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Lecture 1 - 09-03-2020

1.1 Introduction of the course

In this course we look at the principle behind design of Machine learning.
Not just coding but have an idea of algorithm that can work with the data.

We have to �x a mathematical framework: some statistic and mathemat-
ics.
Work on ML on a higher level
ML is data inference: make prediction about the future using data about the
past

� Clustering → grouping according to similarity

� Planning → (robot to learn to interact in a certain environment)

� Classi�cation → (assign meaning to data) example: Spam �ltering
I want to predict the outcome of this individual or i want to predict
whether a person click or not in a certain advertisement.

1.2 Examples

Classify data into categories:

� Medical diagnosis: data are medical records and categories are diseases

� Document analysis: data are texts and categories are topics

� Image analysts: data are digital images and for categories name of
objects in the image (but could be di�erent).

� Spam �ltering: data are emails, categories are spam vs non spam.

� Advertising prediction: data are features of web site visitors and cate-
gories could be click/non click on banners.

Classi�cation : Di�erent from clustering since we do not have semanti-
cally classi�cation (spam or not spam) → like meaning of the image.
I have a semantic label.
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Clustering: i want to group data with similarity function.

Planning: Learning what to do next

Clustering: Learn similarity function

Classi�cation: Learn semantic labels meaning of data

Planning: Learn actions given state

In classi�cation is an easier than planning task since I'm able to make pre-
diction telling what is the semantic label that goes with data points.
If i can do classi�cation i can clustering.
If you do planning you probably classify (since you understanding meaning
in your position) and then you can also do clustering probably.
We will focus on classi�cation because many tasks are about classi�cation.

Classify data in categories we can image a set of categories.
For instance the tasks:
`predict income of a person'
`Predict tomorrow price for a stock'
The label is a number and not an abstract thing.

We can distinguish two cases:

� The label set → set of possible categories for each data point. For
each of this could be �nite set of abstract symbols (case of document
classi�cation, medical diagnosis). So the task is classi�cation.

� Real number (no bound on how many of them). My prediction will be
a real number and is not a category. In this case we talk about a task
of regression.

Classi�cation: task we want to give a label prede�ned point in abstract cat-
egories (like YES or NO)
Regression: task we want to give label to data points but this label are num-
bers.

When we say prediction task: used both for classi�cation and regression
tasks.
Supervised learning: Label attached to data (classi�cation, regression)
Unsupervised learning: No labels attached to data (clustering)
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In unsupervised the mathematical modelling and way algorithm are score
and can learn from mistakes is a little bit harder. Problem of clustering is
harder to model mathematically.
You can cast planning as supervised learning: i can show the robot which is
the right action to do in that state. But that depends on planning task is
formalised.
Planning is higher level of learning since include task of supervised and un-
supervised learning.

Why is this important ?
Algorithm has to know how to given the label.
In ML we want to teach the algorithm to perform prediction correctly. Ini-
tially algorithm will make mistakes in classifying data. We want to tell
algorithm that classi�cation was wrong and just want to perform a score.
Like giving a grade to the algorithm to understand if it did bad or really
bad. So we have mistakes!

Algorithm predicts and something makes a mistake → we can correct it.
Then algorithm can be more precisely. We have to de�ne this mistake.
Mistakes in case of classi�cation:

� If category is the wrong one (in the simple case). We have a binary
signal where we know that category is wrong.

How to communicate it?
We can use the loss function: we can tell the algorithm whether is wrong or
not.

Loss function: measure discrepancy between `true' label and predicted la-
bel.
So we may assume that every datapoint has a true label. If we have a set of
topic this is the true topic that document is talking about. It is typical in
supervised learning.

How good the algorithm did?

`(y, ŷ) ≤ 0

were y is true label and ŷ is predicted label

6



We want to build a spam �lter were 0 is not spam and 1 is spam and that's
a Classi�cation task:

`(y, ŷ =

{
0, if ŷ = y

1, if ŷ 6= y

The loss function is the �interface� between algorithm and data.
So algorithm know about the data through the loss function.
If we give a useless loss function the algorithm will not perform good: is
important to have a good loss function.

1.2.1 Spam �ltering

Y = {spam, no spam}
Binary classi�cation |Y | = 2
We have two main mistake:

� False positive: y =non spam, ŷ = spam

� False negative: y =spam, ŷ = no spam

It is the same mistake? No if i have important email and you classify as spam
that's bad and if you show me a spam than it's ok.
So we have to assign a di�erent weight.

` (y, ŷ) =


2 if FP

1 if FN

0 otherwise

We have to take more attention on positive mistake
Even in binary classi�cation, mistakes are not equal.
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Lecture 2 - 07-04-2020

2.1 Argomento

Classi�cation tasks
Semantic label space Y
Categorization Y �nite and
small Regression Y appartiene ad |R
How to predict labels?
Using the lost function → ..
Binary classi�cation
Label space is Y = -1, +1
Zero-one loss

`(y, ŷ =

{
0, if ŷ = y

1, if ŷ 6= y

FP ŷ = 1, y = −1
FN ŷ = −1, y = 1

Losses for regression?
y, and ŷ ∈ R,
so they are numbers!
One example of loss is the absolute loss: absolute di�erence between numbers

2.2 Loss

2.2.1 Absolute Loss

`(y, ŷ = |y − ŷ| ⇒ absolute loss

� DISEGNO �

Some inconvenient properties:

� ...

� Derivative only two values (not much informations)
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2.2.2 Square Loss

`(y, ŷ = (y − ŷ)2 ⇒ square loss

� DISEGNO �
Derivative :

� more informative

� and di�erentible

Real numbers as label → regression.
Whenever taking di�erence between two prediction make sense (value are
numbers) then we are talking about regression problem.
Classi�cation as categorization when we have small �nite set.

2.2.3 Example of information of square loss

`(y, ŷ) = (y − ŷ)2 = F (y)
F ′(ŷ) = −2 · (y − ŷ)

� I'm under sho or over and how much

� How much far away from the truth

`(y, ŷ) = |y − ŷ| = F (y′) · F ′(y) = Sign(y − ŷ)

Question about the future
Will it rain tomorrow?
We have a label and this is a binary classi�cation problem.
My label space will be Y = �rain�, �no rain�
We don't get a binary prediction, we need another space called prediction
space (or decision space).
Z = [0, 1]
ŷ ∈ Z ŷ is my prediction of rain tomorrow
ŷ = P(y = ”rain”) → my guess is tomorrow will rain (not sure)

y ∈ Y ŷ ∈ Z
quadHow can we manage loss?
Put numbers in our space
{1, 0} where 1 is rain and 0 no rain
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I measure how much I'm far from reality.
So loss behave like this and the punishment is gonna go linearly??

26..

However is pretty annoying. Sometime I prefer to punish more so i going
quadratically instead of linearly.
There are other way to punish this.
I called logarithmic loss
We are extending a lot the range of our loss function.

`(y, ŷ) = |y − ŷ| ∈ |0, 1| `(y, ŷ) = (y − ŷ)2 ∈ |0, 1|

If i want to expand the punishment i use logarithmic loss

`(y, ŷ =

{
ln 1

ŷ
, if y = 1(rain)

ln 1
1−ŷ , if y = 0(no rain

F (ŷ)→ can be 0 if i predict with certainty
If ŷ = 0.5 `(y, 1

2
) = ln2 constant losses in each prediction

limŷ→0+ `(1, ŷ) = +∞
We give a vanishing probability not rain but tomorrow will rain.
So this is +∞
limŷ→1− `(0, ŷ) = +∞

The algorithm will be punish high more the prediction is not real. Algorithm
will not get 0 and 1 because for example is impossible to get a perfect pre-
diction.
This loss is useful to give this information to the algorithm.

