Attribute [ASC | DESC]}

• Multiple attributes can be specified and priority is
from left to right

• Default ordering is ASC – ascending

Ordering of results

49

• Table aliases can be considered as table
variables

• The alias is used to refer to the table from within
the query

• Aliases are useful not only to concisely refer to a
table in query writing, but also to compare each
other tuples of the same relation

Table variables (ALIAS)

50

• Retrieve the movies with length higher than
‘Interstellar’ (sort result by title)

SELECT m2.*
FROM movie AS m1,

movie AS m2
WHERE m1.official_title = ‘Interstellar’ AND

m1.length < m2.length
ORDER BY m2.official_title;

Example

51

• SQL offers aggregate operators to calculate
aggregate values out of sets of tuples in the
database relations
• COUNT: count the number of tuples
• SUM: sum the values on an attribute expression
• MAX: find the max value on an attribute expression
• MIN: find the min value on an attribute expression
• AVG: find the average value on an attribute expression

Aggregate queries

52

• The count operator returns the number of distinct
rows or distinct values
• distinct considers each value just once
• all considers all not-null values

COUNT (< * | [distinct | all] > attributeList)

The COUNT operator

53

• Retrieve the number of movies in the db
SELECT count(*) AS "movie count"
FROM movie;

• Retrieve the number of movies released in 2010
SELECT count(*) AS "movies of 2010"
FROM movie
WHERE year = ‘2010’;

Examples

54

• Retrieve the number of different roles that
appear in the crew

SELECT count(distinct p_role)
FROM crew;

• Retrieve the number of persons with known
birthdate (non-null birth_date)

SELECT count(all birth_date)
FROM person;

Examples

55

• SUM-MAX-MIN-AVG can be applied on the
values of a considered attribute or attribute
expression
• distinct considers each value just once
• all considers all not-null values

SUM-MAX-MIN-AVG operators

56

• Retrieve the sum-max-min-avg of annual tickets
paid by member users

SELECT sum(annual_ticket) AS "sum tickets",
max(annual_ticket) AS "max ticket",
min(annual_ticket) AS "min ticket",
avg(annual_ticket) AS "avg ticket"

FROM member;

Example

57

• Queries may apply aggregate operators to
subsets of rows

GROUP BY attributeList

• First the groups of rows are formed, then the
aggregated operator is applied to EACH group

GROUP BY queries

58

• When the GROUP BY clause is specified, the
SELECT clause can contain only
• the attributes in the attributeList of the GROUP BY
• aggregate operators on an attribute expression

IMPORTANT NOTE on GROUP BY

59

• Retrieve the number of actors for each movie
SELECT movie, count(person)
FROM crew
WHERE p_role = ‘actor’
GROUP BY movie;

Example

60

• The HAVING clause can be used to specify
conditions on groups

GROUP BY attributeList
HAVING predicate

• Only groups satisfying the HAVING condition are
shown in the result

Group predicates

61

• Retrieve the movies with a cast composed of
more than 10 actors

SELECT movie, count(person)

FROM crew

WHERE p_role = ‘actor’

GROUP BY movie

HAVING count(*) > 10;

Example

62

• Retrieve the movies with length higher than 120

min and cast composed of more than 10 actors

SELECT movie, count(person)

FROM movie INNER JOIN

crew ON movie.id=crew.movie

WHERE length > 120 AND p_role = ‘actor’

GROUP BY movie

HAVING count(*) > 10;

WHERE or HAVING clause?

63

• Set operations are provided to support UNION,
INTERSECT, EXCEPT
• Default behavior: duplicate removal
• ALL: keep duplicates in the result

SET queries

64

• Retrieve the persons that are born OR dead in
Italy (iso3 code = ITA)

SELECT person
FROM location
WHERE d_role = ‘birth’ AND country = ‘ITA’
UNION
SELECT person
FROM location
WHERE d_role = ‘dead’ AND country = ‘ITA’;

Example

65

• Retrieve the persons that are born AND dead in

Italy (iso3 code = ITA)

SELECT person

FROM location

WHERE d_role = ‘birth’ AND country = ‘ITA’

INTERSECT

SELECT person

FROM location

WHERE d_role = ‘dead’ AND country = ‘ITA’;

Example

66

• Retrieve the persons that are born in Italy (iso3
code = ITA), but dead elsewhere

SELECT person

FROM location

WHERE d_role = ‘birth’ AND country = ‘ITA’

EXCEPT

SELECT person

FROM location

WHERE d_role = ‘dead’ AND country = ‘ITA’;

Example

67

• In the WHERE clause we have a predicate
whose right part is an SQL query

• The goal is to compare an attribute value (or the
result of an attribute expression) with the result
of the SQL query on the right

Nested queries

68

• Retrieve the movies that have a genre in
common with the ‘Interstellar’ movie

SELECT id, official_title
FROM movie INNER JOIN genre ON
movie.id = genre.movie
WHERE genre = ANY

(SELECT genre FROM movie
INNER JOIN genre ON
movie.id = genre.movie
WHERE official_title = ‘Interstellar’);

Example (ANY operator)

69

• Retrieve the movies that have a genre in
common with the ‘Interstellar’ movie

SELECT id, official_title
FROM movie INNER JOIN genre ON
movie.id = genre.movie
WHERE genre IN

(SELECT genre FROM movie
INNER JOIN genre ON
movie.id = genre.movie
WHERE official_title = ‘Interstellar’);

Example (IN operator)

70

• Retrieve the movies that have not been released
in Italy (iso3 code = ITA)

SELECT id, official_title

FROM movie

WHERE id NOT IN
(SELECT movie FROM released

WHERE country = ‘ITA’);

• Alternative solutions are possible. Any idea?

Example

71

• Retrieve the movies that have a rating higher
than the average of ratings of the ‘Interstellar’
movie (id = 0816692)

SELECT DISTINCT movie
FROM rating
WHERE score >

(SELECT avg(score)
FROM rating
WHERE movie = 0816692);

Example

72

• The nested subquery (internal query) is
executted only once; resulting set is used to
evaluated the WHERE clause of the external
query

• Correlated nested query are complex nested
queries where the nested query needs to be
executed for each tuple of the external query

Correlated nested queries

73

• Retrieve the movies that have a rating from a
source S higher than the average of all the
ratings provided by S

SELECT x1.movie, x1.score
FROM rating AS x1
WHERE x1.score >

(average of all the ratings provided by
the source of x1, namely x1.source);

Example

74

• Retrieve the movies that have a rating from a
source S higher than the average of all the
ratings provided by S

SELECT x1.movie, x1.score
FROM rating AS x1
WHERE x1.score >

(SELECT AVG(score)
FROM rating AS x2
WHERE x1.source = x2.source);

Example

75

• Predicate EXISTS(sq) is TRUE if the subquery
sq returns a non-empty result; it is FALSE
otherwise

• Predicate NOT EXISTS(sq) is the negation of
EXISTS

Correlated nested queries - EXISTS

76

• Retrieve the movies that are not released in the

countries where they are produced

SELECT x.*

FROM movie AS x

WHERE NOT EXISTS

(SELECT y.country FROM produced AS y

WHERE (x.id = y.movie)

INTERSECT

SELECT z.country FROM released AS z

WHERE (x.id = z.movie));

Example

77

