

A specíal topícs lecture seríes on analytics

Professor Ron S. Kenett ron@kpa-group.com

Students in Political Sciences (SPO) need to sign up

Centre of Excellence in Economics and Data Science

Professor Ron S. Kenett ron@kpa-group.com

- Lecture Series in Analytics (Sala Laura) 22/01 10.30-13.30 23/01 9.30-12.30 24/01 10.30-13.30

- Lecture Series in Causality (Sala Laura) 28/01 9.30-12.30 29/01 10.30-13.30

- Seminar on 'Statistics at a Crossroad' Via Santa Sofia, 9 - aula M203 30/01 10.45-11.45 Task 1: Information quality assessment of a case study (1/3)

Task 2: Trump tweets text analysis

Task 3: German credit data analysis

Deadline

1/3/2020

- Background
- Information quality and student group tasks
- The real work of data science
- Decision trees
- Regression trees
- Random forests
- The non performing loans (NPL) case study
- Logistic regression
- Naïve Bayes
- K-means clustering
- Text analytics
- Causality
- Statistics at a crossroad seminar

Applied statistics is about meeting the challenge of solving real world problems with mathematical tools and statistical thinking

A life cycle view of statistics *Quality Engineering* (with discussion), Vol. 27, No.1, pp. 111-129, 2015

www.amazon.com/author/rkenett

WILEY

Level 5: Learning and discovery - This is where attention is paid to information quality. Data from different sources is integrated. Chronology of Data and Goal and Generalization is a serious consideration in designing analytic platforms. Leverage causality models.

Level 4: Quality by Design - Experimental thinking is introduced. The data scientist suggests experiments, like A/B testing, to help determine which website is better. Develop causality analysis.

Level 3: Process focus - Probability distributions are part of the game. The idea that changes are statistically significant, or not, is introduced. Some attention is given to model fitting. Introduce causality analysis.

Level 2: Descriptive statistics level – Management asks to see histograms, bar charts and averages. Models are not used, data is analyzed in rather basic ways.

Level 1: Random demand for reports driven by firefighting - New reports address questions such as: How many components of type X did we replace last month or how many people in region Y applied for a loan?

ON S KENETT LTHOMAS C DEDMAI

THE REAL WORK OF

DATA SCIENCE

ER DECISIONS, AND STRONGER ORGANIZ.

The analytics

maturity ladder

RonLinks

in LinkedIn

→ C A https://www.jmp.com/en_us/events/ondemand/analytically-speaking/quality-assurance-in-the...

Facebook 🚺 News Ynet

🗋 Email link

ANALYTICALLY SPEAKING Quality Assurance in the Golden Age of Analytic With Ron Kenett

https://www.jmp.com/en_us/events/ondemand/analyticallyspeaking/quality-assurance-in-the-golden-age-of-analytics.html With the advent of trans Industry 4.0, it's clear the beyond a traditional vie manufacturing. So how, in an industrial setting? says that in the golden a become the arbiters of testing architecture, he engineering challenge a stakeholders apply the p quality control and qual challenges of increased

🔶 🛛 בנק הפועלים – לקוח 🖉 🍻 בנק הפועלים – לקוח

In addition to discussing insurance, Kenett also e his book (co-authored v of Data Science: How to Better Decisions and St be released in 2019.

https://www.youtube.com/watch?v=gHoeeuuwcPs&list=PLMCuIG3AKGww8SgP0JQGOXqxu2bFTh hIS&index=2&t=235s

WILE	Y	Contact Us	Tech Support
Kenett, Informa	Shmueli: tion Quality: The Potential of Data and Analytics to Generate Knowledge		
Home	Resources More Information		
Prese	ntations on InfoQ	≩et Help With:	

requires Adobe Acrobat Reader

Title	Location	Date	* These links will open a new window
Do you want to make an impact with quantitative methods? Make sure you generate high InfoQ	Toulon-Verona Conference, Israel	September 3, 2012	
A Workshop on Modern Analysis of Customer Satisfaction Surveys	22nd Colombian Statistics Symposium, The National University of Colombia Bucaramanga, Colombia	July 17, 2012	
Quantitative and Qualitative Aspects of Bayesian Networks: A General Approach for Integrating Expert Opinions and Structured Data	Séminaire Parisien de Statistique, Institut Henri Poincare, Paris	April 7, 2014	
ENBIS Management Day Round Table Discussion	ENBIS 2011, Coimbra, Portugal	September 7 2011	

https://www.wiley.com//legacy/wileychi/kenett/presentation.html?type=SupplementaryMaterial

Adobe PDF and Acrobat Reader

www.marketplace.org/topics/economy /excel-mistake-heard-round-world

"In the last three years, there has been a concerted effort by those in Washington to reduce government spending and reign in the national debt.

One reason for the budget cuts?

Research by two Harvard economists, Ken **Rogoff** and Carmen **Reinhart**. The pair found that when a country owes more than 90 percent of their GDP, it slides into recession."

... Fixing this Excel error transforms high-debt countries from recession to growth

https://www.sciencemag.org/news/2016/08/one-five-genetics-papers-contains-errors-thanks-microsoft-excel

Autoformatting in Microsoft Excel has caused many a headache—but now, a new study shows that one in five genetics papers in top scientific journals **contains errors from the program**, *The Washington Post* reports. The errors often arose when gene names in a spreadsheet **were automatically changed** to calendar dates or numerical values. For example, one gene called *Septin-2* is commonly shortened to *SEPT2*, but is changed to 2-SEP and stored as the date 2 September 2016 by Excel. The researchers, who published their analysis in *Genome Biology*, say the issue can be fixed by formatting Excel columns as text and remaining vigilant—or switching to Google Sheets, where gene names are stored exactly as they're entered.

ЖРА

Problems with Excel

Spreadsheets are OK for data entry. But not for calculations.

- · Conflates input, code, output, presentation
- UI invites errors, then obscures them
- Debugging extremely hard
- Unit testing hard/impossible
- Replication hard/impossible
- Code review hard
- European Spreadsheet Risk Interest Group horror stories:
 - Reinhart & Rogoff: justification for S. European austerity measures
 - JP Morgan Basel II VAR: risk understated
 - IOC: 10,000 tickets oversold
 - Knox County, TN; W. Baraboo Village, WI; ... : errors costing \$millions
- According to KPMG and PWC, over 90% of corporate spreadsheets have errors

Bug in the PRNG for many generations of Excel, allegedly fixed in Excel 2010.

Other long-standing bugs in Excel; PRNG still won't accept a seed; etc.

Statistical Discovery.™ From SAS.

sta

Microsoft Azure

MATLAB

rapidminer

Minitab

JASP

Introduction Video

https://unimibox.unimi.it/index.php/s/9xWsHEzJamYjZCy

UnimiBox	Short Course Data Science Prof. Kenett		Downlo	ad all files •••
				=
	Name 🔺	•	Size	Modified
	SAS_JMP_Pro_14	mn ···	25 KB	39 minutes ago
	JMP course files.zip	tatistical Discovery.™ From SAS.	3 MB	2 hours ago
	Kenett Analytics 2020.pdf	000	11 MB	2 hours ago
4	Kenett Causality 2020.pdf	***	11.3 MB	2 hours ago

The Real Work of Data Science: Turning data into information, better decisions, and stronger organizations

Chapter 13: Evaluating data science outputs more formally

In the last chapter we focused on teaching your colleagues some basics and providing a

starte make exper inforn facilit inforn use o

Class assignment (in teams of ~5)

analysis. The information quality framework (InfoQ) addresses outputs from both approaches, in the context of business, academic, services and industrial work.

RON S. KENETT | THOMAS C. REDMAN Assessing The InfoQ fran analytic work. THE REAL WORK OF InfoQ is define is, f, on a given dataset X, with DATA SCIENCE As an example m by launching a customer reter HOW TO TURN DATA INTO INFORMATION, ners with high potential for ch hsists of customer BETTER DECISIONS, AND STRONGER ORGANIZATIONS hd problems usage, lists of ee, f, which will reported to the help him define milar chum probabilities. ign only on customers with InfoQ, is deten ally in the context of the specific Data resolution ty, and level of data aggregati (2) Data struct ured and unstructured d (3) Data integr ntegrated together? Not ata definitions. WILEY different units

(4) Temporal relevance: Is the time-frame in which the data were collected relevant to the goal?

The Real Work of Data Science: Turning data into information, better decisions, and stronger organizations

(5) Generalizability: Are results relevant in a wider context? In particular, is the inference from the sample population to target population appropriate (statistically generalizable, Chapter 8)? Can other considerations be used to generalize the findings?

(6) Chronology of data and goal: Are the analyses and needs of the decision-maker synched up in time?

(7) Operationalization: Are results presented in terms that can drive action?

(8) Communication: Are results presented to decision-makers at the right time and in the right way (as described in Chapter 7)?

See Appendix A3 for a detailed list of questions used in InfoQ assessments.

Importantly, InfoQ helps structure discussions about trade-offs, strengths and weaknesses. Consider the cellular operator noted above and consider a second potential dataset X*. X* includes everything X has, plus data on credit-card churn, but that additional data won't be available for two months. Resolution (the first dimension) goes up, while temporal resolution (the fourth) goes down. Or suppose a new machine-learning analysis, f*, has been conducted in parallel, but results from f and f* don't quite line up. "What to do?" These are the most important discussions for decision-makers, data scientists, and CAOs.

Further, the InfoQ framework can be used in a variety of settings, not just helping decision makers become more sophisticated. It can also be used to assist in the design of a data science project, as a mid-project assessment, and as a post mortem to sort out lessons learned. See Kenett and Shmueli (2016) for a comprehensive discussion of InfoQ and its applications in risk management, healthcare, customer surveys, education and official statistics.

A Hands-On Information Quality Workshop

This workshop uses InfoQ to help an entire team understand the importance of clear goals and what it takes to achieve information quality with respect to those goals. It combines individual work, team discussions, and group presentations, using this information quality framework.

Phase I: Individual work

Please consider the four steps below and document each for further discussion.

Step 1: The background

- Pick an organization to focus on. It should be one that you know reasonably well, such as your current or previous place of employment, a school, hospital, or restaurant.
- b. Answer the following: Who are this organization's most important customers and suppliers? What are its most important products and services?

ecision

ey gain

in the

prithmic

of

per.

Install InfoQ.jmpaddin

Jmp.com/infoqscore https://community.jmp.com/kvoqx44227/attachme nts/kvoqx44227/add-ins/338/1/InfoQ.jmpaddin

Class assignment (in teams of ~5)

- 1. Select one of the three supplied case studies
- 2. Review the report and presentation.
- 3. Evaluate its information quality using JMP add in.
- 4. Prepare a ppt report and assign a spokesperson

Task 1/3 to get a pass/fail grade

Step 2: The data

List various data sources that are available to support help decision makers pursue that goal. In evaluating data sources, focus on data quality and data clarity. Data quality reflects to what extent the data can be trusted and data clarity represents the way data elements are defined and collected by various parts of the organization. This step specifies the X component of InfoQ.

Step 3: The analysis

Identify several approaches for analyzing the data in order to help the organization achieve its goal. In this step alternatives methods of analysis, f_1 , f_2 , ..., f_p , are identified and listed.

Step 4: Assessment:

Assess the data and the potential analysis on eight info Q dimensions "dimensions" using a 1-5 score where 1 means "very poorly" and 5" very well."

- Data resolution. When the data are on the right level of granularity, the scale of measurement scale is appropriate, and the level of aggregation appropriate, score a "5."
- Data structure. When there are important gaps in the data coverage, score a "1."
- Data integration. A "5" corresponds to integration into a seamless whole.
- Temporal relevance. When the data is timely with respect to the goal, score a "5.".
- 5. *Generalizability*. When what we learn can be generalized to many other circumstances, score a "5."
- Chronology of data and goal. When the analysis and recommendations can be completed in a timely fashion from a decision-making perspective, score a "5.".
- 7. Operationalization. If the analyses are unlikely to lead to concrete actions that provide business benefit, score a "1."
- Communication. If the "who," (needs the information), "what," "when," "why," and "how" are clear, score a "5."

Note: An application for recording InfoQ scores, which also allows for a range of values reflecting uncertainty in the score, is available for download from the Wiley website of Kenett and Shmueli (2016). The application requires installation of the JMP software and provides an overall InfoQ score based on the geometric mean of the individual dimension scores.

Three case studies (1)

1. Predicting Changes in Quarterly Corporate Earnings Using Economic Indicators

http://www.galitshmueli.com/data-mining-project/predictingchanges-quarterly-corporate-earnings-using-economic-indicators

This study looks at corporate earnings in relation to an existing theory of business forecasting developed by Joseph H. Ellis (former research analyst at Goldman Sachs).

Three case studies (2)

2. Predicting ZILLOW.com's Zestimate accuracy

http://www.galitshmueli.com/data-mining-project/predictingzillowcom-s-zestimate-accuracy

Zillow.com is a free real estate service that calculates an estimated home valuation ("Zestimate") as a starting point for anyone to see for most homes in the U.S. The study looks at the accuracy of Zestimates.

Three case studies (3)

3. Predicting First Day Returns for Japanese IPOs

<u>http://www.galitshmueli.com/data-mining-project/predicting-</u> first-day-returns-japanese-ipos

An Initial Public Offering (IPO) is the first sale of stock by a company to the public. The study looks at the first-day returns on IPOs of Japanese companies.

Information Quality

The potential of a particular dataset to achieve a particular goal using a given empirical analysis method

- g A specific analysis goal
- X The available dataset
- f An empirical analysis method
- **U** A utility measure

InfoQ(f,X,g) = U(f(X | g))

Depends on quality of g, X, f, U and relationship between them

Kenett, R.S. and Shmueli, G. (2013) On Information Quality, http://ssrn.com/abstract=1464444 Journal of the Royal Statistical Society, Series A (with discussion), 176(4).

