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What we are going to do next week? Eview. We will use in our project. Show me first
where we can find. Eview10 for students. The main limitation is in the volume of data. 2k
data is enough for us. The other limitation has to due to the fact that we can't save our
work so i can export it. The last thing: why this one? As we are going to see in a week
time the most user friendly software for econometrics and statistics.

R is an alternative software that has the advantage to be more open to programming and
require a big effort to interface with the software.

2 problems: invert matrix and ...

The way to go is by using condition ad manage to break the product of all the marginal.
So eliminating the huge matrix and get marginals.

Log-like hood resolve the problem of big matrix but generate the problem of generating
all the value for FI. If we focus on the second line we can get a close formula and in the
case of autoregression we solve problem of inverting a big matrix and computing the
function for all the possible values and i got a solution to compute all the estimation of
the values. We saw that for maximum value of MA i can use condition to manage to
break the big inversion problem with a serious of factors but i still have to compute the
density for all the possible value for theta. In the case of MA or model shaving MA
(ARMA), the second part of problem (computing like-hood for all possible values) is still
there. He shows that i can draw the function for all the possible values and i can actually
draw it but is not a good way to proceeded.

The function may be computed for all the 6, || < 1
(6 = -0.76)

0.004 -
0.0035 -
0.003
0.0025 -
0.002
0.0015 -
0.001
0.0005 -
0 4
&I PP 9’.\"‘@@,\@ XPFLIIS

o

Another plan:

It became difficult to visualize. How do i think a 5 dimensional space? This is not the way
to proceed. We will take any point, for example this one and i will go to the function and i
got a point. | want to go to this maximum here. | have an idea: i can look at the function
and see if it's going up or down ( i look at the neighbours). | compute the derivative of the
function that i want to maximize and i know i go up or down.

| know if i want to go to the right or the left for positive or negative increase. | want to go
to the right. Next step will be to look at the cure itself. Here, in the last part he will give us
a huge gain. When curve is flat i get the maximum or maybe the minimum. If curve is
very stipe i have to take a great step. If is flat is not far away to we are looking for. Now i
will go rightward and i want to take a step that will decide depending on the slop of the
function. In this case i will take a small step and then repeat the exercise in the point.
This procedure eventually, will get me from a point to another and eventually to the
maximum. And cool thing is that i f get a small step because it will | adjust my step to the
curvature. Looking at the first derivative and curvature (second derivative) i know where
and how far i want to go. My starting point and ending point are pretty much the same. |
can design an optimization process that get me there.

Optimisation of the objective
function

In general, it is not always possible to obtain a
closed form formula for the estimate, and it may be
extremely time consuming to compute the
log-likelihood function (even the conditional
log-likelihood) for all the potential B.

The optimisation of the log-likelihood may be
carried using a numerical algorithm, such as the
Newton-Raphson one.

Introduce
a0y _ OLB) .
g(BY) = A (gradient)
0y _ _LPB) :
HPB"™) pop’ . (Hessian)

for a generic B, and consider an approximate
second order Taylor expansion of £(B),

L) ~ LB©) +[2B®) |iB-B“]
- LB-BOVHE)B-B]

Recall that £(B) is maximised at E if
oL(B)

= =0.
B lpsp
Now, consider the approximation of the derivative
around B©:
OLB) Y] — HB®)[B — B©
B (g(B™)] - H(B™)[B - B™].

If the approximation was perfect, we could have
just computed B solving for B

[g(B)]-HB)B-B”]=0,

ie.,

B =B +HB) 2]
However, this may be a rather poor estimate,
because the approximation is not exact (there is a
remainder, in this case of the third order, in the
Taylor expansion of £(B)). Let’s call this possibly
poor estimate B‘"), then, where

B = B(O) +H(B(0))*‘[g(3(0))] .
clearly, this is (in a certain probabilistic sense)
better than a generic ).

If i get a point at the end, we will get the minimum. So, we have to be careful when we
apply it. One thing is that this procedure works when we get a good starting value.
Software will not for sure get us to the maximum.

Next, we can improve, by considering a second
order approximation of £(B) in B"’, and compute

B =BY + HEB®M) [2(BM)].
The procedure can then be iterated until
convergence (which gives B).

Example
ARMA(1,1) (assuming yo = 0, 63 = 1 known),
B = (0.¢)". Recall
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In many cases, you may start the
optimisation with any set of starting values,
but this may result in a rather slow
optimisation, or even in an "incorrect"
solution (you may end up picking a local
maximum, rather than the maximum).

