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Karush-Kuhn-Tucker conditions

The generalized Lagrangean function is £ (z, p1) = —ay +puy (21 — 1)° + 1y (20 — 2)+
piz (21 — 1)° — pa (x2 — 2) — paz1, so that

9)dxy = —1+3pu (xy —1)* +3pa (21— 1)* —pz =0
o)0xy = py—pz =0
g = [(xl —1)%+ (2 - 2)] =0
H2g2 = pa2 [(11 —1)° = (a2 - 2)] =0
p3gs = —p3ry =0
0 <0 = (21-1)°+(22-2)<0
02<0 = (21-1)°—(22-2)<0
93<0 = -2 <0
1 >0
p2 >0
p3 >0

Since p; = ps = p, the first constraint becomes 6p(zy —1)° = pz + 1 >
1 > 0, which implies that g > 0. Computing the sum and the difference of the
third and fourth constraints, one obtains that zy = 1 and 2z, = 2. Therefore,
the first constraint would require gz = —1 and the fourth would require puz = 0, a
contradiction. Consequently, no point satisfies the Karush-Kuhn-Tucker conditions.

On the other hand, a globally minimum point certainly exists, because the
feasible region is close and limited, and the objective function is continuous. The
globally optimal point is A, that can be optimal and violate the KKT-conditions
because it is nonregular. Notice that in the previous exercise the same nonregular
point actually satisfied the KKT-conditions: both cases are possible. This is why
it is always necessary to keep into account the nonregular points as candidates.
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Exercise 7

Solve the following problem with the KKT-conditions:

1\2
minz = (z; +1)* + (x2 + 5)
2

f%‘-’”z

IAIA

Ty — T2

Solution

This problem has a very peculiar feasible region, that consists in the upper quadrant
included between the bisectors of the axes, plus the half-line x5 = 2, with 2, < 0.
Figurerepresents the feasible region.

Figure 4.14: Regione ammissibile

Nonregular points

The gradients of the constraints g; () = 22 — 22 <0 and ¢» (z) = 71 — 22 < 0 are

2 ]
V91=[_;2,2] V92=[_1]

The points in which neither constraint is active are regular by definition. Those
in which only ¢, is active, that is those of the bisector of the second and fourth
quadrant, excluding the origin (zo = —z1, with z; # 0) are regular as long as the
gradient is nonzero. This would require z; = x5 = 0, that is impossible. Then,
these points are all regular. There is no point in which only g» is active. The points
in which both constraints are active, that is those of the bisector of the first and
third quadrant (z2 = x; = &) are all nonregular, because the two gradients are
proportional: Vg, = [26 — 2¢]" and Vgo = [1 —1]7.
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Karush-Kuhn-Tucker conditions

The generalized Lagrangean function £ (z, u) = (z1 + 1)2+(x2 + %)2+u1 (2% — 23)+
o (1 — x2) yields the following conditions:

68_1‘[; = 2(xy+1)4+2mzy +p2=0
% = 2($2+%)—2ﬂ1$2—ﬂ2=0
mo () = m (ff - 55%) =)
p2g2 (z) = —p2(z1—22)=0
o = 0
pe =0
gi(z) < 0
g2(z) < 0

We set apart all points of the bisector of the first and third quadrant, because
they are nonregular, and consequently candidate: x; — x5 < 0. As a result, the
fourth constraint implies that po = 0: the multiplier of a nonactive constraint (gs)
is always zero.

2(.’1,'1+1)+2ﬂ1.’1,’1 =

1
2 (mz + 5) -2z =

pa (1 + x2)
0

M1

M2

Ty + X9

IV
oo oo oo © o

A IV

Ty — T2

We split the problem into two subproblems based on the third constraint.

Problem 3 =0 The first two constraints yield point C' = (—1,—1/2). This
violates constraint g; < 0, so that is must be rejected. On the other hand, it is
a reasonable result, given that it would be the point of minimum of the objective
function without the constraints.

Problem ;7 > 0 In this subproblem z9 = —2, so that

2(x1+ 1)+ 2y 0

1
2 (—1‘1 + 5) + 21

The difference of the two constraints yields z; = —1/4 and 2, = 1/4, while p; = 3.
This is the only points suggested by the Karush-Kuhn-Tucker conditions.

0

Now, it is necessary to compare point A = (—1/4,1/4) and the nonregular points
of line o = x; = . In order to do that, first we determine the point of minimum
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among the latter, and then we compare it to A.

2
min f (o) = (a +1)* + ((1 - %)
The solution is obtained setting to zero the derivative of f with respect to parameter
a f'(a) = 2(a+1)+2(a+ %) = 0, which implies @« = —3/4, and therefore
B = (—3/4,—3/4), where the objective function value is f (B) = 1/8. The value of
the objective function in A, on the other hand, is f (A) = 9/8. Hence, the globally
optimal point is the nonregular point B = (—3/4, —3/4).
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