Explain, predict, describe enumerative, analytic, exploratory, confirmatory

Goal Specification

- "error of the third kind" giving the right answer to the wrong question – A. Kimball
- "Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise" – John Tukey

Typical Goals of Customer Surveys

- Goal 1. Decide where to launch improvement initiatives
- Goal 2. Highlight drivers of overall satisfaction
- Goal 3. Detect positive or negative trends in customer satisfaction
- Goal 4. Identify best practices by comparing products
- Goal 5. Determine strengths and weaknesses
- Goal 6. Set up improvement goals
- Goal 7. Design a balanced scorecard with customer inputs
- Goal 8. Communicate the results using graphics
- Goal 9. Assess the reliability of the questionnaire
- Goal 10. Improve the questionnaire for future use

Analysis goal

Data Size and Dimension

- # observations
- # variables

Data Source

- Primary, secondary
- Observational, experiment
- Single, multiple sources
- Collection instrument, protocol

Data Type

- Continuous, categorical, semantic
- Structured, un-, semi-structured
- Cross-sectional, time series, panel, network, geographical

Data Quality

- "Zeroth Problem How do the data relate to the problem, and what other data might be relevant?" – C. Mallows
- *Quality of Statistical Data* (IMF, OECD) usefulness of summary statistics for a particular goal (7 dimensions)

Statistical models and methods

- Parametric, semi-, non-parametric
- Classic, Bayesian

Data mining algorithms Graphical methods Operations research methods

Analysis Quality

- "poor models and poor analysis techniques, or even analyzing the data in a totally incorrect way." - B. Godfrey
- Analyst expertise
- Software availability
- The focus of statistics education

- Predictive accuracy, lift
- Goodness-of-fit
- Statistical power, statistical significance
- Strength-of-fit
- Expected costs, gains
- Bias reduction, bias-variance tradeoff

Utility Measure

- Adequate metric from analysis standpoint (R², holdout data)
- AUC, ROC, confusion matrix
- MAPE, RMSE, AIC, BIC, generalizability
- Adequate metric from domain standpoint

Utility measure

An example....

Goal of study:

- 1. Predict the final price of an Ebay auction at start of auction
- 2. Predict price during ongoing auction
- 3. Predict the auctions with the highest prices (ranking)
- 4. Identify factors that determine the final price of an eBay auction?

"Pennies from ebay: The determinants of price in online auctions" Lucking-Reiley D., Bryan D., Prasad N. & Reeves D. *Journal of Indust. Econ.*, 2007

- ➢ 461 eBay coin auctions (Indian Head pennies)
- Auction characteristics
 - Duration
 - Open and close prices
 - Number of bids and bidders
 - Secret reserve price
 - Weekday/weekend ending
- Seller characteristics
 - Seller rating
- Item characteristics
 - Year and grade of coin

"Pennies from ebay: The determinants of price in online auctions" Lucking-Reiley D., Bryan D., Prasad N. & Reeves D. *Journal of Indust. Econ.*, 2007

Abhijit Banerjee and Esther Duflo: The Nobel couple fighting poverty The team pioneered "randomized controlled trials", or RCTs, in economics. <u>https://www.bbc.com/news/world-asia-india-50048519</u>

An example....

Dimension Reduction

Р

r i

c e

Prediction error:

- Holdout data
- Metrics such as MAPE and RMSE

Information Quality

InfoQ(f,X,g) = U(f(X | g))

g	g A specific analysis goal	
х	The available dataset	
f	An empirical analysis method	
U	A utility measure	What
	1.Data resolution	How
	2.Data structure	
	3.Data integration	
	4.Temporal relevance	
	5.Chronology of data and goa	al
	6.Generalizability	
	7. Operationalization	
	8.Communication	

33

Massive data sets

Power	Prefix
10^{9}	Giga
10^{12}	Tera
10^{15}	Peta
10^{18}	Exa
10^{21}	Zetta
10^{24}	Yotta

Big data Analytics

Data resolution

- Data structure
- Data integration
- **Temporal relevance**
- Chronology of data and goal
- Generalizability
- Operationalization
- Communication

Russom, P., Big Data Analytics, TDWI Best Practices Report, Q4 2011

#1 Data Resolution

Google Flu Trends U.S. may have diverged again from the CDC data it predicts, but too early to be sure.

Sources: http://www.google.org/futrends/us, CDC (Linet data from http://gis.cdc.gov/grasp/fuview/fuportaidas/hboard.html, Cook et al. (2011) Assessing Google Fu Trends Performance in the United States during the 2009 Influenza Virus A (H1H1) Pandemic. PLoS ONE 6(8): e29620. doi:10.1371/journal.pore.0023610. Data as of Jan. 12, 2013. Keith Winstein (keithw@mit.miki)

#2 Data Structure

Data Types

- Time series, cross-sectional, panel
- Structured, semi-, non-structured
- Geographic, spatial, network
- Text, audio, video, semantic
- Discrete, continuous

Data Characteristics

Corrupted and missing values due to study design or data collection mechanism

#3 Data Integration

#4 Temporal Relevance

Collection Timeliness (relevance to g) Analysis Timeliness (solving the right problem too late)

g: Prospective vs. retrospective; longitudinal vs. snapshot Nature of X, complexity of f

#5 Chronology of Data & Goal

AIR QUALITY INDEX

Air Quality Index Levels of Health Concern (AQI) Values

0 to 50	Good
51-100	Moderate
101-150	Unhealthy for Sensitive Groups
151-200	Unhealthy
201-300	Very Unhealthy
301 to 500	Hazardous

Data: Daily AQI in a city

g₁: Reverse-engineer AQI

g₂: Forecast AQI

Retrospective/prospective Ex-post availability Endogeneity

http://www.airnow.gov/?action=aqibasics.aqi

#6 Generalizability

#7 (Construct) Operationalization

X: construct

 $X = \theta(\chi)$ operationalization (measurable)

- Causal explanation vs. prediction, description
- Theory vs. data
- Data: Questionnaire, physio measurement

#7 (Action) Operationalization

In the pre-publication drafts of Quality, Productivity, and Competitive Position Dr. Deming wrote:

"An operational definition consists of (1) a criterion to be applied to an object or a group of objects, (2) a test of compliance for the object or group, and (3) a decision rule for interpreting the test results as to whether the object or group is, or is not, in compliance."

In Dr. Deming's own conversations, when individuals would start telling him about what they or their organization were planning to do, he would invariably have one of two responses for them: "By what method?" or "How will you know?" Either one of these questions would generally end the conversation since the individual would have no answer. After discerning this pattern to Dr. Deming's responses, it finally occurred to me that these two questions corresponded to the last two parts of an operational definition. This realization, in turn, resulted in a generalization of an operational definition to become:

- (1) What do you want to accomplish?
- (2) By what method will you accomplish it?
- (3) How will you know when you have accomplished it?

http://www.spcpress.com/pdf/DJW187.pdf

#8 Communication

Assessing InfoQ

Rating-based assessment (1-5 scale on each dimension)

InfoQ Score = $[d_1(Y_1) \ d_2(Y_2) \ \dots \ d_8(Y_8)]^{1/8}$

💱 InfoQ - JMP Pro	— — ×				
Help	Data Resolution				
This is a rating-based approach to quantifying InfoQ that scores each of the eight dimensions. This coarse grained approach rates	Very Low 🖉 Very High				
each dimension on a 5 point scale, with 5 indicating "Very High"	Data Structure				
	Very Low 🖉 Very High				
The ratings are then normalized into a desirability function for each dimension, which are then combined to produce an overall InfoO	Data Integration				
score using the geometric mean of the individual desirabilities.	Very Low 🛇 Very High				
By dragging the slider handles, each dimension can be assigned a	Temporal Relevance				
plausible range of ratings, or a specific rating.	Very Low 🖉 Very High				
InfoQ	Chronology of Data and Goal				
Lower Bound: Undefined	Very Low 🖉 Very High				
Upper Bound: Undefined	Generalizability				
	Very Low Very High				
Red L	Operationalization				
	Very Low 🖉 Very High				
InfoO impaddin	Communication				
	Very Low				

44

1. Predicting Changes in Quarterly Corporate Earnings Using Economic Indicators

Stages in economic downturn: 1) the peak, 2) modest slowing, 3) intensifying worrying by investors (a lot of panic selling occurs in this stage), and 4) the advent of recession. **Can we predict the economic slowdown in corporate earnings (S&P 500 EPS) well in advance?**

Ellis claims (based on observations) there is a 0-9 month lag between wages and its effect on consumer spending. 0-6 months until changes in consumer spending affects changes in industrial production. Another 6-12 months between industrial production and capital spending. And finally, another 6-12 between capital spending and its effects on Corporate Profits.

1. Predicting Changes in Quarterly Corporate Earnings Using Economic Indicators

1. Predicting Changes in Quarterly Corporate Earnings Using Economic Indicators

The data: i) 180 quarters. 6 [Economic] x variables. Ii) Change in S&P EPS = y variable, iii) All variables transformed to year vs year % change, iv(All data used is publicly available via websites of US agencies: BEA, BLS, FED, and S&P.

The analysis: XLMiner on these different versions of datasets. Partitioned it. Ran predictor applications: ACF Plots, MLR, Regression Tree – full and pruned.

Auto Correlation Chart. Based on this, took Lag_1 as one of the predictors. Lag_1 = QEPS_YY(Q-1)

1. Predicting Changes in Quarterly Corporate Earnings Using Economic Indicators

QEPS_YY%(t) = 0.0486 + 0.747*QEPS_YY%(t-1) -0.517*QRCAP_YY%(t-2)

Data Resolution: 3 After estimation, measures regarding the goodness of fit such as The Rsquared measure are not high

Data Structure: 5 No problem of missing data. Moreover all data collections start from the same data (1964)

Data Integration: 5 We have a good integration of data. During the research, all data went through all process of normalization

Temporal Relevance: 4 We started from 1964 since previous data were missing. With more data the anlaysis would be more accurate 2-3

5

4

5

ł

Generalizability: 2

The analysis regards only the S&P index. In order to generalize the results of the project we should use data also from other source that are not always available

Chronology of data and goal: 5 Prediction is the aim of the project. As a result the chronology of data is very important

Operationalization: 4 The project can be applied in real life context. It would be interesting to show the result for other kind of index

Communication: 5 The analysis is clearly explained step by step from data processing to conlusion

...

Help

This is a rating-based approach to quantifying InfoQ that scores each of the eight dimensions. This coarse grained approach rates each dimension on a 5 point scale, with 5 indicating "Very High" achievement in that dimension.

The ratings are then normalized into a desirability function for each dimension, which are then combined to produce an overall InfoQ score using the geometric mean of the individual desirabilities.

By dragging the slider handles, each dimension can be assigned a plausible range of ratings, or a specific rating.

InfoQ

Lower Bound: 0,66.00 Upper Bound: 0,78.00

Data Resolution	
Acceptable	Acceptable
Data Structure	
High	Very High
Data Integration	
Very High	Very High
Temporal Relevance	
Acceptable	High
Chronology of Data	and Goal
Very High	Contract Very High
Generalizability	
Low	Acceptable
Operationalization -	
High	High
Communication	
Very High	Contraction Very High

2. Predicting ZILLOW.com's Zestimate accuracy

- "Zillow.com" is a real estate service launched in 2006
- It calculates a
 Zestimate-home
 valuation for most
 homes in the U.S
- For MD and VA it gets only about 26% of predictions within the +/-5% range only.

1.Home Type (Single Family, Condo , etc) 2.No of Bed Rooms 3.No of Bath Rooms 4.Total Area – Sqft 5.Lot size –Sqft 6.No of Stories 7.Total Rooms 8. Distance from Metro 9. Primary School Rank 10. Middle School Rank 11. High School Rank 12.Age of house at Sale 13.Sale Season (Fall, Winter, etc) 14. Recession Period (Y/N) **15.Sales Volume**

2. Predicting ZILLOW.com's Zestimate accuracy

- Data collected, cleansed and merged from 4 sources –Zillow , Redfin, School Digger and Google Maps
- 17 counties (29 Zip codes) in Northern VA

House sales data

- Before Data Clean up: 3500+
- After Data Clean up: 1416
- Y –*Is Zestimate correct* (Y/N) 37.6%/62.43%
- X –15 variables (5+ variables where discarded from initial set)

2. Predicting ZILLOW.com's Zestimate accuracy

Logistic Regression					
Input variable	es	Coefficient			High High
Constant term	ı	- 4.65478611			Data Structure
BATHROOM_REV		0.38922957	Info0-81%		
LOG(SQFT)		0.2396526			Data Integration
log(LOT_SIZE	Ξ)	0.38037464		(-01/0	Very High 🔤 💭 Very High
TOTALROOM	IS_REV	0.19049983			Temporal Relevance
Age_of_house_at_Sale		0.01936915			High
Binned_PrimarySchoolRank		0.0735151			Chronology of Data and Goal
Binned_MiddleSchoolRank		0.09299159			Very High 🛛 🛶 Very High
Binned_HighSchoolRank		0.04271848			Generalizability
Class	# Cases	# Errors	% Error		High 📥 High
FALSE	184	22	11.96		Operationalization
171202			11.00		High
TRUE	99	71	71.72		Communication
Overall	283	93	32.86		High

3. Predicting First Day Returns for Japanese IPOs

Goal: To predict the First Day returns on Japanese IPOs (based on first day closing price), using public information available prior to the offer

The data: i) Japanese IPO data from 1997-2009*, ii) 1561 IPOs, iii) Industry(categorical) : 35 industries - 3 were spelling errors, corrected

Remove Air Trans (1), Fishery & Forestry (2) industries

–Removed first 128 entries (1997-1999) as they had no data for 2 columns : Underwriter's fees & Allocation to BRLM

-New Columns

Minimum bid size

Secondary Offering %age

-Creation of Dummy Variables

- BRLMs 3, on the basis of Gross proceeds of IPO
- Industry 4, binned by average return

Market – whether the IPO was OTC or not

*Kaneko and Pettway's Japanese IPO Database (KP-JIPO) http://www.fbc.keio.ac.jp/~kaneko/KP-JIPO/top.htm

3. Predicting First Day Returns for Japanese IPOs

- 1) Age of company at time of IPO
- 2) Gross Proceeds (size of IPO)
- 3) Minimum Bid Amount
- 4) IS_OTC listing
- 5) Secondary offering as %age of total
- 5) Percentage shares allocated to Lead Manager 1
- 7) Underwriter's Gross Spread (fees as %age of size of IPO)
- 8) Industry_Type (binned categorical variable 4 categories)
- 9) Lead_Manager (binned categorical variable 3 categories)

Prediction algorithms do not give a reasonable prediction of IPO returns from public information. (High RMSE: 90%)

InfoQ=51%

The Roadmap to Predictive Models

Predictive task

Action: Evaluate predictability; compare to existing models

Risks: Over-fitting; costs of prediction error

Supervised vs. Unsupervised Learning

- Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute.
 - These patterns are then utilized to predict the values of the target attribute in future data instances.
- Unsupervised learning: The data has no target attribute.
 - We want to explore the data to find some intrinsic structures in it.