It is then advisable to start from a "good"
point, that is, from a consistent estimate of B
(tipically, an estimate that you may
compute easily, even if it is less efficient
than maximum likelihood): the correlogram
based estimate is a good starting point
(given certain regularity conditions,
properties as in the pseudo-maximum
likelihood estimate may be obtained after
just one step).

Correlogram has a nice feature: i can compute the numbers so i can come out to a
number at the end. The best way is taking estimate to the correlogram estimate and the
solution will be in my neighbourhood.

Asymptotic Properties of parametric estimates

Correlogram base estimation and maximum like hood. At the end i will have and
estimate. What we have to establish is weither this estimate is good or no. The general
rule, there is no treason to say that estimation is good is estimate is maximum like hood.
SO we have to study the properties of estimation.

Finally the most interesting case is the pseudo maximum likelihood: max estimation
when we pretend to have a Normal distribution.

We want that estimate is consistent!

Limit properties: consistency

Then
ﬁ -y Bpas T —»

ie.as T — o, ﬁ (any of ﬁC, or of ﬁML or of
ﬁ py) 18 @ consistent estimate of B,.

It also holds that 8¢ -, 63, 81, —», 03 and

8 — odas T - o (where 8¢, 8}, and 67, are
the correlogram based, ML and PML estimates of
o}, respectively).

The meaning requirement is having consistency and we can prove it.

Another properties is if we know distribution of the estimates. He can give us what is the
estimate and how precise the estimate is. This estimate are all asymptotical normal and
it's good because is very familiar for me.

Limit properties: asymptotic
normality

ﬁ(B\C—Bo> a4 N(0,Z¢)
ﬁ(ﬁML _Bo> —~d N(0,Znmz)
ﬁ<ﬁPML - Bo> —a N(0,Z )

as T - o, JT <f§ - B0> is asymptotically
normally distributed. Notice however the
dispersion is, in general, different.

The second part good is that i can derive variance covariance matrix. He will not give us
the proof but he show us that i can put number in the matrix.

Examples of Zy:
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* These do not depend on o;

% The estimates in the AR(1), MA(1) are more
precise the stronger the dependence.

The roof start from LLN slide but is not examinable but is useful to have in the lectures.

Not only i can put number, but i can compute. | can tell you exactly what is the estimate
variance of this guy.

Which means that if we are interested in testing FI 0.5 we can do it. | can test hypothesis
on this parameters.

Summarize

This estimates are consistent so it will match. The second proprieties is that is
asymptotically normal and likely they are. Look at the formula of the variance.

We can see that the function are number that i can compute. If i can estimate this i can
compute this functions.

This formula is of ML. He didn't' present variance for this functions. Bad news is that
formula from correlogram is different form the ML estimates. In general, the CL
estimates will not be good as the ML estimates. The second will be more precise and
have less variance. One situation of CL good as ML is when i have autoregression. It's
regression in both functions. ML > CL ( more précises).

CL in the other hand has a value because he gets me to the right starting value. And
that's why we are studying the CL.

What does it mean that CL is not good as ML?

Properties of the Correlogram
Based estimate and Maximum
Likelihood estimate

What does it mean to say that the Maximum
Likelihood estimate is more precise than the
Correlogram based estimate?

& Example 1. MA(1).

The series
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15 9131721252933 374145495357 6165 697377 818589 9397

was generated as MA(1) with 6 = 0.5.

* If we pretend not to know 6, and we estimate it
as correlogram based or maximum likelihood
estimate,

B¢ =0.35,0,, = 0.43
so in this particular example 8 . got closer to 6 (so,
it worked better).

This is just one example and these are random variable. Instead of doing one example i
do 1k example.

* Example 2. 1000s MA(1), an experiment.

I took 1000 random series from the same process:

% the estimate 8 gets closer to 0.5 than B¢ does
in 68.5% of the cases;

% the standard error of the estimated values
0,4 is 0.075, the standard error of the estimated
values 8¢ is 0.104.

% We can look at the whole sample distribution of
the estimates (there are two ways to represent it,
with histograms or with smooth functions). 8,
clusters more estimated values around 0.5, and
much less in points away from it.

All this means that 8, is more precise than 8. in
a statistical sense.

Another way is looking at the standard error of the variable. The standard error of the
estimates is 0.075 for ML and 0.104 for CL. So, a difference of 30%. If you want to
understand what this 30 % mean we can see the distributions.

Interpretation of the standard errors
and application to testing

The standard errors can be seen as a
measure of the precision of the estimate,
and can be also used in testing.

% Example 1 (MA(1)). Consider the estimation of
the parameter 6 assuming that the true model is an
(invertible) MA(1). Compare the asymptotic
variance when a MA(1), a MA(2) and ARMA(1,1)
are used. Notice that 6., in the MA(2) is 0, and ¢
in the ARMA(1,1) is 0.