Now we talk about labels and losses

2.2.4 labels and losses

Data points: they have some semantic labels that denote some true about
this data points and we want to predict this labels.
We need to de�ne what data points are: number? Strings? File? Typically
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they are stored in database records
They can have very precise structure or more homogeneously structured
A data point can be viewed as a vector in some d dimensional real space. So
it's a vector of number

RdX = (x1, x2..., xd) ∈ Rc

Image can be viewed as a vector of pixel values (grey scale 0-255).
I can use geometry to learn because point are in my Euclidean space. Data
can be represented as point in Euclidean space. Images are list of pixel that
are pretty much the same range and structure (from 0 to 255). It's very
natural to put them in a space.

Assume X can be a record with heterogeneous �elds:
For example medical records, we have several values and each �elds has his
meaning by it's own. (Sex, weight, height, age, zip code)
Each one has a di�erent range, in some cases is numerical but something
have like age ..
Does have any sense to see a medical record as a point since coordinates have
di�erent meaning.
Fields are not comparable.
This is something that you do: when you want to solve some inference you
have to decide which are the label and what is the label space and we have
to encode the data points.

Data algorithm expect some homogenous interface. In this case algorithm
has to build records with di�erent values of �elds.
This is something that we have to pay attention too.
You can always each range of values in number. So ages is number, sex you
can give 0 and 1, weight number and zip code is number.
How ever geometry doesn't make sense since I cannot compare this coordi-
nates.
Linear space i can sum up as vector: i can make linear combination of vec-
tors.
Inner product to measure angles! (We will see in linear classi�er).

I can scramble the number of my zip code.
So we get problems with sex and zip code

Why do we care about geometry? I can use geometry to learn.
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However there is more to that, geometry will carry some semantically infor-
mation that I'm going to preserve during prediction.
I want to encode my images as vectors in a space. Images with dog.....

PCA doesn't work because assume we encode in linear space.
We hope geometry will help us to predict label correctly and sometimes i
hard to convert data into geometry point.
Example of comparable data: images, or documents.
Assume we have documents with corpus (set of documents).
Maybe in English and talk about di�erent thing and di�erent words.
X is a document and i want to encode X into a point �x in bidimensional
space.
There is a way to encode a set of documents in point in a �xed dimensional
space in such way it make sense this coordinate are comparable.
I can represent �elds with [0,1] for Neural network for example. But they
have no geometrical meaning

2.2.5 Example TF(idf) documents encoding

TF encoding of docs.

1. Extract where all the words from docs

2. Normalize words (nouns, adjectives, verbs ...)

3. Build a dictionary of normalized words

Doc x = (x1, .., xd)
I associate a coordinate for each word in a dictionary.
d = number of words in dictionary
I can decide that
xi = 1 If i-th word of dictionary occurs in doc.
xi = 0 Else

Xi number of time i-th word occur in doc.
Longer documents will have higher value of coordinates that are not zero.
Now i can do the TF encoding in which xi = frequency with which i-th word
occur in dictionary.
You cannot sum dog and cat but we are considering them frequencies so we
are summing frequency of words.
This encoding works well in real words.
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I can choose di�erent way of encoding my data and sometime i can encode
a real vector

I want

1. A predictor f : X −→ Y (in weather X −→ Z

2. X is our data space (where points live)

3. X = Rd images

4. X = X1x...xXd Medical record

5. ŷ = f(x) predictor for X

(x, y)

We want to predict a label that is much closer to our label. How?
Loss function: so this is my setting and is called and example.
Data point together with label is a �example�
We can get collection of example making measurements or asking people. So
we can always recover the true label.
We want to replace this process with a predictor (so we don't have to bored
a person).
y is the ground truth for x → mean reality!
If i want to predict stock for tomorrow, i will wait tomorrow to see the ground
truth.
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Lecture 3 - 07-04-2020

Data point x represented as sequences of measurement and we called this
measurements features or attributes.

x = (x1, ..., xd) x1 feature valuex ∈ Xd X = Rd X = X1·x·...·Xd·x

Label space Y
Predictor f : X → Y

Example (x, y) y is the label associated with x
(→ y is the correct label, the ground truth)

Learning with example (x1, y1)...(xm, ym) training set

Training set is a set of examples with every algorithm can learn.......

Learning algorithm take training set as input and produces a predictor as
output.

......DISEGNO

With image recognition we use as measurement pixels.
How do we measure the power of a predictor?
A learning algorithm will look at training set, algorithm and generate the
predictor. Now the problem is verify the score.
Now we can consider a test set collection of example

Test set (x′1, y
′
1)...(x′n, y

′
n)

Typically we collect big dataset and then we split in training set and test set
randomly.
Training and test are typically disjoint
How we measure the score of a predictor? We compute the average loss.
The error is the average loss in the element in the test set.

Test error
1

n
·

n∑
t=1

`(f(x′t), y
′)

In order to simulate we collect the test set and take the average loss of the
predictor of the test set. This will give us idea of how the..
Proportion of test and train depends in how big the dataset is in general.
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Our Goal: A learning algorithm `A' must output f with a small test error.
A does not have access to the test set. (Test set is not part of input of A).
Now we can think in general on how a learning algorithm should be design.
We have a training set so algorithm can say:
`A' may choose f based on performance on training set.

Training error ˆ̀(f) =
1

m
·
m∑
t=1

`(f(xt), yt)

Given the training set (x1, ..., xm)(y1, ..., ym)
If ˆ̀(f) for same f, then test of f is also small
Fix F set of predictors output f̂

f̂ = arg min ˆ̀(f)f ∈ F

This algorithm is called Empirical Risk Minimiser (ERM)
When this strategy (ERM) fails?
ERM may fails if for the given training set there are:
Many f ∈ F with small ˆ̀(f), but not all of them have small test error

There could be many predictor with small error but some of them may have
big test error. Predictor with the smallest training error doesn't mean we
will have the smallest test error.
I would like to pick f ∗ such that:

f ∗ = arg min
1

n
·
m∑
t=1

`(f(x′t), yt) f ∈ F

where `(f(x′t), yt) is the test error
ERM works if f ∗such that f ∗ = arg min ˆ̀(f) f ∈ F
So minimising training and test????? Check videolecture
We can think of f as �nite since we are working on a �nite computer.
We want to see why this can happen and we want to formalise a model in
which we can avoid this to happen by design: We want when we run ERM
choosing a good predictor with ...... PD
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3.1 Over�tting

We called this as over�tting: speci�c situation in which `A' (where A is the
learning algorithm) over�ts if f output by A tends to have a training error
much smaller than the test error.
A is not doing his job (outputting large test error) this happen because test
error is misleading.
Minimising training error doesn't mean minimising test error. Over�tting is
bad.
Why this happens?
This happen because we have noise in the data

3.1.1 Noise in the data

Noise in the data: yt is not deterministically associated with xi.

Could be that datapoint appears more times in the same test set. Same
datapoint is repeated actually I'm mislead since training and dataset not co-
incide. Minimising the training error can take me away from the point that
minimise the test error.
Why this is the case?

� Some human in the loop: label assigned by people.(Like image con-
tains certain object but human are not objective and people may have
di�erent opinion)

� Lack of information: in weather prediction i want to predict weather
error. Weather is determined by a large complicated system. If i have
humidity today is di�cult to say for sure that tomorrow will rain.

