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1.
i.

For a generic MA(2),
γ0 = V ar (Yt) = E

[
(εt + θ1εt−1 + θ2εt−2)

2]
= E

(
ε2t + θ21ε

2
t−1 + θ22ε

2
t−2 + 2εtθ1εt−1 + 2εtθ2εt−2 + 2θ1εt−1θ2εt−2

)
= σ2 + θ21σ

2 + θ22σ
2 = (1 + θ21 + θ22)σ

2;
γ1 = Cov (Yt, Yt−1) = E [(εt + θ1εt−1 + θ2εt−2) (εt−1 + θ1εt−2 + θ2εt−3)] =

(θ1 + θ2θ1)σ
2

γ2 = Cov (Yt, Yt−2) = E [(εt + θ1εt−1 + θ2εt−2) (εt−2 + θ1εt−3 + θ2εt−4)] =
θ2σ

2

γj≥3 = Cov (Yt, Yt−j≥3) = 0
(these are, of course, particular applications of the formula γj =

∑∞
k=0 ψkψk+jσ

2

when we set ψ0 = 1, ψ1 = θ1, ψ2 = θ2, ψj≥3 = 0).
Thus,

γ0 + 2
∞∑
j=1

γj = γ0 + 2× (γ1 + γ2)

as covariances γj for i > 2 are zero. We then rewrite

γ0+2×(γ1 + γ2) =
((

1 + θ21 + θ22
)

+ 2 (θ1 + θ2θ1 + θ2)
)
σ2 = (1 + θ1 + θ2)

2 σ2

ii. For Yt = εt + θ1εt−1 + θ2εt−2,
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Yt−1 = εt−1 + θ1εt−2 + θ2εt−3,
Yt−2 = εt−2 + θ1εt−3 + θ2εt−4, then

Yt + Yt−1 + Yt−2 = εt + (1 + θ1) εt−1 + (1 + θ1 + θ2) εt−2 + (θ1 + θ2) εt−3 + θ2εt−4
T∑
t=1

Yt = εT + (1 + θ1) εT−1 + (1 + θ1 + θ2)
T−2∑
t=1

εt + (θ1 + θ2) ε0 + θ2ε−1

1√
T

T∑
t=1

Yt =
1√
T
εT+(1 + θ1)

1√
T
εT−1+(1 + θ1 + θ2)

1√
T

T−2∑
t=1

εt+
1√
T

(θ1 + θ2)
1√
T
ε0+θ2

1√
T
ε−1

and notice that εT , εT−1, ε0, ε−1 are all bounded in probability so 1√
T
εT ,

1√
T
εT−1,

1√
T
ε0,

1√
T
ε−1 all go to 0 in probability as T →∞.

On the other hand,

1√
T

T−2∑
t=1

εt =

√
T − 2√
T

√
1√

T − 2

T−2∑
t=1

εt

and, as T →∞,

√
T − 2√
T
→ 1,

1√
T − 2

T−2∑
t=1

εt →d N
(
0, σ2

)
Combining all these results,

1√
T

T∑
t=1

Yt →d N
(
0, σ2 (1 + θ1 + θ2)

2)
2.
In this case we can use a Central Limit Theorem argument and derive

√
T
(
Y − µ

)
→d N

(
0,

∞∑
j=−∞

γj

)

and therefore
√
T

(
Y − µ

)√∑∞
j=−∞ γj

→d N (0, 1)
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This statistic has known limit distribution but we cannot compute it because
we do not know

∑∞
j=−∞ γj. However, we may replace it with an estimate: as∑∞

j=−∞ γj = γ0 + 2
∑∞

j=1 γj, we can estimate the latter as

γ̂0 + 2
T−1∑
j=1

kj γ̂j

where kj is a weight called kernel and it is such that kj → 0 as j → T . We
will then test using

√
T

(
Y − µ

)√
γ̂0 + 2

∑T−1
j=1 kj γ̂

→d N (0, 1)

for a suitable kernel, and reject the null hypothesis if the realisation of the
absolute value of the test statistic exceeds the 5% critical value.
Two estimates of the long run variance are