Supervised Learning

Holdout set

"0" Training data "1" Validation data "2" Testing data

UK

UK

LIK

14 USA

15 UK

Analytic Models

- Decision trees
- Regression trees
- Random forests
- Boosted trees
- Logistic regression
- Naïve Bayes
- K-Means Clustering

Decision Trees

Goal: Classify or predict an outcome based on a set of predictors

The output is a set of **rules** represented by tree diagrams

65

Key Ideas

Recursive partitioning: Repeatedly split the records into two subsets so as to achieve maximum homogeneity within the new subsets (or, equivalently, with the greatest dissimilarity between the subsets)

Pruning the tree: Simplify the tree by pruning peripheral branches to avoid overfitting

Recursive Partitioning Idea

- Pick one of the predictor variables, x_i
- Pick a value of x_i, say s_i, that divides the training data into two (not necessarily equal) portions
- Measure how dissimilar each of the resulting portions are
- Try different values of x_i, and s_i to maximize the dissimilarity in the initial split
- After the first split, repeat the process for a second split, and so on

The Riding Mowers

 Goal: Classify 24 households as owning or not owning riding mowers

• Predictors: Income, Lot Size

	Income	Lot_Size	Ownership
1	60	18.4	owner
2	85.5	16.8	owner
3	64.8	21.6	owner
4	61.5	20.8	owner
5	87	23.6	owner
6	110.1	19.2	owner
7	108	17.6	owner
8	82.8	22.4	owner
9	69	20	owner
10	93	20.8	owner
11	51	22	owner
12	81	20	owner
13	75	19.6	non-owner
14	52.8	20.8	non-owner
15	64.8	17.2	non-owner
16	43.2	20.4	non-owner
17	84	17.6	non-owner
18	49.2	17.6	non-owner
19	59.4	16	non-owner
20	66	18.4	non-owner
21	47.4	16.4	non-owner
22	33	18.8	non-owner
23	51	14	non-owner
24	63	14.8	non-owner

Splitting on Categorical Variables

- Examine all possible ways in which the categories can be split.
- E.g., nominal categories A, B, C can be split 3 ways
 - $\{A\}$ and $\{B, C\}$
 - $\{B\}$ and $\{A, C\}$
 - $\{C\}$ and $\{A, B\}$
- With many categories, # of potential splits becomes huge

Splitting on Categorical Variables

- For ordinal data (ordered categories) there is an option for the splits to respect ordering
- Example: An ordinal predictor takes on the values 1, 2, 3, or 4
- The data can be split 3 ways:
 - {1} and {2, 3, 4}
 - {1, 2} and {3, 4}
 - {1, 2, 3} and {4}

Splitting on Continuous Variables

- Order records according to one variable, say lot size
- Split at the first value
- Measure the dissimilarity between the two subsets
- Split at the next value, and continue
- Repeat for the other variable(s)
- For all variables, the split value that drives the greatest dissimilarity in propensities (or probabilities) is selected as the split point

The Riding Mowers

Before splitting (50% are owners and 50% are nonowners)

All splits are considered (see Candidates)

The first split variable is Income, and the cut point is 85.5

The Riding Mowers

When Income >= 85.5, all of the households were Owners (this "node" is "pure").

The next split is Lot Size when Income < 85.5.

The cut point is 20.

The Riding Mowers

The final tree after 7 splits (probabilities are hidden)

Tree Structure

- Split points become nodes on the tree
- Leaves are the terminal nodes (there are no further splits)
- Read down tree to derive the decision rule

E.g., Income < 85.5, Lot Size is >= 20, and Income >= 61.5, the probability that a household is an owner is 0.9185.

- Records within each node are from the training data (validation data are not used in building the tree)
- Default cutoff = 0.5 is used for classification

In the previous example, the record would be classified as an owner.

The Riding Mowers

The leaf report provides a summary the splits

It displays the rules for classifying outcomes

For example, If Income < 85.5, Lot Size is < 17.6, the probability that a household is an owner is 0.0752. This record will be classified as a non-owner.

Leaf Report		
Response Prob		
Leaf Label	non-owner .2 .4 .6 .8	owner
Income>=85.5	0.0833	0.9167
Income<85.5&Lot_Size>=20&Income>=61.5	0.0815	0.9185
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size>=22	0.2512	0.7488
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size<22	0.8342	0.1658
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income>=60	0.2901	0.7099
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income<60	0.8601	0.1399
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income>=66	0.8933	0.1067
Income<85.5&Lot_Size<20&Lot_Size<17.6	0.9248	0.0752

Stopping Tree Growth

- Natural end of process is 100% purity in each leaf
- This overfits the data, which end up fitting noise in the data
- Overfitting leads to low predictive accuracy of new data
- Past a certain point, the error rate for the validation data starts to increase

Full Tree Error Rate

CART - Classification and regression trees

- CART lets tree grow to full extent, then prunes it back
- Idea is to find that point at which the validation error begins to rise
- Generate successively smaller trees by pruning leaves
- At each pruning stage, multiple trees are possible
- Use cost complexity to choose the best tree at that stage

Cost Complexity

 $CC(T) = Err(T) + \alpha L(T)$

CC(T) = cost complexity of a tree Err(T) = proportion of misclassified records L(T) – size of tree α = penalty factor attached to tree size (set by user)

Among trees of given size, choose the one with lowest CC Do this for each size of tree

α

CART - Classification and regression trees

- Nonparametric (no probabilistic assumptions)
- Automatically performs variable selection
- Uses any combination of continuous/discrete variables
 - Very nice feature: ability to automatically bin massively categorical variables into a few categories (zip code, business class, make/model...)
- Invariant to monotonic transformations of predictive variable
- Unlike regression, not sensitive to outliers in predictive variables

CART overview

- Classification and Regression Trees are an easily understandable and transparent method for predicting or classifying new records
- A tree is a graphical representation of a set of rules
- Trees must be pruned to avoid over-fitting of the training data
- As trees do not make any assumptions about the data structure, they usually require large samples

CHAID - Chi-squared automatic interaction detector

- CHAID, older than CART, uses chi-square statistical test to limit tree growth
- Splitting stops when purity improvement is not statistically significant

CHAID - Chi-squared automatic interaction detector

- CHAID is a non-binary decision tree.
- The decision or split made at each node is still based on a single variable, but can result in multiple branches.
- The split search algorithm is designed for categorical variables.

Classification Trees: CART versus CHAID

At each split, the CHAID algorithm looks for the predictor variable that if split, most "explains" the category response variable. In order to decide whether to create a particular split based on this variable, the CHAID algorithm tests a hypothesis regarding dependence between the split variable and the categorical response (using the chi-squared test for independence). Using a pre-specified significance level, if the test shows that the split variable and the response are independent, the algorithm stops the tree growth. Otherwise the split is created, and the next best split is searched. In contrast, the CART algorithm decides on a split based on the amount of homogeneity within class that is achieved by the split. The split is reconsidered based on considerations of over-fitting.

CHAID is most useful for **analysis**, whereas CART is more suitable for **prediction**. In other words, CHAID should be used when the goal is to describe or understand the relationship between a response variable and a set of explanatory variables, whereas CART is better suited for creating a model that has high prediction accuracy of new cases.

How JMP limits tree size

JMP uses a combination of limiting tree growth and pruning the tree after it has grown

- Minimum Split Size: Controls the minimum number of records in terminal nodes
- Validation: The tree is grown, and pruned back to maximize the RSquare on the validation data

When validation is used, the "Go" option automates tree growth and pruning

The tree with the maximum Validation Rsquare has 8 splits

The tree is grown to 18 splits, and is pruned back to 8 splits

Validation error rate and confusion matrix for the final tree (cutoff for classification = 0.50)

Leaf Report

Leaf Report ▼ **Response Prob** Leaf Label 0 Income>=99&Education(2, 3)&Income>=118 0.0051 0.9949 Income>=99&Education(2, 3)&Income<118&CCAvg>=2.9 0.4605 0.5395 0.0952 Income>=99&Education(2, 3)&Income<118&CCAvg<2.9 0.9048 Income>=99&Education(1)&Family>=3&Income>=119 0.0226 0.9774 0.3050 Income>=99&Education(1)&Family>=3&Income<119 0.6950 Income>=99&Education(1)&Family<3 0.9966 0.0034 0.2795 Income<99&CCAvg>=3&Income>=82 0.7205 Income<99&CCAvg>=3&Income<82 0.9447 0.0553 1.0000 0.0000 Income<99&CCAvg<3 **Response Counts** Leaf Label 0 1 Income>=99&Education(2, 3)&Income>=118 159 0 Income>=99&Education(2, 3)&Income<118&CCAvg>=2.9 13 16 58 Income>=99&Education(2, 3)&Income<118&CCAvg<2.9 6 Income>=99&Education(1)&Family>=3&Income>=119 35 0 Income>=99&Education(1)&Family>=3&Income<119 11 5 Income>=99&Education(1)&Family<3 331 1 15 Income<99&CCAvg>=3&Income>=82 38 52 Income<99&CCAvg>=3&Income<82 3 1757 Income<99&CCAvg<3 0

Regression Trees for Prediction

- Used with continuous outcome variable
- Procedure similar to classification tree
- Many splits attempted, choose the one that maximizes the difference between subgroup means
- Difference measured as the sum of squared deviations
- Prediction is the average of the numerical target variable (rather than a probability)

mvalue

Quantiles 100.0% maximum 50 50 99.5% 50 97.5% 90.0% 34.9 75.0% quartile 25 21.2 50.0% median 25.0% quartile 16.95 12.7 10.0% 2.5% 8.235 0.5% 5.321 0.0% minimum 5 **Summary Statistics** 22.532806 Mean Std Dev 9.1971041 Std Err Mean 0.4088611

Upper 95% Mean 23.336085

Lower 95% Mean 21.729528

506

Boston Housing Data

Ν

AI	Rows									
C	ount	506								
M	loon	22 532806								
	15811 	22.002000				All Rov	NS 506	LocMorth D	lifforonoo	
S	td Dev	9.1971041				Mean	22.532806	118.74735	17.3044	
	Cand	idates				Std De	ev 9.1971041			
	_	Constituted a C.C.	L M th					1		
	Term	Candidate SS	Logworth	rooms<6.	943			rooms>=6.9	943	
	crim	8266.17273	32.6638216	Mean	430			Mean 3	7.238158	
	70	6660 06251	24 0773496	Std Dev	6.3534806			Std Dev 8	.9884514	
	211	11000 005 17	24.3773400	Candi	dates			Candid	lates	
	indus	11083.22547	48.7519537	Term	Candidat	e SS	LogWorth	Term	Candidate SS	LogWorth
	chas	1312.07927	4.1110954	crim	4300.96	7311	38.57528016	crim	1296.353462	4.24150833
	nov	9526 22405	20 5670078	indus	3552.75	6728	29.65539469	indus	650.180018	1.45829879
	IIVA	9000.22400	33.3070370	chas	533.16	5511	3.56806955	chas	97.802924	0.53155728
	rooms	19339.55503 *	118.7473483	nox	4806.34	4267	45.22939006	nox	510.976998	0.97911866
	ade	5573.64765	19.6751451	age	3618.34	1104	30.39395326	age	106.820174	0.05293436
	diotopo	A004 E40E4	17 1450061	distanc	e 3526.24	8005	29.35482815	distance	210.835800	0.20608146
	uistanu	e 4994.04004	17.1400001	radial tax	2778.26	4622 4824	21.29849865	radial tax	1296.353462	4.68218182
	radial	6708.64333	24.6205659	pt	3808.64	7013	32.66254455	pt	1514.119195	5.52903675
	tax	8618 08428	34 5266980	b	2454.65	5577	18.26837433	b	750.759998	1.79989185
		40400 00470	44.0775004	Istat	/311.85	2356 *	88.35256425	Istat	2011.069265	8.73682304
	pt	10438.09478	44.8775094				•			
	b	5259.31980	18.2910466			loc	(1 10	Jual		
	letat	18896 19401	113 7427626	$r_{10}g_{10}(p-value)$						
	TO LOL	10000.10401	113.1421020		1.00					

50% validation data with automatic splitting

MONDAY

Tarek Zikry Staff

Joined: May 17, 2018

Цi

Q

Beyond ROC curves: Exploring probability thresholds and error trade-offs in predictive models

JMP is an extremely powerful statistical discovery tool and is adept at creating a variety of statistical models. However, if you want to comprehensively evaluate thresholds for a predictive binary classification model, it would require multiple platforms and multiple steps. A Discovery Summit 2018 talk will explore the challenges of evaluating and selecting

model evaluation sroc statistics Labels **JMPer Cable**

^ 🗈 ⊄× 😻 ENG

Article Tags

0

Donuts Blog Example.jmp

R

Model Classification Explorer.jmpaddin

2:48 AM

12-Aug-18

(21)

Advantages of Trees

- Easy to use, understand
- Produce rules that are easy to interpret & implement
- Variable selection & reduction is automatic
- Do not require the assumptions of statistical models
- Can work without extensive handling of missing data (this is an option in the Partition dialog in JMP)

Disadvantages of Trees

- May not perform well where there is structure in the data that is not well captured by horizontal or vertical splits
- Since the process deals with one variable at a time, no way to capture interactions between variables

Improving Trees

- Single trees may not have good predictive ability.
- Results from multiple trees can be combined to improve performance
- The resulting model is an "ensemble" model
- Two multi-tree approaches in JMP Pro:
 - Bootstrap Forests (a variant of Random Forests)
 - Boosted Trees

- *Bootstrap aggregation*, or *bagging*, is a general-purpose procedure for reducing the variance of a statistical learning method; we introduce it here because it is particularly useful and frequently used in the context of decision trees.
- Recall that given a set of n independent observations Z_1, \ldots, Z_n , each with variance σ^2 , the variance of the mean \overline{Z} of the observations is given by σ^2/n .
- In other words, *averaging a set of observations reduces variance*. Of course, this is not practical because we generally do not have access to multiple training sets.