When data are not noise i should be ok.
Labels are not noisy

Fix test set and trainign set.

∃f ∗ ∈ F y′t = f ∗(x′t) ∀(x′t, y′t) in test set

yt = f+(xt) ∀(xt, yt) in training set
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Think a problem in which we have 5 data points(vectors) :
~x1, ... ~x5 in some space X
We have a binary classi�cation problem Y = {0, 1}
{ ~x1, ..., ~x5} ∈ X Y = {0, 1}

F contains all possible calssi�er 25 = 32 f : {x1, ..., x5} → {0, 1}

Example
x1 x2 x3 x4 x5

f 0 0 0 0 0
f
′

0 0 0 0 1
f ” .. .. .. .. ..

Training set x1, x2, x3 f+

Test set x4, x5 f ∗

4 classi�er f ∈ F will have ˆ̀(f) = 0

(x1, 0) (x2, 1) (x3, 0)
(x4, ?) (x5, ?)
f ∗(x4) f ∗(x5)
If not noise i will have deterministic data but in this example (worst case)
we get problem.
I have 32 classi�er to choose: i need a larger training set since i can't distin-
guish predictor with small and larger training(?) error. So over�tting noisy
or can happen with no noisy but few point in the dataset to de�ne which
predictor is good.

3.2 Under�tting

`A' under�ts when f output by A has training error close to test error but
they are both large.
Close error test and training error is good but the are both large.

A ≡ ERM , then A unde�ts if F is too small→ not containing too much predictors

In general, given a certain training set size:
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� Over�tting when |F | is too large (not enough points in training set)

� Under�tting when |F | is too small

Proportion predictors and training set

|F |, i need ln|F | bits of info to uniquely determine f ∗ ∈ F

m >> ln|F | when |F | <∞where m is the size of traning set

3.3 Nearest neighbour

This is completely di�erent from ERM and is one of the �rst learning algo-
rithm. This exploit the geometry of the data. Assume that our data space
X is:
X ≡ Rd x = (x1, ..., xd) y − {−1, 1}
S is the traning set (x1, y1)...(xm, ym)
xt ∈ Rd yt ∈ {−1, 1}

d = 2→ 2-dimensional vector

....� DISEGNO �...
where + and - are labels

Point of test set
If i want to predict this point?
Maybe if point is close to point with label i know then. Maybe they have the
same label.
ŷ = + or ŷ = −

.....� DISEGNO � ...
I can came up with some sort of classi�er.

Given S training set, i can de�ne hNN X → {−1, 1}
hNN(x) = label yt of the point xt in S closest to X
(the breaking rule for ties)
For the closest we mean euclidian distance
X = Rd
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‖x− xt‖ =

√√√√ d∑
e=1

(xe − xt, e)2

ˆ̀(hNN) = 0

hNN(xt) = yt

training error is 0!
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Lecture 4 - 07-04-2020

We spoke about Knn classi�er with voronoi diagram

ˆ̀(hNN) = 0 ∀Traning set

hNN predictor needs to store entire dataset.

4.1 Computing hNN

Computing hNN(x) requires computing distances between x and points in
the traning set.

Θ(d) time for each distance

NN → 1-NN
We can generalise NN in K-NN with k = 1, 3, 5, 7 so odd K
hk−NN(x) = label corresponding to the majority of labels of the k closet point
to x in the training set.

How big could K be if i have n point?
I look at the k closest point
When k = m?
The majority, will be a constant classi�er hk−NN is constant and corresponds
to the majority of training labels
Training error is always 0 for hNN , while for hk−NN will be typically > 0,
with k > 1
Image: one dimensional classi�er and training set is repeated. Is the plot of
1-NN classi�er.
Positive and negative. K = 1 error is 0.
In the second line we switch to k = 3. Second point doesn't switch and third
will be classify to positive and we have training mistake.
Switches corresponds to border of voronoi partition.

KNN For multiclass classi�cation

(|Y | > 2) for regression Y ≡ R

Average of labels of K neighbours → i will get a number with prediction.
I can weight average by distance
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You can vary this algorithm as you want.

Let's go back to Binary classi�cation.
The k parameter is the e�ect of making the structure of classi�er more com-
plex and less complex for small value of k.

�.. DISEGNO ..�
Fix training set and test set
Accury as oppose to the error

Show a plot. Training error is 0 at k = 0.
As i go further training error is higher and test error goes down. At some
point after which training and set met and then after that training and test
error goes up (accuracy goes down).
If i run algorithm is going to be over�tting: training error and test error is
high and also under�tting since testing and training are close and both high.
Trade o� point is the point in x = 23 (more or less).
There are some heuristic to run NN algorithm without value of k.

History

� KNN : from 1960 → X ≡ Rd

� Tree predictor: from 1980

4.2 Tree Predictor

If a give you data not welled de�ned in a Euclidean space.
X = X1 · x · ... ·Xd · x Medical Record
X1 = {Male, Female}
X2 = {Y es,No}
so we have di�erent data

I want to avoid comparing xi with xj, i 6= j
so comparing di�erent feature and we want to compare each feature with
each self. I don't want to mix them up.
We can use a tree!
I have 3 features:

� outlook = {sunny, overcast, rain}
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� humidity = {[0, 100]}

� windy = {yes, no}

... � DISEGNO � ...

Tree is a natural way of doing decision and abstraction of decision process of
one person. It is a good way to deal with categorical variables.
What kind of tree we are talking about?
Tree has inner node and leaves. Leaves are associated with labels (Y ) and
inner nodes are associated with test.

� Inner node → test

� Leaves → label in Y

Test if a function f (NOT A PREDICTOR!)
Test fiXi → {1, ..., k}
where k is the number of children (inner node) to which test is assigned
In a tree predictor we have:

� Root node

� Children are ordered(i know the order of each branch that come out
from the node)

X = {Sunny, 50%, No} → are the parameters for {outlook.humidity, windy}

fi =

{
1, if x2 ∈ [30%, 60%]

2, if otherwise

where the numbers 1 and 2 are the children
A test is partitioning the range of values of a certain attribute in a number
of elements equal to number of children of of the node to which the test is
assigned.
hT (x) is always the label of a leaf of T
This leaf is the leaf to which x is routed
Data space for this problem (outlook,..) is partitioned in the leaves of the
tree. It won't be like voronoi graph. How do I build a tree given a training
set? How do i learn a tree predictor given a training set?

� Decide tree structure (how � many node, leaves ecc..)

� Decide test on inner nodes
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� Decide labels on leaves

We have to do this all together and process will be more dynamic. For sim-
plicity binary classi�cation and �x two children for each inner node.