γ̂0 + 2
M∑
j=1

γ̂j, M/T → 0, rectangular kernel estimate

γ̂0 + 2
M∑
j=1

M − j
M

γ̂j, M/T → 0, triangular kernel estimate

The triangular kernel estimate is also known as Bartlett (kernel) estimate, or
as Newey-West estimate. Typically we choose M =

√
T : in this case, with

T = 100 we need M = 10. We only have four values for γj so that’s all we
can do, but we will bear in mind that the result of the test may be not so
reliable.
Using the rectangular kernel, we get

γ̂0 + 2
T−1∑
j=1

kj γ̂j = 2 + 2× (1 + 0.25− 0.25) = 4

whereas using the triangular kernel we get

γ̂0 + 2
T−1∑
j=1

kj γ̂j = 2 + 2×
(

3

4
1 +

2

4
0.25− 1

4
0.25

)
= 3.625
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and the test statistic using the Rectangular kernel takes value

√
100 ∗ 4− 3√

4
= 5

whereas using the triangular kernel we get

√
100 ∗ 4− 3√

3.625
= 5.252.

As the critical value is 1.96, either way the absolute value of the test statistic
excceds the critical value and the null is therefore rejected. Note: in the dis-
cussion I presented results using both kernels. In practice, you do not need
to do so, discussing only one would be sufficient.
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3.
Stationarity is defined by saying thatE (Yt) and E [(Yt − E (Yt)) (Yt−j − E (Yt−j))]

do not depend on time, so of course one way to check it is by looking at the
first two moments.
Sometimes, it is easier to check if Yt admits an MA(∞) representation Yt =
µ +

∑∞
j=0 ψjεt−j, where the parameters ψj do not depend on time and are

such that
∑∞

j=0 ψ
2
j <∞, and εt is white noise (notice that this also requires

the existence of the second moment for εt).
Finally, stationarity can be checked on ARMA models by checking the roots
of the polynomial equation associated to the AR part of the model are all
outside the unit circle.

i. Yt = εt + 1.6εt−1 + 0.48εt−2.
This is MA(2), so it is stationary; alternative: notice that ψ0 = 1, ψ1 =

1.6, ψ2 = 0.48 and ψj≥3 = 0 so
∑∞

j=0 ψ
2
j = 1 + 1.62 + 0.482 = 3. 790 4 <∞

ii. Yt = Yt−1 + εt t > 0, Y0 = 0.
Replacing Yt−1 = Yt−2 + εt−1, we have Yt = Yt−2 + εt−1 + εt.
Replacing Yt−2 = Yt−3 + εt−2, we have Yt = Yt−3 + εt−2 + εt−1 + εt.
Iterating, Yt =

∑t
s=1 εs.

E (Yt) = E
(∑t

s=1 εs
)

=
∑t

s=1E (εs) = 0;

E (Y 2
t ) = E

(∑t
s=1 εs

)2
= E

(∑t
s=1 ε

2
s + 2

∑t
s=1

∑s−1
r=1 εsεr

)
=∑t

s=1E (ε2s) + 2
∑t

s=1

∑s−1
r=1E (εsεr) =

∑t
s=1 σ

2 = tσ2

using E (ε2s) = σ2, E (εsεr) = 0 because s 6= r.
Since the variance depends on time, the process is not stationary.
Notice, here, that writing this as Yt = φYt−1+εt and then concluding that

the process is not stationary because φ = 1 instead of |φ| < 1 is not correct.
It is indeed true that φ = 1 and that the process is not stationary. What is
not correct, is to treat φ = 1 as a necessary condition for non-stationarity. In
fact, in the lectures we only showed that if |φ| < 1, then we have stationarity,
but nothing about what happens if |φ| < 1 fails. The condition |φ| < 1 is a
sufficient condition (to ensure stationarity), but we did not study φ = 1 so
we do not know.