- Instead, we can bootstrap, by taking repeated samples from the (single) training data set.
- In this approach we generate B different bootstrapped training data sets. We then train our method on the bth bootstrapped training set in order to get $\hat{f}^{*b}(x)$, the prediction at a point x. We then average all the predictions to obtain

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

This is called *bagging*.

- *Random forests* provide an improvement over bagged trees by way of a small tweak that *decorrelates* the trees. This reduces the variance when we average the trees.
- As in bagging, we build a number of decision trees on bootstrapped training samples.
- But when building these decision trees, each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors. The split is allowed to use only one of those m predictors.
- A fresh selection of m predictors is taken at each split, and typically we choose $m \approx \sqrt{p}$ — that is, the number of predictors considered at each split is approximately equal to the square root of the total number of predictors

Bootstrap Forests

- 1. A random sample is drawn with replacement from the data set (bootstrapping)
- 2. Predictors are randomly drawn from the candidate list of predictors
- 3. A small tree is fit (a "weak learner")
- 4. The process is repeated
- 5. The final model is the average of all of the trees, producing a "Bootstrap aggregated" (or "bagged) model

Boosted Trees

- 1. A simple (small) tree is fit to the data with a random sample of the predictors
- 2. The scaled residuals from this tree are calculated
- 3. A new simple tree is fit to these scaled residuals with another random sample of predictors
- 4. This process continues
- 5. The final boosted model is the sum of the models for the individual trees

- 1. The number of trees B. Unlike bagging and random forests, boosting can overfit if B is too large, although this overfitting tends to occur slowly if at all. We use cross-validation to select B.
- 2. The shrinkage parameter λ , a small positive number. This controls the rate at which boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on the problem. Very small λ can require using a very large value of B in order to achieve good performance.
- 3. The number of splits d in each tree, which controls the complexity of the boosted ensemble. Often d = 1 works well, in which case each tree is a *stump*, consisting of a single split and resulting in an additive model. More generally d is the *interaction depth*, and controls the interaction order of the boosted model, since d splits can involve at most d variables.

The non paying loan (NPL) case study

Missing Data Pattern - JMP Pro Missing data patterns in NPL data \Box ×																
<u>F</u> ile <u>E</u> dit <u>T</u> ables <u>R</u> ows <u>C</u> ols <u>D</u> OE <u>A</u> nalyze <u>G</u> raph <u>Tools</u> Add-I <u>ns</u> <u>V</u> iew <u>W</u> indow <u>H</u> elp																
A Missing Data Pattern													1			
Source			Count	columns missing	Patterns		TARGET	ID	NPL Data.jmp							
Treemap		1	1	25	000000000000000000000000000000000000000	000	0	0	0	(0 ^			-		
Cell Plot		2	1	28	000000000000000000000000000000000000000	000	0	0	0		n					
		2	1	7	000000000000000000000000000000000000000		-	📑 🔛 NPL D	ata - JMP Pro							
Columns (124/0)	_	3	-	7	7 0000000000000000000000000000000000000		0	File Edit	Tables Re	ows Cols	DOE Analy	yze Graph	Tools	Add-Ins V	iew Wir	ndow Help
Columns (124/0)		4	9	29	000000000000000000000000000000000000000	000	0	- 🔛 🔛 I	🚰 🖬 🛛 🔏	۽ 🟝 🗈	: in	🖹 🖳 🛌	¥			
- Count 🖾 - 5 2		2	27	000000000000000000000000000000000000000	000	0	💕 🗔	X 🗈 🖺	🗟 🏡 1	9 9 L 4	8 al ¶ 4	} <u>al</u> (1 7° 14 (d 🖬 🛛	t et ot e	
Number ofmns mi	ssing	6	5	7	0000000000000000	000	0	NPL Dat	ta	Þ	٩	-	1			
TADOLT		7	1	20	000000000000000000000000000000000000000	000	0	Source			•	TARGET	ID	GBV	NBV	FND_RETT
	Stor	t hy look	ina (at the dete	n in	000	0			-		1 Y	D_1	111.0346	56.124	-54.9106
	Slai	L DY IOOK	ang a	at the uata	a II 1	200		Column	s (121/0)	_		2 N	D_2	17.8907	5.1501	-12./406
GBV	torm	o of mio	aina				0	L TARGET	5(121/0)	^		2 N	D_3	10.9306	7 2265	-8.0708
				iu j)00	0	L ID				5 N	D 5	17.606	11.6968	-5.9092	
L FND_RETT						000	0			- 11		6 N	D_6	92.4112	65.3414	-27.0698
FORBORNE_CONTRA			200		FND_RE	TT			7 Y	D_7	61.9977	49.0266	-12.9711			
INTERESTS						0		RNE_CONTRA	CT		8 N	D_8	20.0995	12.3037	-7.7958	
1 coc				000	0		STS			9 N	ID_9	92.3296	62.8638	-29.4659		
TOTAL_NETJUSTM The first analysis we do will b					ill be	000	0	TOTAL I	NETJUSTME		1	0 Y	D_10	45.9747	37.4358	-8.5389
						000		TOTAL_	ADJUSTMENT	rs _	1	1 N	D_11	66.0118	46.6046	-19.4072
			· .				0	OTHER_		TS _	1		D_12	56.5194	45.3901	-11.1292
COTHER ATTICSTMEN	loais	stic reare	essio	n.)00	0	OTHER	RECOVERY		1		D 14	103 9024	81 2542	-17.0900
Rows						000	0	COD_PR	OVINCE		1	IS N	D 15	53.1079	35.4377	-17.6701
All rows		10				200	-		IENIT TYPE		1	16 N	D_16	116.8653	91.9102	-24.9551
Selected	0	18	1	0	000000000000000000000000000000000000000		0	 Rows 		2 504	1	17 N	D_17	167.3124	87.0611	-80.2513
Excluded	0	19	33	7	000000000000000000000000000000000000000)00	0	AIL TOWS	•	2,304	-	O NI	ID 10	22.405	17 55 20	4 7057
Hidden	0	20	2	28	000000000000000000000000000000000000000	000	0	0	0		0					
Labelled	ő	20	2		000000000000000000000000000000000000000	000	0	0	0		~					
	, in the second s	21	<	u							>					
v 😑 👩	dh	🔍 🕅	w	🖽 P 3	S 🛃		ç	~ ^	🖪 र्य×	÷	2:4	18				

Outliers

The bank can evaluate outlying cases and determine possible data entry errors or special circumstances. Here we used all data.

Explore Outliers

Quantile Range Outliers

Outliers are values Q times the interquantile range past the lower and upper quantiles.

Tail Quantile

Select columns and choose an action.

Q 3 Restrict search to integers

Show only columns with outliers

0.1

Some quantiles were stretched to avoid a large group at the median.

	10%	90%	Low	High	Number of	
Column	Quantile	Quantile	Threshold	Threshold	Outliers	Outliers (Count)
GBV	9.4955	122.132	-328.41	460.042	0	
NBV	3.91635	82.2023	-230.94	317.06	0	
FND_RETT	-53.665	-3.7921	-203.28	145.827	1	-216.35
INTERESTS	-0.1304	-0.0076	-0.499	0.361	0	
COC	-0.1304	-0.0077	-0.4987	0.3606	0	
TOTAL_NET_ADJUSTMENTS	-28.687	-1.2657	-110.95	80.9987	2	-130.5706 -124.0946
TOTAL_ADJUSTMENTS	-27.3	-0.8594	-106.62	78.4625	2	-130.5706 -124.0946
OTHER_ADJUSTMENTS	-27.3	-0.8594	-106.62	78.4625	2	-130.5706 -124.0946
TOTAL_RECOVERY	-2.8666	0.09217	-11.743	8.96834	10	-34.4724 -21.8526 -21.0934 -21.031 -20.9955 -18.2491 -16.3949 -16.1417 -15.9399 -15.3047
OTHER_RECOVERY	-2.8666	0.09217	-11.743	8.96834	10	-34.4724 -21.8526 -21.0934 -21.031 -20.9955 -18.2491 -16.3949 -16.1417 -15.9399 -15.3047
AGE	29.875	58.655	-56.465	144.995	0	

Total recovery with many outliers

Parallel plots

Parallel Plot

Apparent differences on amounts

Distributions TARGET=N

TOTAL_RECOVERY

Quantiles								
100.0%	maximum	8.4241						
99.5%		1.396663						
97.5%		0						
90.0%		0						
75.0%	quartile	0						
50.0%	median	0						
25.0%	quartile	-1.0715						
10.0%		-2.7032						
2.5%		-5.22362						
0.5%		-8.482124						
0.0%	minimum	-34.4724						

Summary Statistics						
Mean	-0.789656					
Std Dev	1.8385048					
Std Err Mean	0.0430834					
Upper 95% Mean	-0.705158					
Lower 95% Mean	-0.874154					
N	1821					

Distributions TARGET=Y

TOTAL_RECOVERY

Quantiles			Summary Statistics		
100.0% 99.5% 97.5% 90.0% 75.0% 50.0% 25.0% 10.0% 2.5%	quartile median quartile	7.2869 0.57659 0 0 0 -1.3743 -3.29788 -6.75773	Mean Std Dev Std Err Mean Upper 95% Mean Lower 95% Mean N	-1.030319 2.3390971 0.0895031 -0.854584 -1.206054 683	
0.5% 0.0%	minimum	-19.063248 -21.0934			

Logistic Regression

- Extends idea of linear regression to situation where outcome variable is categorical
- Widely used, particularly where a structured model is useful to explain (=profiling) or to predict
- We focus on binary classification

i.e. Y=0 or Y=1

The Logit

Goal: Find a function of the predictor variables that relates them to a 0/1 outcome

- Instead of Y as outcome variable (like in linear regression), we use a function of Y called the *logit*
- Logit can be modeled as a linear function of the predictors
- The logit can be mapped back to a probability, which, in turn, can be mapped to a class

Step 1: Logistic Response Function

p = probability of belonging to class 1

Need to relate p to predictors with a function that guarantees $0 \le p \le 1$

Standard linear function (as shown below) does not constrain the probability:

$$p = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q$$

q = number of predictors

Step 1: Logistic Response Function

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q)}}$$

Step 2: Calculate the odds

$$Odds = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q}$$

$$Odds = \frac{p}{1-p}$$
 \longleftarrow $p = probability of event$

Or, given the odds of an event, the probability of the event can be computed by:

$$p = \frac{Odds}{1 + Odds}$$

Step 3: Take log on both sides

This gives us the logit:

$$\log(Odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q$$

log(Odds) = logit

The logit is a linear function of predictors $x_1, x_2, ...$ that takes values from -infinity to +infinity

Personal Ioan (Universal Bank)

Outcome variable: accept bank loan (no = 0/yes = 1)

Predictors: Demographic info, and info about the customer relationship with the bank

Data Preprocessing

- Partition 60% training, 40% validation
- The data set includes four 2-level categorical predictors that have been coded as 0/1 dummy variables— these variables have the Continuous modeling type

Securities Account =
$$\begin{cases} 1 \text{ if customer has securities account in bank} \\ 0 \text{ otherwise} \end{cases}$$

$$CD \text{ Account} = \begin{cases} 1 \text{ if customer has CD account in bank} \\ 0 \text{ otherwise} \end{cases}$$

$$Online = \begin{cases} 1 \text{ if customer uses online banking} \\ 0 \text{ otherwise} \end{cases}$$

$$CreditCard = \begin{cases} 1 \text{ if customer holds Universal Bank credit card} \\ 0 \text{ otherwise} \end{cases}$$

Single Predictor Model

Modeling loan acceptance on income (x)

 $Prob(Personal \ Loan = Yes \mid Income = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$

Fitted coefficients (more later): $b_0 = -6.3525$, $P(Personal \ Loan = Yes | Income = x) = \frac{1}{1 + e^{6.3525 - 0.0392x}}$

Seeing the Relationship (JMP)

 $P(Personal \ Loan = Yes \mid Income = x) = \frac{1}{1 + e^{6.3525 - 0.0392x}}$

Seeing the Relationship

Note that the logistic curve is often represented like the one below (in other software packages)

Last step - classify

The logistic model produces an estimated probability of being a yes (or a 1)*.

- Convert to a classification by comparing the estimated probability to a cutoff value
- The default cutoff value is 0.50
- If the estimated probability > 0.50, classify as "yes"

*Note: By default JMP will model the probability of the first category (alphanumerically). To model the probability of 1 rather than the probability of 0, use the Value Ordering column property. In JMP 13 the target category can be specified in the platform.