Y = {−1,+1}
2 children for each inner node

What's the simplest way?
Initial tree and correspond to a costant classi�er

� DISEGNO �

Majority of all example

� DISEGNO �

(x1, y1)...(xm, ym)
xt ∈ X yt ∈ {−1,+1}
Training set S = {(x, y) ∈ S, x is routed to `}
S+
`

� DISEGNO �

S` and S
′
` are given by the result of the test, not the labels and ` and `′.
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Lecture 5 - 07-04-2020

5.1 Tree Classi�er

Supposed we groped a tree up to this point and we are wandering how to
grow it.
S Training set (x1, y1)...(xm, ym), x1 ∈ X

� DISEGNO

S` ≡ {(x1, y1)xt is router to `}

y1 ∈ {−1, 1}

S+
` ≡ {(x1, y1) ∈ S` : yt = +1}

S−` ≡ {(x1, y1) ∈ S` : yt = −1} S+
` ∩ S

−
` ≡ 0 S` ≡ S+

` ∪ S
−
`

N` = |S`| N+
` = |S+

` | N−` = |S−` |

N` = N−` +N+
`

leaf ` classi�es all traning example (S`)

Y` =

{
+1, If N+

` ≥ N−`
−1, If otherwise

` makes a mistake on min{N+
` , N

−
` } example in S`

ˆ̀(hT ) =
1

m
·
∑
`

min{N
+
`

N`

,
N−`
N`

} ·N` =

=
1

m
·
∑
`

ψ · (N`+

N`

) ·N` −→ N+
`

N`

= 1− N`

N`??

where ψ(a) = min{a, 1− a} a ∈ [0, 1]
I want to replace inner node with other leaves.
� DISEGNO �

How is traning error going to change? (when i replace inner nodes with
other leaves)
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I'm hoping my algorithm is not going to over�t (if training error goes to 0
also testing error goes to 0).

5.2 Jensen's inequality

If ψ is a concave function −→ (like log or 2
√
.. )

Also ψ is a function that map 0 to 1, −→ ψ [0, 1]→ R

ψ(α ·a+(1−α) ·b) ≥ α ·ψ(a)+(1−α) ·ψ(b) Also 2° derivative is negative

� DISEGNO �

ˆ̀(hT ) =
1

m
·
∑
`

ψ(
N+
`

N`

) ·N`

Look a single contribution fo a leaf ` to training error

ψ(
N+
`

N`

) ·N` = ψ(
N ′+`
N ′`
· N

′
`

N`

+
N`”

+

N`”
· N`”

N`

) ·N`

where
N ′`
N`

= α and N`”
N`

= 1−α so
N ′`
N`

+ N`”
N`

= 1 −→ α+ 1−α = 1

N+
`′ +N+

`” = N`

I want to check function min concave between 0 and 1.

min(0, 1) = 0 ψ(a) = min(α, 1− α)

� DISEGNO �

This is a concave function and now I can apply Jensen's inquality

ψ(
N+
`

N`

) ·N` ≥ (
N ′`
N`

· ψ(
N ′+`
N ′`

) +
N`”

N`

· ψ(
N`”

+

N`”
)) ·N` =

= ψ(
N ′+`
N ′`

) ·N ′` + ψ(N`”
+

N`”
) ·N`”

This are the contribuion of `′ and `” to the training error
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Every time i split my tree my training error is never going to increase since
we have a concave function.
Whenever I'm growing my tree training error is going to be smaller.

Every time a leaf is expanded the training error never goes up.
(Hopelly will go down)
I'll should always grow the tree by expanding leave that decrease the training
error as much as possible.
If i take the e�ort of growing the tree i should get bene�ts. I can imaging
that if i grow the tree at random my training error is going to drop down
error (but maybe will derive over�tting).
For now is just an intuition since we will introduced statistical learning model.

Could be complicated and tree big may have 100 leave and there could be
many way of associating a test with that leaves.
I can spent a lot of time to select which leave is the best promising to split.

� Grow the tree by expanding leave that decrease the training error as
much as possible

� In general we can assume:
greedy algorithm at each step pick the pair leaf and test that cause
(approximative) the largest decrease in training error

In practise we want optimise this all the way since it's time expensive. That's
the approximately since we are not every time sure.

� MANCA PARTE �
� IMMAGINE �

p = 0.8 q = 1 r = 1 α = 60%
Net Change in number of mistakes

ψ(p)− (α · ψ(q) + (1− α) · ψ(r)) =

` − `′ + `”

Fraction of example miss classi�ed `− error `′+ error `”

= 0.2− (
1

2
· 0.4 +

1

2
· 0) = 0
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� DISEGNO �

Idea is to replace minimum function with convex combination.

ψ(α) = min {α, 1− α} ψ(a) ≥ ψ(α)
ψ1(α) = 2 · α · (1− α) −→ GNI

ψ2(α) = −α
2
· lnα− 1−α

2
· ln(1− α) −→ ENTROPY

ψ3(α) =
√
α · (1− α)

All this functions has this shape (concave???)
� DISEGNO �
In practise Machine Learning algorithm use GNI or entropy to control the
split

5.3 Tree Predictor

� Multi class classi�cation |Y | > 2 −→ take majority

� Regression Y = R −→ take average of labels in S`

I still take majority among di�erent classes.
Take average of labels in S`

Unless
N+

`

N`
∈ 0, 1 ∀ leaves `, ˆ̀(hT ) > 0

Unless leaves are "pured", the training error will be bigger than 0.

In general, i can always write ˆ̀(ht) to 0 by growing enough the tree un-
less there are x1 in the Time Series such that (xt, yt)(xt, y

′
t) with yt 6= y′t both

occur.
� DISEGNO �-

if(x1 = α) ∧ (x2 =≥ α) ∨ (x1 = b) ∨ (x1 = c) ∧ (x3 = y)

then predict 1

else
then predict -1

� Picture of tree classi�er of iris dataset. �
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I'm using due attribute at the time.
Each data point is a �ower and i can measure how petal and sepal are long.
I can use two attribute and i test this two. I can see the plot of the tree
classi�er (second one) making test splitting data space into region that has
this sort of �blackish� shape ( like boxes: blue box, red box, yellow box)
A good exercise in which I want to reconstruct the tree given this picture.

5.4 Statistical model for Machine Learning

To understand Tree classi�er, nearest neighbour and other algorithm...
It's important to understand that the only way to have a guideline in which
model to choose.

This mathematical model are developed to learning and choose
learning algorithm.

Now let start with theoretical model.

� How example (x, y) are generated to create test set and training set?
We get the dataset but we need to have a mathematical model for
this process. (x, y) are drawn from a �xed but unknown probability
distribution on the pairs X and Y (X data space, Y label set o label
space)

� Why X should be random?
In general we assumed that not all the x in X are equally likely to be
observed. I have some distribution over my data point and this said
that I'm most like to get a datapoint to another.

� How much label?
Often labels are not determined uniquely by their datapoints because
labels are given by human that have their subjective thoughts and also
natural phenomena. Labels are stochastic phenomena given a data-
point: i will have a distribution.

We're going to write (in capital) (X, Y ) since they are random variable drawn
from D on X ·Y A dataset (X1, Y1)...(Xm, Ym) they are drawn independently
from D (distribution on examples)
When I get a training the abstraction of process collecting a training set
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D is a joint probability distribution over X · Y
where Dx is the marginal over X → Dy|x (conditional of Y given X).
I can divided my draw in two part. I draw sample and label from condi-
tional.??
Any dataset ( training or test ) is a random sample (campione casuale) in
the statistical sense −→ so we can use all stastical tools to make inference.
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Lecture 6 - 07-04-2020

(X, Y ) We random variables drawn iid from D on X ·Y −→ where D is �xed
but unknown

Independence does not hold. We do not collect datapoints to an independent
process.
Example: identify new article and i want to put categories. The feed is
highly depend on what is happening in the world and there are some news
highly correlated. Why do we make an assumption that follows reality? Is
very convenient in mathematical term. If you assume Independence you can
make a lot of process in mathematical term in making the algorithm.
If you have enough data they look independent enough. Statistical learn-
ing is not the only way of analyse algorithms �> we will see in linear ML
algorithm and at the end you can use both statistical model s