Model MA(1) MA(2) ARMA(1,1)
as.Var. (1-63)xUT 1T ;—:(I—Oﬁ)xl/T

The asymptotic variance in the MA(1) model is
smaller. Heuristically, we may think that the
information is used only to estimate 6, instead of
dispersing it to estimate also 6, or ¢.

ML is better in most cases.

ﬁ(ﬁmu - 30) —a N(0,Zxm1)

It's not a typo. It's a huge meaning: in fact, knowing info are N distributed it's worth
anything. We understand that the ML is just a convenient way to define an estimate.
What we understood is the ML is a Conditional maximum like hood. When we press
maximum like hood on the computer it's doing square (?). We don't have to worry about
the distribution of the estimate. We will get the same estimate regardless of my
distribution.

When i estimate AR(1)

Examples of Zy:
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This telling me how precise is the estimates.

Interpretation of the standard errors
and application to testing

The standard errors can be seen as a
measure of the precision of the estimate,
and can be also used in testing.

* Example 1 (MA(1)). Consider the estimation of
the parameter # assuming that the true model is an
(invertible) MA(1). Compare the asymptotic
variance when a MA(1), a MA(2) and ARMA(1,1)
are used. Notice that 6, in the MA(2) is 0, and ¢,
in the ARMA(1,1) is 0.

Model MA(1) MA(2) ARMA(1L1)
as.Var. (1-65)xUT UT  —-(1-63)x T

The asymptotic variance in the MA(1) model is
smaller. Heuristically, we may think that the
information is used only to estimate 6, instead of
dispersing it to estimate also 6 or ¢.

In these three cases the estimation is good. But we can compare the three possible way
to estimate the model. MA(1) has the smallest variance and will be the best model of
estimation.

Last application of standard error is for testing. And if we go back to the MA(1) : radT .. If
i want to standardize this quantity what i nneed to do is to divide the second term to the
rad of

T. And this is the standardize form.

% Example 2 (MA(1)).
Suppose that a MA(1) model is estimated (via

ML/CML), with 100 observations, and 0 takes
value 0.8.

The standard error, J lfff’ is not observable

(because we do not know 6). The estimate takes

value [1228 — 0.06.

If we want to test Hy : {8, = 6} we use

6-06
ﬁu ~a N(0,1)
J1-63

so for example, to test
Hy: {60 =0.7y vs Hy : {6 # 0.7}

the test statistic under the null hypothesis takes
value 1.4003, so the null hypothesis is not rejected.

Hip will not be rejected.

Or we can do the same with MA(2)

% Example 3 (MA(2)).

Suppose that a MA(2) model is estimated (via
ML/CML), with 100 observations, and 8, takes
value 0.8, 93 takes value 0.05.

The standard error, J H;s: is not observable
(because we do not know 6y.,). The estimate takes

value [1-0052 _ (9.9875.

If we want to test Hy : {8o.; = 0} we use

§_9011>
ﬁ(— -4 N(0,1)
Jl _96:2

Notice that this require knowledge of 63, and this
not know not even under Hy: we can, however,
replace it by a consistent estimate (6,).

So for example, to test
Ho : {9011 S 0.7} A% H_4 : {9011 # 0.7}

the test statistic under the null hypothesis takes
value 1.0013, so the null hypothesis is not rejected.

Variance is Theta 0.2 squared. And then i can compute the statistics and get a hyp value
thatis 1.003

Or the same story in ARMA(1,1)

% Example 4 (ARMA(1,1)). Suppose that an
ARMA(1,1) model is estimated (via ML/CML),
with 100 observations, and $ takes value 0.8, §
takes value 0.05.

If we want to test Hy : {¢o = ¢.60 = 8} we use the
Wald test statistic

T( -0 6-60 )"
-1 -1
(1-93)"  (1+6060)”" s
(1+¢080)™"  (1-63)"
$—¢0 y X:
B -6, .

(i.e., the Wald test statistic is asymptotically y?
distributed, with k equal to the number of
parameters being tested).

So for example, to test
Ho : {¢o = 0.7,80 = 0.2}
Vs
Hy : {¢0 £0.7,&/or 6y = 0.2}

the test statistic takes value 1.6730, so the null
hypothesis is not rejected with size 5% (c.v. 5.99).

We can test more hypothesis at the same time but we are not testing just a scalar but a
vector. If observation is N distributed and we obtain a vector to taking to account all the
variance covariance matrix. The way we do it is by squaring everything.

Estimates are always consistent, distributed normally and is not important to know what
is the distribution of observable staff.

How precise is an estimates with variance.

Finally variance can be used in testing.