Ways to determine cutoff

- A cutoff of 0.50 is the default
- Additional considerations
 - Maximize classification accuracy
 - Maximize sensitivity (subject to min. level of specificity)
 - Minimize false positives (subject to max. false negative rate)
 - Minimize expected cost of misclassification (need to specify costs)

- Estimates of β 's are derived through an iterative process called *maximum likelihood estimation*
- We now fit a full model including all predictors
- JMP reports coefficients for the logit in the Parameter Estimates Table
- Options like Odds Ratios are available under the red triangle

Estimated coefficients

mate St 34069 2.4 14547 0. 38147 0.0 76067 0.0	d Error 497848 090961 900536 042213	ChiSquare 17.21 0.24 0.39 242.68	Prob>ChiSo <.0001* 0.6243 0.5298
34069 2.4 14547 0. 38147 0.0 76067 0.0 35568 0.1	497848 090961 900536 042213	17.21 0.24 0.39 242.68	<.0001* 0.6243 0.5298
14547 0. 58147 0.0 76067 0.0 55568 0.1	090961 900536 042213	0.24 0.39 242.68	0.6243 0.5298
58147 0.0 76067 0.0 5568 0.1	900536 042213	0.39 242.68	0.5298
76067 0.0	042213	242.68	< 0001
5568 01	1200 State (1200 200 200 200 200 200 200 200 200 200		
0000 0.1	011896	31.90	<.0001*
23439 0.0	615372	9.26	0.0023
2506 0.2	432931	155.85	<.0001
9759 0.1	752704	78.39	<.0001
75308 0.0	008038	4.76	0.0292*
8708 0.4	186376	4.17	0.0411
2866 04	489309	59.71	<.0001
L000 0.4	283237	13.65	0.0002*
13563 0.2		11 64	0.0006*
1	2866 0.4 3563 0.2	2866 0.4489309 3563 0.2283237	28660.448930959.7135630.228323713.6507410.282542311.64

When the logit is saved to the data table, JMP calculates estimated probabilities, and uses a 0.50 cutoff to classify records (in the Most Likely column)

~	Personal Loan	Validation	Lin[Yes]	Prob[Yes]	Prob[No]	Most Likely Personal Loan
1	No	Training	-9.30521373	0.0000909405	0.9999090595	No
2	No	Validation	-10.75437659	0.0000213513	0.9999786487	No
3	No	Validation	-12.6077736	3.345893e-6	0.9999966541	No
4	No	Training	-2.009027973	0.1182582966	0.8817417034	No
5	No	Training	-5.2501519	0.005219337	0.994780663	No
6	No	Training	-5.82861105	0.0029335297	0.9970664703	No
7	No	Validation	-4.130395058	0.015822161	0.984177839	No
8	No	Validation	-8.437624603	0.0002165171	0.9997834829	No
9	No	Training	-3.113222558	0.0425651205	0.9574348795	No
10	Yes	Training	4.3908814129	0.9877618247	0.0122381753	Yes
11	No	Validation	0.2729614358	0.5678197882	0.4321802118	Yes
12	No	Training	-5.772169835	0.0031033348	0.9968966652	No
13	No	Validation	-1.019050966	0.265212302	0.734787698	No
14	No	Validation	-4.888765476	0.0074744258	0.9925255742	No
15	No	Validation	-6.409780202	0.0016426833	0.9983573167	No

 Estimated equation for the logit

The logistic response function is used to calculate the probabilities (propensities)

Prob[Yes]							
Table Columns		Functions (grouped)	ОК				
ID Personal Loan Age Experience Income ZIP Code Family CCAvg Education	$\begin{array}{c} + & - & \\ \times & \div & \mathcal{P} \\ x^{y} & \sqrt[y]{x} & \mathbb{G} \\ \frac{1}{2} & t = & \end{array}$	Row Numeric Transcendental Trigonometric Character Comparison Conditional Probability Discrete Probability	Cancel Apply Clear Help				
$\frac{1}{\left[1 + \exp\left[-Lin[Yes]\right]\right]}$							

Evaluating classification performance

Performance measures: Confusion matrix and % of misclassifications for the validation set

Measure	Training	Validation	Definition
Entropy RSquare	0.6544	0.5810	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.7228	0.6566	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.1088	0.1334	∑ -Log(p[j])/n
RMSE	0.1717	0.1853	√∑(y[j]-ρ[j])²/n
Mean Abs Dev	0.0607	0.0644	Σ y[j]-ρ[j] /n
Misclassification Rate	0.0367	0.0470	∑ (ρ[j]≠ρMax)/n
Ν	3000	2000	n

С	onfusio	n Ma	trix			
_	Trai	ining		Valio	lation	
	Actual	Predicted		Actual	Predic	cted
	Personal	Count		Personal	Cou	Int
	Loan	Yes	No	Loan	Yes	No
	Yes	201	85	Yes	126	68
	No	25	2689	No	26	1780

Evaluating classification performance

The rate for the target category is low (<10%)

So, more useful in this example is: lift

The lift for the top 10%of the sorted probabilities (Yes) = 7.7

Multicollinearity

Problem: As in linear regression, if one predictor is a linear combination of other predictor(s), model estimation will fail

- Note that in such a case, we have at least one redundant predictor

Solution: Remove extreme redundancies (by dropping predictors via variable selection or by data reduction methods such as PCA)

Variable selection

This is the same issue as in linear regression:

- The number of correlated predictors can grow when we create derived variables such as **interaction terms** (e.g. *Income x Family)*, to capture more complex relationships
- **Problem**: Overly complex models have the danger of overfitting
- **Solution**: Reduce variables via automated selection of variable subsets (as with linear regression)
 - Data preparation strategies (e.g. grouping or binning) can also reduce the number parameters to be estimated

P-values for predictors

- Test null hypothesis that coefficient = 0
- Useful for review to determine whether to include variable in model
- Key in profiling tasks, but less important in predictive classification

Logistic regression overview

- Logistic regression is similar to linear regression, except that it is used with a categorical response
- It can be used for explanatory tasks (=profiling) or predictive tasks (=classification)
- The predictors are related to the response Y via a nonlinear function called the *logit*
- As in linear regression, reducing predictors can be done via variable selection
- Logistic regression can be generalized to more than two classes (ordinal or multinomial)

Simple logistic regression on total recovery is not informative because of little spread. Transforming the data could prove more informative.

Naïve Bayes: The basic idea

For a given new record to be classified:

- Find other records like it (i.e., same values for the predictors)
- Identify the prevalent class among those records
- Assign that class to your new record

Usage

- Requires categorical variables
- Numerical variable must be binned and converted to categorical
- Can be used with very large data sets
- Example: Spell check programs assign your misspelled word to an established "class" (i.e., correctly spelled word)

Exact Bayes classifier

- Relies on finding other records that share <u>same</u> predictor values as record-to-be-classified.
- Want to find "probability of belonging to class *C*, given specified values of predictors."
- Even with large data sets, may be hard to find other records that exactly match your record, in terms of predictor values.

Solution – Naïve Bayes

- Assume independence of predictor variables (within each class)
- Use multiplication rule
- Find same probability that record belongs to class C, given predictor values, <u>without</u> limiting calculation to records that share all those same values

Naïve Bayes procedure

Take a record, and note its predictor values:

- 1. Find the probabilities those predictor values occur across all records in C1
- 2. Multiply them together, then by the proportion of records belonging to C1
- 3. Repeat steps 1 and 2 for each class
- The probability of belonging to C1 is value from step (3) divide by sum of all such values C1 ... Cn
- 5. Establish and adjust a "cutoff" prob. for class of interest

Example: financial fraud

Target variable:

 Audit finds fraud, no fraud

Predictors:

- Prior pending legal charges (yes/no)
- Size of firm (small/large)

	Prior Legal Trouble	Company Size	Status
1	Yes	Small	Truthful
2	No	Small	Truthful
3	No	Large	Truthful
4	No	Large	Truthful
5	No	Small	Truthful
6	No	Small	Truthful
7	Yes	Small	Fraudulent
8	Yes	Large	Fraudulent
9	No	Large	Fraudulent
10	Yes	Large	Fraudulent

Exact Bayes calculations

Goal: classify (as "fraudulent" or as "truthful") a small firm with charges filed

- There are 2 firms like that, one fraudulent and the other truthful
- P(fraud | charges=y, size=small) = $\frac{1}{2}$ = 0.50

Note: calculation is limited to the two firms matching those characteristics

Naïve Bayes calculations

Same goal as before

Compute 2 quantities:

- Proportion of "charges = y" among frauds, times proportion of "small" among <u>frauds</u>, times proportion frauds = 3/4 * 1/4 * 4/10 = 0.075
- Prop "charges = y" among frauds, times prop. "small" among <u>truthfuls</u>, times proportion truthfuls = 1/6 * 4/6 * 6/10 = 0.067

P(fraud | charges, small) = 0.075/(0.075+0.067)

Naïve Bayes, continued

- Note that probability estimate does not differ greatly from exact
- All records are used in calculations, not just those matching predictor values
- This makes calculations practical in most circumstances
- Relies on assumption of independence between predictor variables within each class

Independence assumption

- Not strictly justified (variables often correlated with one another)
- Often "good enough"

Naïve Bayes advantages

- Handles purely categorical data well
- Works well with very large data sets
- Simple and computationally efficient

Naïve Bayes shortcomings

- Requires large number of records
- Problematic when a predictor category is not present in training data
 - Assigns 0 probability of response, ignoring information in other variables

On the other hand...

- Probability <u>rankings</u> are more accurate than the actual probability estimates
 - Good for applications using lift (e.g. response to mailing), less so for applications requiring probabilities (e.g. credit scoring)

Naïve Bayes overview

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)P(x_1, \dots, x_n \mid y)}{P(x_1, \dots, x_n)}$$

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)\prod_{i=1}^n P(x_i \mid y)}{P(x_1, \dots, x_n)}$$

- No statistical models involved
- Naïve Bayes (like KNN) pays attention to complex interactions and local structure
- Computational challenges remain

NPL Naïve Bayes

Assumes independence of predictors

Specificity (Y classified as Y) = 97.3%

NPL decision trees

ROC of decision tree

Lift of decision tree

Variable contributions to decision tree

|--|--|

Column Contributions				
	Number			
Term	of Splits	G^2		Portion
AMOUNT_DEFAULT_INTEREST_END_MONTH	1	45.926837	· · · ·	0.3506
NUM_GUARANTORS	1	38.1141701		0.2910
FORBORNE_CONTRACT	1	14.1171833		0.1078
AMOUNT_MARGINAL_USED_5	1	11.916505		0.0910
DUMMY_INSOLVENCY_PROCEEDINGS_C	1	11.4430186		0.0874
AMOUNT_COLLATERAL_TYPE_S_OTHER	1	9.468194		0.0723
GBV	0	0		0.0000
NBV	0	0		0.0000
FND_RETT	0	0		0.0000
INTERESTS	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
	0	0		0.0000
OTHER_RECOVERY COD_PROVINCE COD_CLIENT_TYPE AGE COD_ATECO_100VAL	0 0 0 0	000000000000000000000000000000000000000		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Performance of decision tree

Fit Details

Measure	Training	Validation	Definition
Entropy RSquare	0.0623	0.0132	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.1024	0.0219	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.5547	0.5645	∑ -Log(ρ[j])/n
RMSE	0.4314	0.4361	√∑(y[j]-ρ[j])²/n
Mean Abs Dev	0.3727	0.3748	Σ[y(j]-ρ(j]/n
Misclassification Rate	0.2666	0.2644	∑(p[j]≠pMax)/n
N	1759	745	n

Confusion Matrix

Tra	ining		Valio	dation	
	Predie	cted		Predic	ted
Actual	Cou	nt	Actual	Cou	nt
TARGET	N	Y	TARGET	N	Y
N	1253	16	Ν	540	12
Y	453	37	γ	185	8

Sensitivity (N classified as N) = 98.7% Specificity (Y classified as Y) = 7.5%

Random forests

Bootstran Forest Specification		
Number of Rows: 2504 Number of Terms: 340 Forest Number of Trees in the Forest Number of Terms Sampled per Split: Bootstrap Sample Rate Minimum Splits per Tree: Maximum Splits per Tree Minimum Size Split Image: Stopping	100 85 1 10 2000 5	Multiple Fits Multiple Fits over Number of Terms Max Number of Terms Max Number of Terms Use Tuning Design Table Reproducibility Suppress Multithreading Random Seed 0

Random forests

Overall Statistics

Measure	Training	Validation	Definition
Entropy RSquare	0.5497	0.0564	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.6870	0.0935	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.2617	0.5633	Σ -Log(ρ[j])/n
RMSE	0.2575	0.4352	√∑(y[j]-ρ[j])²/n
Mean Abs Dev	0.2155	0.3682	$\sum [y[j] - p[j]]/n$
Misclassification Rate	0.0403	0.2749	∑ (p[j]≠pMax)/n
N	1762	742	n