6.1 Bayes Optimal Predictor

f ∗ : X → Y

f ∗(x) = argminE [ `(y, ŷ)|X = x ] ŷ ∈ Y

In general Y given X has distribution Dy|X = x
Clearly ∀ h X → Y

E [ `(y, f ∗(x))|X = x ] ≤ E [ `(y, h(x)|X = x ]

X, Y E [Y |X = x ] = F (x) −→ ConditionalExpectation

E [E [Y |X ] ] = E(Y )

Now take Expectation for distribution

E [ `(y, f ∗(x)) ] ≤ [E(`(y, h(x)) ]

where risk is smaller in f ∗

I can look at the quantity before
ld Bayes risk −→ Smallest possible risk given a learning problm

ld(f
∗) > 0 because y are still stochastic given X
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Learning problem can be complem → large risk

6.1.1 Square Loss

`(y, ŷ = (y − ŷ)2

I want to compute bayes optimal predictor
ŷ, y ∈ R

f ∗(x) = argminE
[

(y − ŷ)2|X = x
]

= ŷ ∈ R

we use E [X + Y ] = E[X]+E[Y ] = argminE
[
y2 + ŷ2 − 2 · y · ŷ2|X = x

]
=

Dropping y2 i remove something that is not important for ŷ

= argmin(E
[
y2|X = x

]
+ ŷ2 − 2 · ŷ · E [ y|X = x ]) =

= argmin(ŷ2 − 2 · ŷ · E [ y|X = x ]) =

Expectation is a number, so it's a constant
Assume � = y2

argmin
[
�+ ŷ2 + 2 · ŷ · E [Y |X = x ]

]
where redG(ŷ) is equal to the part between [...]

dG(ŷ)

dŷ
= 2 · ŷ − 2 · E [ y|X = x ] = 0 −→ So setting derivative to 0

� DISEGNO OPT CURVE �

G′(ŷ) = ŷ2 − 2 · b · ŷ

ŷ = E [ y|X = x ] f ∗(x) = E [ y|X = x ]

Square loss is nice because expected prediction is ...
In order to predict the best possibile we have to estimate the value given
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data point.

E
[

(y − f ∗(x))2|X = x
]

=

= E
[

(y − E [ y|X = x ])2|X = x
]

= V ar [Y |X = x ]

6.1.2 Zero-one loss for binary classi�cation

Y = {−1, 1}

`(y, ŷ) = I{ŷ 6= y} IA(x) =

{
1 x ∈ A
0 x 6∈ A

If ŷ 6= y true, indicator function will give us 1, otherwise it will give 0

D on X · Y D∗x Dy|x = D

Dx η : X −→ [ 0, 1 ] η = P (y = 1|X = x)

D  (Dx, η) −→ Distribution 0-1 loss

X v Dx −→ Where v mean "draw from" and Dx is marginal distribution

Y = 1 with probability η(x)

Dy|x = {η(x), 1− η(x)}

Suppose we have a learning domain
� DISEGNO �
where η is a function of x, so i can plot it
η will te me Prob(x) =
η tells me a lot how hard is learning problem in the domain
η(x) is not necessary continous
� DISEGNO �

η(x) ∈ {0, 1} y is always determined by x

32



How to get f ∗ from the graph?

f+ : X → {−1, 1}

Y = {−1,+1}

� DISEGNO �
===============================
MANCA ROBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
==============================

f ∗(x) = argminE [ `(y, ŷ)|X = x ] = −→ ŷ ∈ {−1,+1}

= argminE [ I{ŷ = 1} · I{Y = −1}+ I{ŷ = −1} · I{y = 1} |X = x ] =

we are splitting wrong cases

= argmin ( I{ŷ = 1}·E [ I{Y = −1}|X = x ]+I{ŷ = −1}·E [ I{y = 1} |X = x ] ) = >

We know that:

E [ I{y = −1} |X = x ] = 1 · P(ŷ = −1|X = x) + 0 · P(y = 1|X = x) =

P(x = −1|X = x) = 1− η(x)

> = argmin ( I{ŷ = 1} · (1− η(x)) + I{ŷ = −1} · (η(x) )

where Blue colored I{...} = 1° and Orange I{...} = 2°

I have to choose -1 or +1 so we will remove one of the two (1° or
2°)
It depend on η(x):

� If η(x) < 1
2
−→ kill 1°

� Else η(x) ≥ 1
2
−→ kill 2°

f ∗(x) =

{
+1 if η(x) ≥ 1

2

−1 if η(x) < 1
2
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6.2 Bayes Risk

E [ I{y 6= f ∗(x)} |X = x ] = P(y 6= f ∗(x)|X = x)

η(x) ≥ 1

2
⇒ ŷ = 1 ⇒ P(y 6= 1|X = x) = 1− η(x)

η(x) <
1

2
⇒ ŷ = −1 ⇒ P(y 6= 1|X = x) = η(x)

Conditiona risk for 0-1 loss is:

E [ `(y, f ∗(x)) |X = x ] = I{η(x) ≥ 1

2
}· (1−η(x))+I{η(x) <

1

2
}·η(x) =

= min {η(x), 1− η(x)}

E [ `, f ∗(x) ] = E [min {η(x), 1− η(x)} ]

Figure 6.1: Example of Bayes Risk

Conditional risk will be high aroun the half so min between the two is around
the half since the labels are random i will get an error near 50%.
My condition risk will be 0 in the region in the bottom since label are going
to be deterministic.
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Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor
Design a learning algorithm that predict with small statistical risk

(D, `) `d(h) = E [ `(y), h(x) ]

were D is unknown
`(y, ŷ) ∈ [0, 1] ∀y, ŷ ∈ Y

We cannot compute statistical risk of all predictor.
We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).
Before design a learning algorithm with lowest risk, How can we estimate
risk?
We can use test error → way to measure performances of a predictor h. We
want to link test error and risk.
Test set S ′ = {(x′1, y′1)...(x′n, y

′
n)} is a random sample from D

How can we use this assumption?
Go back to the de�nition of test error

Sample mean (IT: Media campionaria)

ˆ̀
s(h) =

1

n
·

n∑
t=1

`(ŷt, h(x′t))

i can look at this as a random variable `(y′t, h(x′t))

E [ `(y′t, h(x′t))] = `D(h) −→ risk

Using law of large number (LLN), i know that:

ˆ̀−→ `D(h) as n→∞

We cannot have a sample of n =∞ so we will introduce another assumption:
the Cherno�-Ho�ding bound

7.1 Cherno�-Ho�ding bound

Z1, ..., Zn iid random variable E [Zt] = u

all drawn for the same distribution

t = 1, ..., n and 0 ≤ Zt ≤ 1 t = 1, ..., n then ∀ε > 0
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P

(
1

n
·

n∑
t=1

zt > u+ ε

)
≤ e−2 ε2 n or P

(
1

n
·

n∑
t=1

zt < u+ ε

)
≤ e−2 ε2 n

as sample size then ↓

Zt = `(Y ′t , h(X ′t)) ∈ [0, 1]

(X ′1, Y
′

1)...(X ′n, Y
′
N) are iid therefore,

` (Y ′t , h (X ′t)) t = 1, ..., n are also iid
We are using the bound of e to bound the deviation of this.

7.2 Union Bound

Union bound: a collection of event not necessary disjoint, then i know that
probability of the union of this event is the at most the sum of the probabil-
ities of individual events

A1, ..., An P (A1 ∪ ... ∪ An) ≤
n∑
t=1

P (At)

Figure 7.1: Example

that's why ≤

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
This is the probability according to the random draw of the test set.

