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We are interested in the vector time series

Yt =


Y1,t
Y2,t
...
Yn,t


This is a vector of dimension n.

As we did for ARMA models, we we begin with

a vector white noise.

Denote

εt =


ε1,t
ε2,t
...
εp,t


then by saying that ε is a vector white noise

we mean that

E(εt) = 0

E(εt ε
′
t) = Ω

E(εt ε
′
τ) = 0 if t 6= τ

where Ω is a symmetric, positive definite ma-

trix.



Then, for n×n matrices Φ1, Φ2, ..., Φp and Θ1,

Θ2, ..., Θn, we define Vector ARMA (VARMA)

Yt−Φ1Yt−1−...−ΦpYt−p = εt+Θ1εt−1+...+Θqεt−q,

Special cases will include

Vector Autoregressions (VAR)

Yt −Φ1Yt−1 − ...−ΦpYt−p = εt

and vector moving averages

Yt = εt + Θ1εt−1 + ...+ Θqεt−q

Stationarity and invertibility follow adapting

conditions from the scalar time series case.

Adapting arguments as we saw for scalar time

series, we can also write any stationary VARMA

as infinite moving average

Yt = εt + Ψ1εt−1 + Ψ2εt−2 + ...



Example of notation.
For the generic matrix Φj denote element in

row a and column b as φ(j)
ab . For example, for

n = 2,

Yt =

[
Y1,t
Y2,t

]
, εt =

[
ε1,t
ε2,t

]
, Φ1 =

 φ
(1)
11 φ

(1)
12

φ
(1)
21 φ

(1)
22


so the VAR(1) Yt = Φ1Yt−1 + εt is

Y1,t = φ
(1)
11 Y1,t−1 + φ

(1)
12 Y2,t−1 + ε1,t

Y2,t = φ
(1)
21 Y1,t−1 + φ

(1)
22 Y2,t−1 + ε2,t

with infinite Moving Average representation

Y1,t = ε1,t + ψ
(1)
11 ε1,t−1 + ψ

(1)
12 ε2,t−1

+ψ
(2)
11 ε1,t−2 + ψ

(2)
12 ε2,t−2 + ...

Y2,t = ε2,t + ψ
(1)
21 ε1,t−1 + ψ

(1)
22 ε2,t−1

+ψ
(2)
21 ε1,t−2 + ψ

(2)
22 ε2,t−2 + ...

Note: Hamilton has a slightly different nota-
tion, as he calls Y1,t and Y2,t as yt and xt, re-
spectively.



Inference for VARs

F Estimation is done using the same tech-
niques that we saw for scalar time series. In
particular, Conditional ML can be done using
OLS (when no restrictions are imposed on el-
ements of the matrices Φj)

F Estimates are consistent and asymptoti-
cally normal (rate of convergence is

√
T , as

in the scalar case).

F Model selection can be done using infor-
mation criteria as in the scalar case. However,
since the VARs models are nested, it is also
possible to test exclusion of lags as exclusion
restrictions.

F Model validation can be done using the
Portmanteau test (a multivariate version of
it). However, in view of the cost in terms
of degrees of freedom (which depends on the
number of parameters) the Lagrange Multiplier
(LM) test for no autocorrelation of the resid-
uals might be preferred.



Example: using the Likelihood Ratio
to select the lags
Since the VARs models are nested, it is also

possible to test exclusion of lags as exclusion

restrictions. This is usually done by means of

a Likelihood Ratio test.

For example, estimating a VAR(2) we have es-

timates Φ̂1 and Φ̂2.

We could test the hypothesis that one lag is

sufficient by testing H0 : {Φ2 = 0}.
There are n× n parameters in Φ2, so this cor-

responds to testing n2 hypotheses). The Like-

lihood Ratio test is particularly convenient to

test this joint hypothesis, because the OLS

estimates Φ̂1 and Φ̂2 are asymptotically equiv-

alent to the ML ones, and the Concentrated

likelihood can be computed directly from the

miminised Residuals.



Granger Causality
An interesting application of inference on coef-

ficients in the VAR representation is the Granger-

causality test.

In a bivariate (n = 2) case, by saying that

for example, y2,t Granger-causes y1,t, we mean

that past values of y2,t help predicting y1,t (the

reverse might be equally considered).

If Y2,t does not Granger-causes Y1,t, the matri-

ces Φj and Ψj are lower triangular.

For example, for a VAR(2),

Y1,t = φ
(1)
11 Y1,t−1 + φ

(2)
11 Y1,t−2 + ε1,t

Y2,t = φ
(1)
21 Y1,t−1 + φ

(1)
22 Y2,t−1

+φ
(2)
21 Y1,t−2 + φ

(2)
22 Y2,t−2 + ε2,t

Thus we test for Granger-causality by testing

H0 : {φ(1)
12 = 0, φ(2)

12 = 0}. This is easy to do,

as the distribution of Φ̂1, Φ̂2 is easy to use.