Confusion Matrix

Sensitivity (N classified as N) = 100% Specificity (Y classified as Y) = 84.9%

Variable contributions to forest

Column Contributions

	Number		
Term	of Splits	G^2	Portion
COD_PROVINCE	543	104.771204	 0.1081
COD_ATECO_100VAL	376	47.9837687	0.0495
COD_ISTAT_ATECO_07	297	43.2221623	0.0446
AMOUNT_DEFAULT_INTEREST_END_MONTH	381	36.4398855	0.0376
NUM_MONTHS_FROM_FIRST_CONTRACT	356	24.8622738	0.0256
COD_RAE	180	21.5436371	0.0222
VINTAGE_LEGAL_PROCEDURE	343	21.0771415	0.0217
VINTAGE_STRANDING	310	19.1737245	0.0198
GEOGRAPHICAL_POSITION	320	17.5453309	0.0181
AMOUNT_BANK_ACCOUNT_GUARANTORS	155	14.4818336	0.0149
TOTAL_NET_ADJUSTMENTS	229	14.1764942	0.0146
TOTAL_ADJUSTMENTS	223	14.1484413	0.0146
GBV	219	13.3053047	0.0137
AMOUNT_COLLATERAL_TYPE_X_REAL_ACTUALIZED	212	13.2631144	0.0137
OTHER_ADJUSTMENTS	222	13.1912139	0.0136
COD_SAE	190	13.0545203	0.0135
NBV	199	12.9392247	0.0133
AMOUNT_COLLATERAL_TYPE_X_REAL	204	12.7548631	0.0132
AMOUNI_COLLATERAL	201	12.6033107	0.0130
FND_KETT	209	12.5426841	0.0129
INTERESTS	218	12.510933	0.0129
AMOUNT_USED_1	189	12.1616324	0.0125
AMOUNT_SECORED_DEBT_T	191	12.0697238	0.0124
	101	11.0002/30	0.0120
	191	11.5505544	0.0119
	192	11.4043/30	0.0118
	210	11.4490915	0.0118
	200	11.2004200	0.0116
	174	11.0267/20	0.0114
	174	10.007439	0.0114

Measures of Fit for TARGET

Creator	.2 .4 .6 .8	Entropy RSquare	Generalized RSquare	Mean -Log p	RMSE	Mean Abs Dev	Misclassification Rate	N	AUC
Logistic		0.0023	0.0039	0.5846	0.4447	0.3956	0.2724	2504	0.5290
Partition Bootstrap Forest		0.0691	0.1128 0.5432	0.5455 0.3511	0.4270 0.3206	0.3652 0.2607	0.2668 0.1098	2504 2504	0.6724 0.9475

Performance of random forest with cutoff on Y = 0.4, 0.6, 0.8

📴 Profit/Cost Decision Matrix	X	I	Profit/Cost Decision Matrix ×
Specify Profit Matrix			Specify Profit Matrix
Each matrix entry is the profit if you predict the response in th actual response.	e column when the response in the row is the		Each matrix entry is the profit if you predict the response in the column when the response in the row is the actual response.
Enter values that reflect profits for correct decisions on the dia Enter values (usually negative) that reflect profits for incorrect Use the Undecided column to reflect profits for an alternative	igonal. decisions elsewhere. decision.		Enter values that reflect profits for correct decisions on the diagonal. Enter values (usually negative) that reflect profits for incorrect decisions elsewhere. Use the Undecided column to reflect profits for an alternative decision.
When you save prediction formulas, these values will be used The best decision is the one with greatest expected profit.	Profit/Cost Decision Matrix		When you save prediction formulas, these values will be used to create best decision columns. The best decision is the one with greatest expected profit.
Decision or Prediction N Y Undecided N 0 -0.6667 . Y -1 0 . To create a profit matrix for a binary response, enter a Target a lf the predicted probability exceeds the threshold, the best dec Target: Y -1 0 . To create a profit matrix for a binary response, enter a Target a lf the predicted probability exceeds the threshold, the best dec Target: Y	Specify Profit Matrix Each matrix entry is the profit if you predict the response. Enter values that reflect profits for correct decisions of Enter values (usually negative) that reflect profits for Use the Undecided column to reflect profits for an al When you save prediction formulas, these values will The best decision is the one with greatest expected p Decision or Prediction $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	onse in the colur on the diagonal. incorrect decisio Iternative decisio I be used to crea profit.	Decision or Prediction N Y Undecided N 0 -4 . Y -1 0 . To create a profit matrix for a binary response, enter a Target and Probability Threshold. If the predicted probability exceeds the threshold, the best decision will be the target. Target: Target: Y Set Probability Threshold: 0.8 Save to column as property. Set
	To create a profit matrix for a binary response, enter a lf the predicted probability exceeds the threshold, the Target: Probability Threshold: Save to column as property.	Target and Probab	OK Cancel

Performance of random forest with cutoff on Y = 0.4

Confusi	on Mat	rix]		
1	Training		Vali	dation		_			
Actua	Predi I Cou	cted nt	Actual	Predic Cour	ted nt				
TARGE	T N	Y	TARGET	N	Y				
N Y	1277 100	0 363	N Y	540 211	4 9				
Decision	n Matrix	c							
1	Fraining		Va	alidation			Specifie	ed Profit	Matrix
	Decisio	n		Decisi	on			Deci	sion
Actual	Count		Actual	Coun	t		Actual	N	Y
TARGET	Ν	Υ	TARGET	Ν	Y		N	0	-0.667
N Y	1275 20 4	2 43	N Y	500	44 43		Ŷ	-1	0
Actual	Decision	n Rate	Actual	Decisio	on Ra	te			
TARGET	N	Y	TARGET	N	1	Y			
N Y	0.998	0.002 0.957	N Y	0.919	0.0 5 0.1)81 195			
Misclass	ification Rate		Misclassi	fication Rate			S	ensiti	i vity
	0.0126			0.2893			S	pecif	icitv

vity (N classified as N) = 99.9% city (Y classified as Y) = 95.7%

Performance of random forest with cutoff on Y = 0.6

Confusi	on Mat	trix								
1	Fraining			Vali	dation		_			
Actua	Pred I Co	licteo unt	ł	Actual	Predict Coun	ed t				
TARGE	T N	١	1	TARGET	N	Y				
N Y	1277 100	(36	D 3	N Y	540 211	4 9				
Decision	n Matri	ix								
1	Fraining			Va	lidation			Specifie	ed Profit N	/latrix
	Decisi	on			Decisio	n			Decis	ion
Actual	Coun	t		Actual	Count	t		Actual	N	
TARGET	N	Y		TARGET	N	Y		N	0	-1.
N	1277	0		N	544	0		Y	-1	
Ŷ	278	185		Y	218	2		1		
Actual	Decisio	on Ra	te	Actual	Decisio	n Ra	te			
TARGET	N		Y	TARGET	N		Y			
N Y	1.000) 0.0) 0.4	000 400	N Y	1.000 0.991	0.0	000 009			
Misclass	ification Rate			Misclassi	fication Rate			Sen	sitivit	y (N
	0.1598				0.2853			Sp	ecific	ity

(N classified as N) = 100% ty (Y classified as Y) = 40%

γ -1.5

Performance of random forest with cutoff

Υ -4 0

Confusio	n Mat	rix			
Tra	ining		Va	lidation	
	Predi	icted		Predic	ted
Actual	Cou	int	Actual	Cou	nt
TARGET	N	Y	TARGET	N	Y
N	1306	0	N	510	5
Y	74	412	Y	187	10

Decision Matrix

Training			Validation				Specified Profit Matrix		
	Decision			Decision				Decision	
Actual	Count		Actual	Count			Actual	N	
TARGET	N	Y	TARGET	N	Υ		N	0	-
N	1306	0	N	515	0		Y	-1	
Y	486	0	γ	197	0				
Actual	Decision Rate		Actual	Decision Rate		te			Sen
TARGET	N	Y	TARGET	N		γ			
N	1.000	0.000	N	1.000	0.0	00			S
Y	1.000	0.000	Y	1.000	0.0	00			
Misclassification			Misclassification				-		
Rate			Rate						
		0.2767							

Sensitivity (N classified as N) = 100% Specificity (Y classified as Y) = 0%

The NPL case study

- Random Forest with informative missing data imputation
- Number of trees in forest =100 with 10-2000 splits and no multithreading
- Validation set consisting of 30% randomly selected cased
- With Cutoff=0.5 one gets Sensitivity=100% and Specificity=85%
- Sensitivity of cutoff needs to be evaluated with economic parameters

The NPL case study

- We have not considered an option of "undecided"
- We have focused on individual classifications not ranking of cases for prioritizing action items
- Sensitivity and specificity are performance measures from the bank's perspective (not misclassification rates)
- Missing data and outliers should be investigated
- Clustering and event driven predictive analytics for risk
 mitigation can be considered
- Costs in profit matrix need to be justified by bank
- The economic impact of the model needs to be evaluated
- Customers could be segmented with different models being applied to different segments

Unsupervised Learning

Clustering

- Clustering is a technique for finding similarity groups in data, called clusters. I.e.,
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.

An illustration

• The data set has three natural groups of data points, i.e., 3 natural clusters.

Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering
- A distance (similarity, or dissimilarity) function
- Clustering quality
 - Inter-clusters distance \Rightarrow maximized
 - Intra-clusters distance \Rightarrow minimized
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

K-means clustering

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) D be

 $\{\mathbf{X}_1, \, \mathbf{X}_2, \, \dots, \, \mathbf{X}_n\},\$

where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in a realvalued space $X \subseteq R^r$, and *r* is the number of attributes (dimensions) in the data.

- The k-means algorithm partitions the given data into k clusters.
 - Each cluster has a cluster center, called centroid.
 - k is specified by the user

K-means algorithm

- Given k, the k-means algorithm works as follows:
 1)Randomly choose k data points (seeds) to be the initial centroids, cluster centers
 - 2)Assign each data point to the closest centroid
 - 3)Re-compute the centroids using the current cluster memberships.
 - 4) If a convergence criterion is not met, go to 2).

Stopping/convergence criterion

- 1. no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- 3. minimum decrease in the **sum of squared error** (SSE),

$$SSE = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$
(1)

- C_i is the *j*th cluster, \mathbf{m}_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and *dist*(\mathbf{x} , \mathbf{m}_j) is the distance between data point \mathbf{x} and centroid \mathbf{m}_j .

O

Ð

0

0

An example

An example (cont ...)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

Strengths of K-means

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(*tkn*),
 where *n* is the number of data points,
 - k is the number of clusters, and
 - t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Weaknesses of K-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, k-mode the centroid is represented by most frequent values.
- The user needs to specify *k*.
- The algorithm is sensitive to **outliers**
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of K-means: Outliers

(A): Undesirable clusters

Weaknesses of K-means: Outliers

- One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 - Monitor possible outliers over a few iterations and then decide to remove them.
- Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Weaknesses of K-means (cont ...) The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

Weaknesses of K-means (cont ...)

• If we use different seeds: good results

(A). Random selection of k seeds (centroids)

(B). Iteration 1

(C). Iteration 2

Weaknesses of K-means (cont ...)

 The k-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

K-means summary

- Despite weaknesses, k-means is still the most popular algorithm due to its simplicity, efficiency and
 - other clustering algorithms have their own lists of weaknesses.
- No clear evidence that any other clustering algorithm performs better in general
 - although they may be more suitable for some specific types of data or applications.
- Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!

Common ways to represent clusters

- Use the centroid of each cluster to represent the cluster.
 - compute the radius and
 - standard deviation of the cluster to determine its spread in each dimension
 - The centroid representation alone works well if the clusters are of the hyper-spherical shape.
 - If clusters are elongated or are of other shapes, centroids are not sufficient

Hierarchical methods

Agglomerative Methods

- Begin with n-clusters (each record its own cluster)
- Keep joining records into clusters until one cluster is left (the entire data set)
- Most popular

Divisive Methods

- Start with one all-inclusive cluster
- Repeatedly divide into smaller clusters

Distance between two records

Euclidean Distance is most popular:

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Problem: Raw distance measures are highly influenced by scale of measurements

Solution: normalize (standardize) the data first

- Subtract mean, divide by std. deviation
- Also called z-scores

Other distance measures

- Correlation-based similarity
- Statistical distance (Mahalanobis)
- Manhattan distance (absolute differences)
- Maximum coordinate distance
- Gower's similarity (for mixed variable types: continuous & categorical)

Minimum distance (Cluster A to Cluster B)

- Also called single linkage
- Distance between two clusters is the distance between the pair of records A_i and B_j that are closest

Maximum distance (Cluster A to Cluster B)

- Also called complete linkage
- Distance between two clusters is the distance between the pair of records A_i and B_j that are farthest from each other

Average distance

- Also called average linkage
- Distance between two clusters is the average of all possible pair-wise distances

Centroid distance

- Distance between two clusters is the distance between the two cluster centroids
- Centroid is the vector of variable averages for all records in a cluster

Ward's method

- Considers loss of information when
 observations are clustered together
- Uses error sum of squares (ESS) to measure the difference between observations and the centroid
- The Fast Ward method in JMP is more efficient, and is used automatically for large data sets

The Hierarchical Clustering (using agglomerative method)

Steps:

- 1. Start with *n* clusters (each record is its own cluster)
- 2. Merge two closest records into one cluster
- 3. At each successive step, the two clusters closest to each other are merged
- Dendrogram, from left to right, illustrates the process

Interpreting clusters

Goal: obtain meaningful and useful clusters

Caveats:

- (1) Random chance can often produce apparent clusters
- (2) Different cluster methods produce different results

Solutions:

- Obtain summary statistics
- Also review clusters in terms of variables not used in clustering
- Label the cluster (e.g. clustering of financial firms in 2008 might yield label like "midsize, sub-prime loser")

Desirable cluster features

Stability

- Are clusters and cluster assignments sensitive to slight changes in inputs?
- Are cluster assignments in partition B similar to partition A?

Separation

check ratio of between-cluster variation to withincluster variation (higher is better)

K-Means clustering algorithm

- 1. Choose # of clusters desired, k
- 2. Start with a partition into k clusters Often based on random selection of k centroids
- 3. At each step, move each record to cluster with closest centroid
- 4. Recompute centroids, repeat step 3
- 5. Stop when moving records increases withincluster dispersion

K-means algorithm: choosing k and initial partitioning

Choose *k* based on the how results will be used

> e.g., "How many market segments do we want?"