iii. Yt = εtεt−1.
E (Yt) = E (εtεt−1) = E (εt)E (εt−1) = 0, whereE (εtεt−1) = E (εt)E (εt−1)

follows using the fact that εt and εt−1 are independent.
E (Y 2

t ) = E
(
ε2t ε

2
t−1
)

= E (ε2t )E
(
ε2t−1

)
= σ2σ2 = σ4, where E

(
ε2t ε

2
t−1
)

=
E (ε2t )E

(
ε2t−1

)
follows using the fact that εt and εt−1 are independent.
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E (YtYt−1) = E [(εtεt−1) (εt−1εt−2)] = E
(
εtε

2
t−1εt−2

)
= E (εt)E

(
ε2t−1

)
E (εt−2) =

0× σ2 × 0 = 0.
For j > 1, E (YtYt−j) = E (εtεt−1εt−jεt−j−1) = 0.
So both the mean and all the covariances do not depend on time, this

process is stationary.
Notice, here, that since the process is stationary, the by Wold represen-

tation we can write it as Yt = κt +
∑∞

j=0 ψjuj for some white noise {ut}∞t=−∞.
In this particular case, E (Yt) = 0 so set κt = 0 and representation is Yt = ut
where E (ut) = 0, E (u2t ) = σ4.

iv. Yt = 0.8Yt−1 − 0.8Yt−2 + εt
This is an AR(2), so look at Yt−0.8Yt−1+0.8Yt−2 = εt, (1− 0.8L+ 0.8L2)Yt =

εt,
(1− 0.8z + 0.8z2) = 0, Solution is: 0.8±

√
0.82−4×0.8
2×0.8 = 0.8±

√
−2.56

1.6
= 0.8±1.6i

1.6
=

0.5± i
to see if the roots are in absolute value outside the unit circle, remember
that |a± ib| =

√
a2 + b2, so in this case |0.5± i| =

√
0.52 + 1 =

√
1.25 > 1.

Therefore, the process is stationary.

v. Yt NID (1, 1) for t odd, exponentially independently distributed for t
even.

Regardless of wether t is even or odd, E (Yt) = 1, V ar (Yt) = 1,
E [(Yt − E (Yt)) (Yt−j − E (Yt−j))] = 0 when j 6= 0 (because of the assump-
tion of independence), so the process is stationary.

vi. Yt is independent identically distributed Cauchy
The process has no finite first or second moment so it is not stationary.

2.
i. Let {εt}∞t=−∞ be white noise and assume that φ (L)Zt = θ (L) εt.

Invertibility means that we can invert φ (L)Zt = θ (L) εt as θ (L)−1 φ (L)Zt =
εt (thus ”inverting” θ (L)) and (setting π (L) = θ (L)−1 φ (L)), we can write

εt =
∞∑
j=0

πjZt−j

ie given the history of Zt, we can compute εt (we could also say that Zt

admits a AR(∞) representation, Zt =
∑∞

j=1 αjZt−j + εt).
ii.
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Yt − 2 = εt + 1.6εt−1 + 0.48εt−2 =
(
1 + 1.6L+ 0.48L2

)
εt

=
(
1 + 1.2L+ 0.4L+ (1.2× 0.4)L2

)
εt = (1 + 1.2L) (1 + 0.4L) εt

so λ1 = 1.2, λ2 = 0.4 and since |λ1| ≥ 1, then the process is not invertible.
iii.
For a generic MA(2),
γ0 = V ar (Yt) = E

[
(εt + θ1εt−1 + θ2εt−2)

2]
= E

(
ε2t + θ21ε

2
t−1 + θ22ε

2
t−2 + 2εtθ1εt−1 + 2εtθ2εt−2 + 2θ1εt−1θ2εt−2

)
= σ2 + θ21σ

2 + θ22σ
2 = (1 + θ21 + θ22)σ

2;
γ1 = Cov (Yt, Yt−1) = E [(εt + θ1εt−1 + θ2εt−2) (εt−1 + θ1εt−2 + θ2εt−3)] =

(θ1 + θ2θ1)σ
2

γ2 = Cov (Yt, Yt−2) = E [(εt + θ1εt−1 + θ2εt−2) (εt−2 + θ1εt−3 + θ2εt−4)] =
θ2σ

2

γj≥3 = Cov (Yt, Yt−j≥3) = 0
(these are, of course, particular applications of the formula γj =