If test error di�er from the risk by a number epsilon > 0. I want to bound
the probability. This two thing will di�er by more than epsilon. How can i
use the Cherno� bound?

| ˆ̀s′ (h)− `D (h) | > ε ⇒ ˆ̀
s′ (h)− `D (h) > ε ∨ ˆ̀

D (h)− `s′ (h) > ε
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Figure 7.2: Example

A,B A⇒ B P (A) < P (B)

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
≤ P

(
|ˆ̀s′ (h)− `D (h) |

)
∪ P

(
|ˆ̀D (h)− `s′ (h) |

)
≤

≤ P
(

ˆ̀
s′ > `D (h) + ε

)
+P
(

ˆ̀
s′ < `D (h)− ε

)
≤ 2·e−2 ε2 n ⇒ we call it δ

ε =

√
1

2 · n
ln

2

δ

The two events are disjoint

This mean that probability of this deviation is at least delta!

| ˆ̀s′ (h)− `D (h) | ≤
√

1

2 · n
ln

2

δ
with probability at least 1− δ

Test error of true estimate is going to be good for this value (δ)
Con�dence interval for risk at con�dence level 1-delta.

Figure 7.3: Example

I want to take δ = 0, 05 so that 1− δ is 95%. So test error is going to be an
estimate of the true risk which is precise that depend on how big is the test
set (n).
As n grows I can pin down the position of the true risk.
This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.
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We can measure how accurate is our risk error estimate.
Test error is an estimate of risk for a given predictor (h).

E [ ` (Y ′t , h (X ′t)) ] = `D (h)

h is �xed with respect to S' −→ h does not depend on the test set. So
learning algorithm which produce h not have access to test set.
If we use test set we break down this equation.

Now, how to build a good algorithm?
Training set S = {(x1, y1) ... (xm, ym)} random sample
A A (S) = h predictor output by A given S where A is learning algo-
rithm as function of traning set S.
∀S A (S) ∈ H h∗ ∈ H

`D (h∗) = min `D (h) ˆ̀
s (h∗) is closed to `D (h∗) −→ it is going to have small error

where `D (h∗) is the training error of h∗

Figure 7.4: Example

This guy `D (h∗) is closest to 0 since optimum

Figure 7.5: Example

In risk we get opt in h∗ but in empirical one we could get another h′ better
than h+

In order to �x on a concrete algorithm we are going to take the empiri-
cal Islam minimiser (ERM) algorithm.
A is ERM on H (A) = ĥ = (∈) argmin ˆ̀

S (h)
Once I piack ĥ i can look at training error of ERM

ˆ̀
S

(
ĥ
)
ofĥ = A(S)
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where ˆ̀
S is the training error

Should ˆ̀
S

(
ĥ
)
be close to `D

(
ĥ
)
?

I'm interested in empirical error minimiser and do a trivial decomposition.

`d

(
ĥ
)

= `D

(
ĥ
)
− `d (h∗) + −→ Variance error ⇒ Over�tting

+ `d
(
h+
)
− `d (f ∗) + −→ Bias error ⇒ Under�tting

+ `D (f ∗) −→ Bayes risk ⇒ Unavoidable

Even the best predictor is going to su�er that

f ∗ is Bayes Optimal for (D, `)

∀h `D (h) ≥ `D (f ∗)

If f ∗ 6∈ H then `D (h∗) > `D(f ∗)

If i pick h∗ I will pick some error because we are not close enough to the
risk.
We called this component bias error.
Bias error is responsible for under�tting (when training and test are close to
each but they are both high :( )
Variance error over �tting

Figure 7.6: Draw of how ĥ, h∗ and f ∗ are represented

Variance is a random quantity and we want to study this. We can always
get risk from training error.
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7.3 Studying over�tting of a ERM

We can bound it with probability.
I add and subtract trivial traning error ˆ̀

S (h)

`D

(
ĥ
)
− `d (h∗) = `D

(
ĥ
)
− ˆ̀

S (h) + ˆ̀
S

(
ĥ
)
− `D (h∗) ≤

≤ `D

(
ĥ
)
− ˆ̀

S

(
ĥ
)

+ ˆ̀
S (h∗)− `D (h∗) ≤

≤ | `D
(
ĥ
)
− ˆ̀

S (h) |+ | ˆ̀S
(
h+
)
− `D (h∗) | ≤

≤ 2 ·max |ˆ̀S (h)− `D (h) |
(no probability here)
Any given ĥ minising ˆ̀

S (h)

Now assume we have a large deviation

Assume `D

(
ĥ
)
− `D (h∗) > ε ⇒ max | ˆ̀S (h)− `D (h) | > ε

2

We know `d

(
ĥ
)
− `D (h∗) ≤ 2 ·max | ˆ̀S (h)− `D (h) | ⇒

⇒ ∃h ∈ H | ˆ̀S (h)− `D (h) | > 3

2
⇒

with |H| <∞
⇒ U

(
| ˆ̀S (h)− `D (h) |

)
>

3

2

P
(
`D

(
ĥ
)
− `D (h∗) > ε

)
≤ P

(
U
(
| ˆ̀S (h)− `D (h) |

)
>

3

2

)
≤

≤
∑
h∈H

P
(
| ˆ̀S (h)− `D (h) | > 3

2

)
≤

∑
h∈H

2 · e−2 ( ε
2)

2
m ≤

Union Bound Cherno�. Ho�ding bound (P (...))

≤ 2 · |H|e−
ε2

2
m

Solve for ε 2 · |H|e− ε2

2
m = δ

Solve for ε −→ ε =

√
2

m
· ln ·2|H|

δ
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`D

(
ĥ
)
− `D (h∗) ≤

√
2

m
· ln ·2|H|

δ

With probability at least 1− δ with respect to random draw of S.
We want m >> ln|H| −→ in order to avoid over�tting
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Lecture 8 - 07-04-2020

|H| <∞ ĥ = argmin ˆ̀
S (h) h∗ = argmin `D (h)

minimise risk

Bias-Variance decomposition

`d

(
ĥS

)
= `D

(
ĥS

)
− `d (h∗) + −→ Variance error ⇒ Over�tting

+ `d
(
h+
)
− `d (f ∗) + −→ Bias error ⇒ Under�tting

+ `D (f ∗) −→ Bayes risk ⇒ Unavoidable

We state this for all algorithm but we studied for ERM.

`D

(
ĥS

)
≤ `D (h∗)+

√
2

m
ln

2 |H|
δ

with probability at least 1− δ over the draw of S

we want this to be small when m >> ln |H|

Figure 8.1: Representation of ĥ, h∗ and f ∗

Size of model �x, increase m (size of sample) when m is bigger −→ variance
goes down.
When |H| −→ big model will be closer to optimal

� m grows ⇒ variance error goes down (if not over�tting)

� |H| grows ⇒ bias error goes down (if not under�tting)
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ERM with |H| <∞
A H such that ∀s A(S) ∈ H

We controlled this event:

∀h ∈ H ˆ̀
S(h)−`D (h) ≤

√
2

m
ln

2 |H|
δ

with probability at least 1− δ

We assure that training error is a good proxy for the true risk.

Figure 8.2: Example

If I do the empirical way(for a speci�c training set) i get something
di�erent.