Also experiment with slightly different *k*'s

Initial partition into clusters can be random, or based on domain knowledge

If random partition, repeat the process with different random partitions

K-means dialog in JMP

K-means output (k = 6)

▼ ✓ K Means NCluster=6									
Columns Scaled Individually									
▼	Cluste	er Summa	ry						
	Cluster	Count	Step Crite	erion					
	1	1	2	0					
	2	6							
	3	6							
	4	5							
	5	1							
	6	3							
▼	Cluster Means								
	Cluster	Fixed	RoR	Cost	Load_factor	Demand	Sales	Nuclear	Fuel Cost
	1	0.76	6.4	136	61.9	9	5714	8.3	1.92
	2	1.075	11.2833333	181.333333	55.8	3.5	7087.5	36.1166667	0.90216667
	3	1.185	12.4	120.833333	54.65	0.8	10456	3.75	0.8765
	4	1.138	10.46	177.8	62.64	3.3	7064	0.18	1.5854
	5	1.49	8.8	192	51.2	1	3300	15.6	2.044
	6	1.00333333	8.86666667	223.333333	54.8333333	6.33333333	15504.6667	0	0.56566667
▼	Cluster Standard Deviations								
	Cluster	Fixed	RoR	Cost	Load_factor	Demand	Sales	Nuclear	Fuel Cost
	1	0	0	0	0	0	0	0	0
	2	0.10045729	1.18520978	19.694895	2.44131112	2.11108187	1523.19946	8.59794872	0.38490147
	3	0.14244882	1.87705443	21.6749984	3.15052906	2.19012937	1523.20736	8.38525492	0.26527329
	4	0.13332667	2.06455806	14.0057131	2.56561883	2.37402612	835.435216	0.36	0.43376196
	5	0	0	0	0	0	0	0	0
	6	0.18080069	1.00774776	35.7055862	2.39211668	2.4115463	1812.47719	0	0.19128397

Visualizing clusters

 Parallel Plot shows the number of records per cluster, and the profile of the clusters across the variables

Visualizing clusters

- Biplot shows separation and overlap of the clusters
- Scatterplot matrix shows separation of the clusters across the variables

Clustering overview

- Cluster analysis is an exploratory tool
- It is useful only when it produces meaningful clusters
- Hierarchical clustering gives visual representation of different levels of clustering
- Non-hierarchical clustering is computationally cheap and more stable (good with larger data sets); requires user to set k
- Can use both methods
- Be wary of chance results; data may not have definitive "real" clusters

An Introduction to Text Mining with examples from an Annual Report

What is Text Mining?

- Text mining: semi-automated process of detecting patterns (useful information and knowledge) from large amounts of *unstructured* data sources
- Text analytics: methods used for intelligent analyses of textual data; a larger set of activities around inference steps of discovering information, grouping documents, summarizing information, etc.
- In order to analyze text in a systematic and structured way, we first need to develop a numerical representation of the text.
- Obviously, there is not a unique solution to this problem. The appropriate mapping of text->numbers depends on the goal of the study.

Text Mining Flow

A Simple Example

Car Accidents

Slid on ice into a curb.

Driving too fast in a dust storm, hit the curb.

Low-budget tires failed after bumping curb.

Bag of Words Approach

- Using a "bag of words" approach, we disregard the ordering of the words in each document as well as their grammatical properties.
- While this may seem simplistic, it has been shown to give excellent results in many applications.

Vocabulary

- <u>Document:</u> a string of words.
- <u>Corpus:</u> a collection of documents.
- In the text mining literature, "words," "terms," and "tokens" all describe roughly the same idea. There are some subtleties to their use: we will use them interchangeably to mean words that have been extracted from a document and processed.

Processing Text

- Within each document, we will first
 - Isolate individual words
 - Remove punctuation
 - Normalize case (convert all characters to lowercase)
 - Remove numbers
- Later, we will discuss further processing of the words.

Natural Language Processing

- After extracting the tokens from a document, it is typically useful to
 - Remove stopwords (most frequent words).
 - Stem the text.
 - Remove words with character length below a minimum or above a maximum.
 - Remove words that appear in only a few documents (most infrequent words).

Isolate Words

Document 1	Document 2	Document 3
Slid	Driving	Low-budget
on	too	tire
ice	fast	failed
into	in	after
а	а	bumping
curb.	dust	curb.
	storm,	
	hit	
	the	
	curb.	

Notice that punctuation is concatenated to adjacent terms.

Remove Punctuation

Document 1	Document 2	Document 3
Slid	Driving	Lowbudget
on	too	tire
ice	fast	failed
into	in	after
а	а	bumping
curb	dust	curb
	storm	
	hit	
	the	
	curb	

Normalize Case

Document 1	Document 2	Document 3
slid	driving	lowbudget
on	too	tire
ice	fast	failed
into	in	after
а	а	bumping
curb	dust	curb
	storm	
	hit	
	the	
	curb	

Remove Stopwords

Document 1	Document 2	Document 3
slid	driving	lowbudget
ice	fast	tire
curb	dust	failed
	storm	bumping
	hit	curb
	curb	

Stem Text

Document 1	Document 2	Document 3
slid	drive	lowbudget
ice	fast	tire
curb	dust	fail
	storm	bump
	hit	curb
	curb	

Representing Text with Numbers

- To find clusters of documents or to use the information present in the documents in a predictive model, we need a numerical representation of the text.
- Using the bag of words approach, we create a document term matrix (DTM). Each document is represented by a row, and each token is represented by a column. The components of the matrix represent how many times each token appears in each document.

Document Term Matrix

Doc	bum p	curb	drive	dust	fail	fast	hit	ice	lowb udge t	slid	stor m	tire
1	0	1	0	0	0	0	0	1	0	1	0	0
2	0	1	1	1	0	1	1	0	0	0	1	0
3	1	1	0	0	1	0	0	0	1	0	0	1

Properties of the DTM

- The DTM will typically be very sparse (most entries are 0).
- Even for modestly sized applications, the full DTM will be too large to hold in memory.
- Since most entries are 0, multiplying the matrix results in several multiplications by 0, which could be omitted.
- Special software and algorithms are available for storing and manipulating sparse matrices.

• Various transformations of the term-frequency counts in the DTM have been found to be useful.

- Frequency (local) weights
 - Binary: Useful if there is a lot of variance in the lengths of the documents in the corpus.
 - Ternary/Frequency: Some researchers have found that distinguishing between terms that appear only once in a document vs. those that appear multiple time can improve results.
 - Log: Dampens the presence of high counts in longer documents without sacrificing as much information as the binary weighting scheme.

- Term (global) weights
 - Term Frequency Inverse Document Frequency (tf-idf)
 - Shrinks the weight of terms that appear in many documents while also inflating the weight of terms that appear in only a few documents
 - Sometimes makes interpretation of results more difficult, but can give better predictive performance. In practice, it is best to try different weighting schemes: there is no need to pick only one!

Inverse Document Frequency

 idf down-weights terms that appear in many documents. The idf for term t is

$$idf_t = \log_2\left(\frac{D}{df_t}\right)$$

- *D* is the number of documents in the corpus.
- df_t is the number of documents containing term *t*.
- If a term appears in every document, its idf is 0.

tf-idf

Doc	bump	curb	drive	dust	fail	fast	hit	ice	lowbu dget	slid	storm	tire
1	0	0	0	0	0	0	0	1.585	0	1.585	0	0
2	0	0	1.585	1.585	0	1.585	1.585	0	0	0	1.585	0
3	1.585	0	0	0	1.585	0	0	0	1.585	0	0	1.585

- Normalizing each document
 - The term frequency weights in each document may be normalized so that the sum of each document vector is 1. This is done by dividing the term counts in each document (each row of the DTM) by the total number of words in each document (the row sums of the DTM).
 - This can be useful when the documents are of different lengths. An illustration of how this can help: if a document D' is created by pasting two copies of a document D together, D and D' will be identical after normalization.

Normalized Term-Frequency Document Term Matrix

Doc	bump	curb	drive	dust	fail	fast	hit	ice	low bud get	slid	storm	tire
1	0	0.333	0	0	0	0	0	0.333	0	0.333	0	0
2	0	0.167	0.167	0.167	0	0.167	0.167	0	0	0	0.167	0
3	0.2	0.2	0	0	0.2	0	0	0	0.2	0	0	0.2

Frequency Weighting Summary

• There is no universally best weighting: take time to try different options.

Singular Value Decomposition

- The reduced-rank singular value decomposition (SVD) provides us with a dimensionality reduction technique.
- The SVD reduces the DTM to a (dense) matrix with fewer columns. The new (orthogonal) columns are linear combinations of the rows in the original DTM, selected to preserve as much of the structure of the original DTM as possible.

SVD Example

X1 and X2 describe the location of these points. However, they appear to fall mostly along a line.

SVD Example

Roughly, the SVD finds a new set of orthogonal basis vectors such that each additional dimension accounts for as much of the variation of the data as possible.

Singular Value Decomposition

• For a DTM X, the SVD factorization is $X \approx UDV^t$,

where

- U is a dense d by s orthogonal matrix U gives us a new rankreduced description of documents
- *D* is a diagonal matrix with nonnegative entries (the singular values).
- V^t is a dense s by w orthogonal matrix, where s is the rank of the SVD factorization (s=1,...,min(d,w)), and the superscript t indicates "transpose." V gives us a new rank-reduced description of terms.
- *d* is the number of documents
- w is the number of words
- s is the rank of the SVD factorization (s=1,...,min(d,w)).

Latent Semantic Analysis

- In natural language processing, the use of a rank-reduced SVD is referred to as latent semantic analysis (LSA).
- A popular LSA technique is to plot the corpus dictionary using the first two vectors resulting from the SVD.
- Similar words (words that either appear frequently in the same documents, or appear frequently with common sets of words throughout the corpus) are plotted together, and a rough interpretation can often be assigned to dimensions appearing in the plot.

SVD1 vs. SVD2

The words appearing close to each other appear together frequently (or appear independently with a common set of words) in documents in the corpus. We also look for themes describing the spread of terms in this plot (latent semantic analysis).

Clustering

- Once we have produced either a DTM or an SVD of a DTM, we may use the resulting numeric columns with clustering algorithms to answer questions such as
 - Which groups of documents are most similar?
 - Which documents are most similar to a particular document?
 - Which groups of terms tend to appear either together in the same documents or together with the same words?
 - Which terms are most similar to a particular term?
 - Are certain clusters of documents more strongly related to other variables (e.g. income, cost, fraudulent activity) than other clusters?

Nel corso del 2016 l'economia mondiale ha registrato un tasso di crescita media pari al +2,8%, che replica sostanzialmente la variazione (+3,1%) registrata nell'anno precedente, evidenziano ancora un maggiore dinamismo delle economie dei paesi emergenti.

Pur a fronte di un solido andamento di consumi e investimenti, negli Stati Uniti la crescita annua del PIL si e' fermata all'1,6%, con deciso rallentamento nell'ultima parte dell'anno a causa del brusco calo dell'export. Nel Regno Unito il PIL e' cresciuto dell'1,8% su base annua, smentendo le negative previsioni del dopo Brexit. Il Pil dei Paesi dell'Eurozona ha segnato una crescita pari all'1,7%, in graduale consolidamento grazie alla spinta proveniente dalle componenti interne della domanda. In tale contesto la BCE ha annunciato l'estensione anche se per quantitativi inferiori degli stimoli monetari oltre la scadenza fissata in precedenza del marzo 2017. La crescita nell'area rimane comunque differenziata: la Germania cresce in misura pari all'1,8%, la Francia all'1,1%, mentre prosegue la robusta crescita della Spagna che per il secondo anno consecutivo ha segnato un incremento pari al +3,2% rispetto all'anno precedente, grazie ai contributi della domanda interna, degli investimenti nel settore dell'edilizia e delle buone condizioni di concessione del credito a fa Word 2016 prese.

Ð

۴N

|→

🛄 Economic outloo	k MediaSe	et - JMP F		- 6	p	×
File Edit Tables	Rows	Cols Di	DE Analyze Graph Tools Add-Ins View Window Help			
: 🗃 🤮 🔛	<u>,</u> 🗈 🕻	L . [] E				
 Economic ou Text Ex of Text 	√ _		Text			
		1	General Economic trends			^
		2	During 2016 world economy has registered an average growth rate of + 2.8%, which has substantially			
		3	This still highlights a greater dynamism of the economies of emerging countries.			
		4	Despite a sound consumption and investment trend, the annual GDP growth in the United States is 1.6%,			
		5	In the United Kingdom, GDP rises by 1.8% on an annual basis, disproving the negative predictions of the			
		6	The GDP of the countries of Eurozone Has marked a growth of 1.7%, in gradual Consolidation thanks to the			
Columns (1/0)		7	In this context The ECB has announced lower amounts of monetary stimuli beyond the scope of the			
🖺 Text		8	The growth is still differentiated: The Germany grows to an equal extent 1,8%, France 1,1%, while the robust			
	-	9	Thanks to the contributions of domestic demand, the investments in the sector Construction and good			
Remo	ve	10	In 2016, Italian GDP showed a growth of 1,0%, confirming the moderate signs of recovery manifested during			
le une le	~ ~	11	Development of the legislative framework of the television industry			
amun	er	12	The main news concerning the normative scenario in Italy intervened during the 2016 are summarized			
and im	nort	13	As reported in the consolidated financial statements at 31 December 2015, with the judgment of February			
	port	14	The restitution of the sum paid (6 million euros), plus legal expenses.			
to JN	IP	15	The judgment of the Court from 20.12.16 has provided a Return the sum of € 6,561,976 including interest.			
		16	By decree of August 4, 2016 (published in Official Gazette on September 21), the Ministry of Economic			
		17	The annual Amount Set is € 1,966,990 for each network (multiplex) of the operator to be paid by 31			
Pour		18	The contribution for operators who have surrendered their ability of Transmission to third parties refer to			
All rows 117		19	The amount of the discount varies in relation to the quantity of capability Sold for every single multiplex			
Selected 0		20	That provision of dubious compatible with national and European legislation regulating the matter of			
Excluded 0		21	Technological and market now not more Existing, cannot Clearly affect the new structure of the			
Hidden 0		22	Industrial Electronics, on December 21, 2016, has provided cautionary to pay the contributions In the			
Labelled 0		23	With regard to the mode of determination of contributions due from Elettronica Industriale S.p.A. for Year			~
				1		•