∑∞
k=0 ψkψk+jσ

2

when we set ψ0 = 1, ψ1 = θ1, ψ2 = θ2, ψj≥3 = 0).
So

ρ1 =
(θ1 + θ2θ1)

(1 + θ21 + θ22)
=

(1.6 + 0.48× 1.6)

(1 + 1.62 + 0.482)
= 0.624 74

ρ2 =
θ2

(1 + θ21 + θ22)
=

0.48

(1 + 1.62 + 0.482)
= 0.126 64

ρj≥3 = 0

(notice, here, that the AC function of an MA(q) process only takes
nonzero values if j ≤ q).

The invertible representation of the same process is

Yt − 14 = (1 + (1/1.2)L) (1 + 0.4L) εt =
(
1 + (1/1.2)L+ 0.4L+ 0.4/1.2L2

)
εt

= εt + (1.48/1.2) εt−1 + 1/3εt−2

Check that the autocorrelations are the same:

ρ1 =
(θ1 + θ2θ1)

(1 + θ21 + θ22)
=

(1.48/1.2 + 1/3× 1.48/1.2)(
1 + (1.48/1.2)2 + 1/32

) = 0.624 74

ρ2 =
θ2

(1 + θ21 + θ22)
=

1/3(
1 + (1.48/1.2)2 + 1/32

) = 0.126 64
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3.
In order to derive the best linear forecasts, we use the formula

Ŷt+1|t,...,t−m+1 = α
(m)
1 Yt + α

(m)
2 Yt−1 + ...+ α(m)

m Yt−m+1

for m = 1 and for m = 2.
Recall that

α
(m)
1

α
(m)
2

...

α
(m)
m−1
α
(m)
m

 =


γ0 γ1 ... γm−2 γm−1
γ1 γ0 ... γm−3 γm−2
... ... ... ... ...
γm−2 γm−3 ... γ0 γ1
γm−1 γm−2 ... γ1 γ0


−1

γ1
γ2
...
γm−1
γm


In order to compute α

(m)
m we then need to compute all the autocovariances

up to γm first. Since we are interested in m up to m = 2, we compute

γ0 =
(
1 + θ2

)
σ2 =

5

4
σ2

γ1 = θσ2 =
1

2
σ2

γ2 = 0.

So, when m = 1, (part i.)

α
(1)
1 =

(
γ0
)−1 (

γ1
)

=
4

5

1

2
=

2

5

and

Ŷt+1|t = α
(1)
1 Yt =

2

5
× 0.8 = 0.32

and when m = 2 (part ii.)(
α
(2)
1

α
(2)
2

)
=

(
γ0 γ1
γ1 γ0

)−1(
γ1
γ2

)
=

(
10
21

− 4
21

)
so

Ŷt+1|t,t−1 = α
(2)
1 Yt + α

(2)
2 Yt−1 =

10

21
× 0.8− 4

21
× 1.2 = 0.152 38
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iii. In order to compute the partial autocorrelation function, recall that
this is α

(1)
1 , α

(2)
2 , α

(3)
3 . We already computed α

(1)
1 and α

(2)
2 so we only need

α
(3)
3 . This is obtained solving α

(3)
1

α
(3)
2

α
(3)
3

 =

 γ0 γ1 γ2
γ1 γ0 γ1
γ2 γ1 γ0

−1 γ1
γ2
γ3


so we need γ3 as well, and it is easy to verify that γ3 = 0. Therefore, α

(3)
1

α
(3)
2

α
(3)
3

 =

 5
4

1
2

0
1
2

5
4

1
2

0 1
2

5
4

−1 1
2

0
0

 =

 42
85

− 4
17
8
85


Therefore, the partial autocorrelation function is

α
(1)
1 α

(2)
2 α

(3)
3

2
5

− 4
21

8
85
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