8.1 The problem of estimating risk in practise

Test error is a good estimate for a risk, provided 1√
n
is small

It's usually good to take a small test set.
80/20 big data, if low data better to look at good estimate...=??
Usually small test set is still ok

Typically we are not given the predictor, instead we start from a learn-
ing algorithm. It's true that A has parameter (how many nodes for a tree
classi�er for example).
In general, if I have parameters then i get a set of di�erent classi�er Imaging
Algorithm that has parameter θ:

A {Aθ : θ ∈ Θ} Aθ (S) = ĥS

E [`D (Aθ (S))] typically averaged over S of size m for �xed m

In general you may also be interest looking at the best choice of parame-
ter for your algorithm: Suppose now that i want to look at mini sing the risk
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with the respect to the choice of the parameter

E [min `D (Aθ (S))] i want to choose parameter that minimise risk run-
ning algorithm on training set.

I would like to choose best possible value for my parameter k in the k-NN
and i want to estimate the risk.
θ can be a set of parameters (so more than 1 parameter), so theta are the
hyper parameters of A.
In general this parameter are the choices that algorithm that can make: pa-
rameter that de�ne a classi�er (example nodes and test in the internal nodes
and label in the leaves)

Hyper parameters are not determined by the training set→ chosen before
the training set.
I �x k for KNN and I choose an upper bound of number of nodes after the
training set is given.
So, some parameters are given after training set is given and some parameter
�xed before.
Now the idea is that parameter are determined after training set is given,
while hyper parameters are given before training set to get then a predictor.
I have a family of algorithms, so I choose a hyper parameters to get a one
algorithm.
Most algorithm are given as family. We have �rst decide hyper parameters
not determined on the training set.
One way to move is to take you dataset and the split that in 3 parts:

� Training set

� Development (or validation) test

� Test sets

There should not be a leak of information between test and train and devel-
opment.
We get family of algorithm, train with train set and then use dev set to test
the parameter and choice the parameters. Once i found the parameter I re-
train the algorithm with a part of train and dev set to being then tested.
Development set is like a fake test set → it usefull to choose parame-
ters.
Algorithm steps:

1. Train Aθ on training set for each θ ∈ Θ (grid search)
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2. Find θ such that ĥ = Aθ̂ (S) minimise developement error

3. Train Aθ̂ on training + development set

4. Test resulting predictor on test set

(There's theory about this but it's di�cult and we are not going to do that)

It's heuristic and kinda simple to do. This technics work for every learn-
ing algorithm.
One parameter: grid on this
Two parameters ecc..
It's quadratic!
Good learning algorithm should have small number of hyperpa-
rameters.

8.2 Cross-validation

Solving an easier problem: suppose you have a dataset and what you do is
that you can choose training set and test set.
Algorithm A with no hyper parameters and we would like to check how good
is the predictor: how good can A be? A is good if the predictor that generate
has low risk.
I split dataset in training and test set.

Figure 8.3: Splitting test and training set

h = A (A) ˆ̀
S′ (h) ≈ `D (h)

I can use Cross-validation! (CV). It helps estimate the risk.

CV: E [`D (A (S))]

I would like to average ....
How do i do this estimate? Super easy, take my data assuming CV as pa-
rameter not of the algorithm A, but intrinsic to cross validation.
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Parameter k-fold CV typically k = 5 or 10.
What do you do ? If i take a speci�c training set, i got a ru� estimate of A.
I shouldn't split one but several time.
There are di�erent way but he give us another:
split data in k folds randomly!

Figure 8.4: K-folds

For each k we de�ne S(k) take out k-st D

S(k) = S\Dk

S(1) = D2 ∪D3 ∪ ... ∪Dk

S(2) = D1 ∪D3 ∪ ... ∪Dk

For each k − 1, ...k folds S(k) training part and Dk test part

hK = A
(
S(k)

)
ˆ̀
DK (hK) =

k

m

∑
(x,y)∈Dk

` (y, hK (x))

Repeat the procedure for k = 1...k get h1, ..., hk

Compute
1

k
·
K∑
k=1

ˆ̀
DK (hk)

where CV is E [`D (A (S))] and this is called ..... �MANCA � Estimate

It's used a lot!
You get data from internet, then what to do? I want to try an algorithm,
try KNN so you do Cross validation and will give you the risk.
In some other cases you get a splitted dataset in training and testing set.
You don't use CV since the dataset is already splitted in training and test.
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8.3 Nested cross validation

The use of CV to solve the hyper parameters choice problem. If you are
given test and training set you can solve splitting in training set and dev set.
Suppose not given train and test, you can assign arbitrary .....
Now the idea: you give me a way to optimise splitting training set and test
set and then avoiding using a ...
This is what cross validation is doing.

Figure 8.5: Nested Cross Validation

{Aθ : θ ∈ Θ} which i run in each fold?
The idea is running interval CV for the folds
I have fold D1 and S(1) and i perform external validation, then i run internal
CV in S(1).
On each training part of the external CV, run a internal CV for each Aθ.
When θ ∈ grid (Θ):

� I have a CV-estimate and for each Aθ pick the θ with best CV-estimate

� Run Aθ̂ on the entire training part of current external fold

Basically what I'm choosing the best hyper parameter on each fold
of the external CV.
External CV is not testing Aθ̂ for a given θ̂ ∈ Θ
I am not measuring a goodness of predictor generate by algorithm for given
value of hyper parameters but what I'm estimating is the average risk of the
predictor output by learning algorithm when hyper parameters are optimise
on the training set. This optimisation on training set is done into a internal
CV. To avoid be depend i run and external CV.
Many platform like sklearn allow you to do that in two lines of code. So i
can specify the grid, predictor, number of falls for internal and external. It
took a bit but that's it in in two lines of code
Cross validation can be done in every order of D1 or D2 or Dk. So doesn't
matter the order we start fold D2 or D1.
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Lecture 9 - 07-04-2020

ĥ is ERM predictor

`D

(
ĥ
)
≤ min `D (h) +

√
2

m
ln

2H

δ
with prob. at least 1− δ

Now we do it with tree predictors

9.1 Tree predictors

X = {0, 1}d −→ Binary classi�cation

h : {0, 1}d −→ Binary classi�cation H1

How big is this class?
Take the size of codomain power the domain −→ |H| = 22d

Can we have a tree predictor that predict every H in this class?
For every h : {0, 1}d ←→ {−1, 1} ∃T

We can build a tree such that hT = h

Figure 9.1: Tree building

X = (0, 0, 1, ..., 1) h (x) = −1

48



x1, x2, x3, ..., xd

I can apply my analisys to this predictors
If I run ERM on H

`D

(
ĥ
)
≤ min `D

(
ĥ
)

+

√
2

m
2d ln 2 + ln

2

δ
−→ ln |H|+ ln

2

δ

No sense! What we �nd about training set that we need?
Worst case of over�tting m >> 2D = |X| ⇒ training sample larger

PROBLEM: cannot learn from a class to big ( H is too big)
I can control H just limiting the number of nodes.