📅 Economic outlook MediaSet - Text Explorer of Text - JMP Pro

Number of Terms	Number of Cases	Total Tokens	Tokens per Case	Number of Non- empty Cases	Portion Non- empty per Case			
928	117	3315	28.3333	117	1.0000			
Term ar	nd Phras	e Lists						
Term			Count		Phrase	Count	Ν	
mediaset			41			11	2	1
date			29		million euros	6	2	
capital			24		date april	5	2	
radio			21		mediaset premium	5	2	
shares			18		board of directors	4	3	
vivendi			18		shareholders meeting	4	2	
million			17		voting rights	4	2	
share			16		last part of the year	3	5	
equal			15		part of the year	3	4	-
decembe	r		13		disposal of capacity	3	3	
rti			13		mediaset espa groupña	3	3	
euro			12		espa groupña	3	2	
rights			11		last part	3	2	
july			10		mediaset espa	3	2	
year			10		mediaset españa	3	2	
group			9		million euro	3	2	
growth			9		ordinary shares	3	2	
market			9		shares equal	3	2	
amount			8		rti s p a and advertisement 4 adventures slu mediaset .	2	12	
april			8		rti s p a and advertisement 4 adventures slu mediaset .	2	11	

 \times

_

Economic outlook MediaSet - Text Explorer of Text - JMP Pro \times Text Explorer for Text Number Number Total Tokens Number of Non-Portion Nonof Terms of Cases Tokens per Case empty Cases empty per Case 925 117 3315 28.3333 117 1.0000 ⊿ Term and Phrase Lists Term Count Phrase Count N share capital mediaset 33 12 2 ^ \sim 2 29 6 date mediaset espa 2 radio 21 million euros 6 date april vivendi 18 5 2 5 equal 15 mediaset premium 2 shares 15 board of directors 4 3 shareholders meeting 2 14 4 capital voting rights 2 december 13 4 5 rti 13 last part of the year 3 part of the year 3 euro 12 4 12 disposal of capacity 3 share capital 3 million 11 mediaset espa groupña 3 3 3 10 espa groupña 2 company 3 10 2 july last part year 10 million euro 3 2 9 ordinary shares 3 2 group 3 9 shares equal 2 arowth rti s p a and advertisement 4 adventures slu mediaset ... 2 12 market 9 2 amount 8 rti s p a and advertisement 4 adventures slu mediaset ... 11 rtiisin aland advertisement 4 adventures sluimediaset anril 8 2 10 슈 🖽 - ▼

Word Cloud

Doc Singular Vector

Top Loadings by Topic

Topic	1	Topic 2		Topic	3	Topic	4	Topic	5
Term	Loading	Term	Loading	Term	Loading	Term	Loading	Term	Loading
growth	0.76226	board of directors	0.79553	share capital	0.5893	digital	0.5248	judgment	0.5074
part	0.65251	shareholders meeting	0.75188	shares	0.5856	network	0.4772	lazio	0.5046
year	0.61201	plan	0.69908	rti	0.4906	first	-0.4756	tar	0.5046
performance	0.57413	date	0.60199	capital	0.4755	television	0.4634	july	0.4275
gdp	0.57119	rights	0.58254	mediaset espa	0.4621	equal	-0.4359	court	0.4201
positive	0.55028	april	0.57188	october	0.4376	years	0.4279	radio	-0.4143
investment	0.53719	years	0.52488	acquired	0.4083	july	-0.4134	group	-0.4007
last	0.50660	exercise	0.46498	voting rights	0.3639	court	-0.3928	activitiesà	-0.3649
increase	0.46461	may	0.45551	result	0.3551	contract	-0.3923	radiomediaset	-0.3598
trend	0.44960	june	0.31596	company	0.3508	vivendi	-0.3601	contributions	0.3495
italian	0.40199	maximum	0.30784	equal	0.3506	contributions	0.3541	due	0.3461
closed	0.35532			increase	0.3217	mediaset	-0.3524	advertising	-0.3333
brexit	0.34598			brexit	-0.2911	development	0.3460	contract	0.2990
						due	0.3386		
						national	0.3258		
						economic	0.3210		

🞦 Context for Selected Rows - JMP Pro	-		\times
<u>E</u> ile <u>E</u> dit <u>T</u> ables <u>D</u> OE <u>A</u> nalyze <u>G</u> raph T <u>o</u> ols Add-I <u>n</u> s <u>V</u> iew <u>W</u> indow <u>H</u> elp			
🗄 🎇 📚 🧭 🛃 🔏 🖕 🗟 🐘 🔄 🦠 🛬 🗄 Economic outlook Media 🔻 🎽 🖕			
On date 21 June 2016 The Board of Directors of Mediaset has identified the recipie	nts of t	the	^
and loyalty in the medium-long term for the years 2015-2017, established by delibe shareholders	ration (Of the	
' meeting of 29 April 2015, and attributed to them their rights to the'Exercise 20 determining the	16,		
quantity according to the criteria laid down in the rules of the plan, approved by	Board o	of	
during the meeting of 12 May 2015. Rights attach to each Recipient the All Right'A	ssignme	nt, for	
free, of an action, to scale enjoymentAte for each The right assigned, subject to the ac	hievemen	nt of	
the performance			
[113]	cing per	r10d.	
			~
			1
			•

Text analytics task

- Again, in your task1 group
- Choose a text
- Use JMP text explorer to analyze it
- Prepare a brief report

Task 2 to get a pass/fail grade

1 GREAT NEWSL#MAGA #KAG https://t.co/GXDE2IIGGu
2 THANK YOU!! #MAGA #KAG https://t.co/or01r1cTHS
3 https://t.co/BKo27n6tmz
4 "Congressman Van Drew (D-NJ) SLAMS Democrats for 'fracturing the Nation' with Impeachment prob
5 Just finished a very good & cordial meeting at the White House with Jay Powell of the Federal R
6 Just finished a very good & amp; cordial meeting at the White House with Jay Powell of the Federal R
7that I testify about the phony Impeachment Witch Hunt. She also said I could do it in writing. Even t
8 Our Crazy, Do Nothing (where's USMCA, infrastructure, lower drug pricing & amp; much more?) Spea
9 Never has the Republican Party been so united as it is now. 95% A.R. This is a great fraud being playe
10 https://t.co/Mqj5tXaDAz
11 "All they do is bring up witnesses who didn't witness anything." @KatrinaPierson @SteveHiltonx Not
12 "The Impeachment started before he even became President." @greggutfeld @FoxNews
13 https://t.co/1Rg66Tn4uP
14 https://t.co/D66PEkuX6d
15 Where is the Fake Whistleblower?
16 https://t.co/ru2n7i2gzu
17 Republicans & amp; others must remember, the Ukrainian President and Foreign Minister both said th
18 The Crazed, Do Nothing Democrats are turning Impeachment into a routine partisan weapon. That is
19 Tell Jennifer Williams, whoever that is, to read BOTH transcripts of the presidential calls, & amp; see th
20 https://t.co/I3I01175Vh
21 Paul Krugman of @nytimes has been wrong about me from the very beginning. Anyone who has foll
22 Schiff is a Corrupt Politician! https://t.co/DDBglfIFLV

DataTrumpTweets.docx

23 .@SteveScalise blew the nasty & obnoxious Chris Wallace (will never be his father, Mike!) away o...
24 .@SteveScalese blew the nasty & obnoxious Chris Wallace (will never be his father, Mike!) away ...

25 Thanks Eric! https://t.co/6Ai7bqto3P

Argon	nento 1	Argomento 2		Argom	iento 3	Argo	mento 4	Argomento 5		
	Caricamento		Caricamento		Caricamento		Caricamento		Caricamento	
Termine	in corso	Termine	in corso	Termine	in corso	Termine	in corso	Termine	in corso	
edwards	0,74424	border	0,63691	schiff	0,56572	tariffs	0,58368	hillary	0,58160	
louisiana	0,72874	southern	0,49385	adam	0,48988	china	0,55925	crooked	0,53172	
bel	0,72672	drugs	0,44683	ukrainian	0,41966	dollars	0,53933	clinton	0,43139	
eddierispone	0,63926	wall	0,41790	whistleblower	0,39766	goods	0,52066	lover	0,41061	
insurance	0,52384	security	0,41658	transcript	0,39038	products	0,50491	dnc	0,40199	
governor	0,51783	trafficking	0,34897	call	0,39031	billion	0,50052	fbi	0,39744	
runoff	0,47008	loopholes	0,34027	fraudulently	0,37387	25	0,47360	mueller	0,38504	
saturday	0,45531	human	0,33188	ukraine	0,36185	product	0,36854	mccabe	0,37384	
taxes	0,41461	immigration	0,31876	read	0,35290	buy	0,33346	lisa	0,37358	
john	0,39798	laws	0,31558	shifty	0,35149	farmers	0,32091	collusion	0,35268	
amendment	0,39558	fix	0,30936	phone call	0,33359	agricultural	0,30934	page	0,34078	
vote	0,38273	democrats	0,29876	conversation	0,32117	remaining	0,29829	comey	0,32179	
republican	0,37721	mexico	0,28726	perfect	0,27216	deal	0,28796	deleted	0,31924	
nd	0,37287	crime	0,28340	reading	0,26482			steele	0,30419	

Argor	mento 6	Argo	nento 7	Argon	nento 8	Argo	mento 9	Argo	mento 10
	Caricamento		Caricamento		Caricamento		Caricamento		Caricamento
Termine	in corso	Termine	in corso	Termine	in corso	Termine	in corso	Termine	in corso
reserve	0,59949	fake	0,58219	vets	0,61021	kim	0,85027	turkey	0,57618
rates	0,59932	news	0,55081	endorsement	0,57610	jong	0,83155	kurds	0,55861
inflation	0,54620	media	0,50002	amendment	0,46005	un	0,83155	wars	0,51127
fed	0,49679	corrupt	0,28261	military	0,44581	north korea	0,71666	isis	0,50448
interest	0,49279	post	0,26236	loves	0,44549	chairman	0,46030	endless	0,47681
federal	0,47777	story	0,25991	complete	0,41221	summit	0,41484	syria	0,43427
tightening	0,47135	cnn	0,25308	bishop	0,35811	meeting	0,33783	fighters	0,39697
quantitative	0,44393	sources	0,25029	mattbevin	0,35210	vietnam	0,32744	caliphate	0,34032
powell	0,41615	times	0,23751	strong	0,35181	nuclear	0,31247	czptured	0,33291
jay	0,39674	lamestream	0,21789	kentucky	0,33150	forward	0,28862	secured	0,32840
dollar	0,33229	reporting	0,21251	dan	0,32711			soldiers	0,32651
raised	0,32911	totally	0,21223	total	0,32581				
low	0,32521	even	0,21188	vote	0,31553				
				crime	0,31467				400 62070-00
				second	0,30954		\checkmark		another help
							-		📖 📲 media

republicans even going china;

istration working america

blican also

election like jobs know

made make news fake good

things ^{us} job

[,] time trump

nilitary shama american

want much fact w state security

collusion towandfriends witch report dollars party including me money crocked with hillary when

⊿ Diagrammi SVD

22

20 18 Vettore singolar -2 -4 -6 -8 -10 -12 -14 -16 -30 -25 -20 -15 -10 -5 10 0 5 Vettore singolare doc. 1

> crime congress nothing

ust big yea

many we

left never today democrat

ρς

Mostra testo

Louisiana, get out and Vote Early for @EddieRispone as your next Governor. Lower Taxes and car insurance.

Will protect your 2nd Amendment. John Bel Edwards is always fighting our MAGA Agenda. Wants to raise your

taxes and car insurance to the sky. Vote for Republican Eddie R! [236]

Big Rally in Louisiana on Friday night. Must force a runoff with a Liberal Democrat Governor, John Bel Edwards, who has let your Taxes and Car Insurance get too high, and will never protect your 2nd Amendment.

Vote for one of our two great Republicans on Saturday, force a runoff! [719]

hous

deal

wall

ears mue
Task 3 to get a pass/fail grade

- 1. Develop a model to predict NPL
- 2. Explain what you did
- 3. Explain what you learned

Case: German Credit

The German Credit data set (available at ftp.ics.uci.edu/pub/machine-learning-databases/statlog/) contains observations on 30 variables for 1000 past applicants for credit. Each applicant was rated as "good credit" (700 cases) or "bad credit" (300 cases).

New applicants for credit can also be evaluated on these 30 "predictor" variables. We want to develop a credit scoring rule that can be used to determine if a new applicant is a good credit risk or a bad credit risk, based on values for one or more of the predictor variables. All the variables are explained in Table 1.1. (Note: The original data set had a number of categorical variables, some of which have been transformed into a series of binary variables so that they can be appropriately handled by XLMiner. Several ordered categorical variables have been left as is; to be treated by XLMiner as numerical. The data has been organized in the spreadsheet German CreditLxls)

Var.#	Variable Name	Description	Variable Type	Code Description
1.	OBS#	Observation No.	Categorical	Sequence Number in data set
2	CHK_ACCT	Checking account status	Categorical	0:<0DM
				t: 0 ⇔< 200 DM 2:⇒ 200 DM 3: no checking account
3.	DURATION	Duration of credit in months	Numerical	-
4.	HISTORY	Credit history	Categorical	0: no cradits takan

GermanCredit Data.jmp

Task 1: Information quality assessment of one case study

Task 2: Trump tweets text analysis

ron@kpa-group.com 1/3/2020

Task 3: German credit data analysis

Thank you for your attention