Granger Causality test.

Estimate the restricted regression

Y1,t = φ
(1)
11 Y1,t−1 + φ

(2)
11 Y1,t−2 + et

and the unrestricted regression

Y1,t = φ
(1)
11 Y1,t−1 + φ

(2)
11 Y1,t−2

+φ
(2)
12 Y2,t−1 + φ

(2)
12 Y2,t−2 + ut

Denote êt and ût as the residuals of these two

regressions, and

RRSS =
T∑

t=2+1

ê2
t , RRSU =

T∑
t=2+1

û2
t

Then, under H0,

T
RRSS −RRSU

RSSU
→d χ

2
2

For a VAR(p) restricted and unrestricted re-

gressions are run on p lags, and

T RRSS−RRSURSSU →d χ
2
p.



F other approached to testing for Granger causal-

ity are possible.

F This is not really a causality test (Granger-

causality is not really causality). Even if we

find, for example, that Y2,t Granger-causes Y1,t+j,

this may well be that it is actually Y1,t+j caus-

ing the move in Y2,t. One typical example is

with price of shares: suppose that the expected

future dividends increase: prices of shares should

take this into account immediately. As long as

the expectations are on average correct, we

then observe that on average dividends in the

future do indeed increase. Thus, we observed

higher prices today anticipate higher dividends

in the future. However, it is not the prices that

caused the dividends, but rather the opposite.

This is often the case when Rational Expecta-

tions are considered.



Impulse Response Function:
an Identification Problem

In the scalar case we defined the Impulse Re-

sponse Function as the plot of ψj against j.

In the multivariate case we could consider the

plot of Ψj against j.

However, the interpretation is not always clear.

Consider n = 2 again, then for example

ψ
(s)
11 =

∂Y1,t+s

∂ε1,t

In analogy with the interpretation in a multi-

variate regression, ψ(s)
11 then gives the change

in prediction of Y1,t+s due to a change in ε1,t
holding everything else constant.

However, since ε1,t is correlated with ε2,t,

the joint effect of these should be con-

sidered, to appreciate how our prediction of

Y1,t+s is affected by a shock in ε1,t.



Consider a nonsingular, n× n matrix H, and

ut = Hεt

Then, ut is a vector white noise process and

Yt = H−1 Hεt+Ψ1H
−1 Hεt−1+Ψ2H

−1 Hεt−2+...

So letting

Js = ΨsH
−1

we have

Yt = J0ut + J1ut−1 + J2ut−2 + ...

This shows that there are alternative rep-

resentations based on Vector White Noise

processes different from εt



The covariance matrix of ut is E(ut u′t) = HΩH ′.
We may choose H so that E(ut u′t) is diagonal:

Cholesky decomoposition.

For any real and symmetric matrix Ω there is a

diagonal matrix D and a lower triangular ma-

trix A with 1 along the main diagonal, such

that

Ω = ADA′

Thus, on setting H = A−1, we get E(ut u′t) =

D diagonal.

We decomposed the innovations εt in orthog-

onal components: each element uj,t charac-

terises the ”new” information for Yj,t. We can

use this to see how predictions Yk,t+s respond

to the new information.

A plot of ΨsA gives the structuralised Im-

pulse Response Function.

F We could also decompose D = D1/2D1/2.

For P = AD1/2 a plot of ΨsP gives the struc-

turalised Impulse Response Function for shocks

measuring a standard deviation of ut.



F In the n = 2 case,[
1 0
a21 1

] [
u1,t
u2,t

]
=

[
ε1,t
ε2,t

]
so

u1,t = ε1,t
u2,t = ε2,t − a21u1,t

The identification depends on the ordering
of the variables.
Had we set Yt = (Y2,t, Y1,t)

′ we would have a
different matrix, say B, to orthogonalize the
innovations, and

u2,t = ε2,t
u1,t = ε1,t − b21u2,t

Thus, with the first choice the correlated part
of the shock is given to u1,t, with the second
choice the correlated part of the shock is given
to u2,t.
The choice of the ordering has great conse-
quencies and should be informed by what we
know of economic theory.

F Other forms of identification are also pos-
sible, these may not even require setting up a
triangular matrix.



Forecast Error Variance Decomposition

Forecast error

Yt+s− Ŷt+s|t = εt+s+Ψ1εt+s−1 + ...+Ψs−1εt+1

MSE forecast

MSE(Ŷt+s|t) = Ω + Ψ1ΩΨ′1 + ...+ Ψs−1ΩΨ′s−1

We can decompose Ω using the Cholesky deco-

moposition or other techniques, and see which

innovations contributed most to the forecast

variance.

Estimation: IRF and FEVD
F Matrix Ω̂ may be estimated as a sample

variance covariance from the residuals of the

estimated VAR. Matrices Â and D̂ can be com-

puted directly from Ω̂. Estimated standard er-

rors for the IRF and FEXD can also be com-

puted.