HN −→ tree T with at most N node, N << 2D

|HN | = ?

|HN | = (# of trees with ≤ N nodes)×(# of test on interval nodes )×( # labels on leaves)

|HN | =
⊗
× dM × 2N−M

N of which N −M are leaves

Figure 9.2: Tree with at most N node

⊗
# of binary trees with N nodes, called Catalan Number
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9.1.1 Catalan Number

*We are using a binomial *

1

N

(
2N − 2

N − 1

)
≤ 1

N

(
e

(2N − 2)

N − 1

)N−1

=
1

N
(2 e)N−1

(
N

K

)
≤

(e n
k

)k
from Stirling approximation

Counting the number of tree structure: a binary tree with exactly N nodes.
Catalan counts this number. −→ but we need a quantity to interpret
easily. So we compute it in another way.
Now we can rearrange everything.

|HN | ≤ 1

N
(2 e)N−1 HM 2N−M ≤ (2 e d)N

d ≥ 2 ≤ dN−M

where we ignore 1
N
since we are going to use the log

ERM on HN ĥ

`D

(
ĥ
)
≤ min

h∈HN

`D (h) +

√
2

m

(
N · (1 + ln (2 · d)) + ln

2

δ

)
were N · (1 + ln (2 · d)) = ln (HN)

In order to not over�t m >> N · ln d
N · ln d << 2d for reasonable value of N
We grow the tree and a some point we stop.

`D (h) ≤ ˆ̀
S (h) + ε ∀h ∈ HN with probability at least 1− δ

remove N in HN and include h on ε
we remove the N index in HN adding h on ε

`D (h) ≤ ˆ̀
S (h) + εh ∀h ∈ H6N

W : H −→ [0, 1]
∑
h∈H

w (h) ≤ 1

How to use this to control over risk?

P
(
∃h ∈ H : | ˆ̀S (h)− `D (h) | > εh

)
≤

50



where ˆ̀
S is the prob my training set cases is true

≤
∑
h∈H

P
(
| ˆ̀S (h)− `D (h) | > εh

)
≤
∑
h∈H

2 e−2mεh2 ≤

≤ δ −→ since w(h) sum to 1

(∑
h∈H

)
I want to choose 2 e−2mεh2 = δ w(h)

2 e−2mεh2 = δ w(h) ⇔ � MANCA PARTEEEE �

therefore:

`D (h) ≤ ˆ̀
S (h) +

√
1

2m
·
(

ln
1

w(h)
+ ln

2

δ

)
w. p. at least 1− δ ∀h ∈ H

Now, instead of using ERM we use

ĥ = argmin
h∈H

(
ˆ̀
S (h) +

√
1

2m
·
(

ln
1

w(h)
+ ln

2

δ

))

where
√
... term is the penalisation term

Since our class is very large we add this part in order to avoid over�tting.
Instead of minimising training error alone i minimise training error + penal-
isation error.

In order to pick w(h) we are going to use coding theory
The idea is I have my trees and i want to encode all tree predictors in H
using strings of bits.

σ : H −→ {0, 1}∗ coding function for trees
∀h, h′ ∈ H σ(h) not a pre�x of σ(h′)
h 6= h′ where σ(h) and σ(h′) are string of bits

σ is called istantaneous coding function
Istantaneous coding function has a property called kraft inequality∑

h∈H

2−|σ(h) | ≤ 1 w(h) = 2−|σ(h) |
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I can design σ : H −→ {0, 1}∗ istantaneous |σ(h) |

ln |HN | = O (N · ln d)
number of bits i need = number of node in h

Even if i insist in istantaneous i do not lose ... � MANCA PARTE �

|σ(h) | = O (N · ln d)

Using this σ and w(h) = 2−|σ(h) |

`D (h) ≤ ˆ̀
S (h) +

√
1

2m
·
(
c ·N · ln d+ ln

2

δ

)
w. p. at least 1− δ

where c is a constant

ĥ = argmin
h∈H

(
ˆ̀
S (h) +

√
1

2m
·
(
c ·N · ln d+ ln

2

δ

))
where m >> N · h · ln d
If training set size is very small then you should not run this algorithm.

Figure 9.3: Algorithm for tree predictors

This blue curve is an alternative example. We can use Information criterion.

As I increase the number of nodes, Nh decrease so fast. You should take
a smaller tree because it gives you a better bound. It's a principle known as
Occam Razor ( if I have two tree with the same error, if one is smaller than
the other than i should pick this one).

52



Having N∗
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Lecture 10 - 07-04-2020

10.1 TO BE DEFINE

10.2 MANCANO 20 MINUTI DI LEZIONE

E [z] = E [E [z |x] ] −→ E [Z |X = x]

E [X] =
m∑
t=1

E [x · Π (At) ] A1, ..., Am portion of sample law of total probability

x ∈ Rd P(YΠ(s,x) = 1) = E
[
ΠYΠ(s,x) = 1

]
= Law of total probability

=
m∑
t=1

E ( Π{Yt = 1} · Π · {Π(s, x) = t} ] =

=
m∑
t=1

E [E [ Π{Yt = 1} · Π · {Π(s, x) = t} |Xt ] ] =

given the fact that Yt ∼ η(Xt)⇒ give me probability

Yt = 1 and Π(s, x) = t are independent given XY ( e.g. E [Z X] = E [x] · E [z] )

=
m∑
t=1

E [E [ Π{Yt = 1} |Xt ] · E [ Π(s, x) = t|Xt ] ] =
m∑
t=1

E [ η(Xt) · Π · {Π(s, x) = t} ] =

= E
[
η (XΠ(s,x) )

]
P(YΠ(s,x)|X = x = E [ η(XΠ(s, x)) ]

P(YΠ(s,x) = 1, y = −1) = E
[

Π{YΠ(s,x) = 1} · Π{Y = −1|X}
]

] =

= E
[

Π{YΠ(s,x) = 1} · Π{y = −1}
]

= E
[
E
[

Π{YΠ(s,x) = 1} · Π{y = −1|X}
] ]

=

by independence i can split them

YΠ(s,x) = 1 y = −1 which is 1− η(x) when X = x
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= E [E [ Π{YΠ(s, x)} = 1|X ] · E [ Π{y = −1}|X ] ] = E
[
ηΠ(s,x) · (1− η(x))

]
=

similarly:

P
(
YΠ(s,x) = −1, y = 1

)
= E

[
(1− ηΠ(s,x)) · η(x)

]
E
[
`D(ĥs)

]
= P

(
YΠ(s,x) 6= y

)
= P

(
YΠ(s,x) = 1, y = −1

)
+P
(
YPi(s,x) = −1, y = 1

)
= E

[
ηΠ(s,x) · (1− eta(x))

]
+ E

[
(1− ηΠ(s,x)) · η(x)

]
Make assumptions on Dx and η:

1. ∀X drawn from Dx max |Xt| ≤ 1
Feature values are bounded in [−1, 1]
all my points belong to this:

X = [−1, 1]d

2. η is such that ∃c <∞ :

η(x)− η(x′) ≤ c · ‖X − x′‖ ∀x, x′ ∈ X
It means that η is Lipschitz in X c <∞⇔ η is continous

using two facts:

η(x′) ≤ η(x) + c ||X − x′|| −→ euclidean distance

1− η(x′) ≤ 1− η(x) + c ||X − x′||
X ′ = XΠ(s,x)

η(X) · (1− η(x′)) + (1− η(x)) · η(x′) ≤
≤ η(x) · ((1− η(x)) + η(x) · c ||X − x′||+ (1− η(x)) · c ||X − x′|| =

= 2 · η(x) · (1− η(x)) + c ||X − x′||

E
[
`d · (ĥs)

]
≤ 2 · E [ η(x)− (1− η(x)) ] + c · (E)

[
||X − xΠ(s,x)||

]
where ≤ mean at most

55



Figure 10.1: Point (2) - where y = cx+ q y = −cx+ q

10.3 Compare risk for zero-one loss

E [ min{η(x), 1− η(x)} ] = `D(f ∗)

η(x) · (1− η(X)) ≤ min{ η(x), 1− η(x) } ∀x

E [ η(x) · (1− η(x) ] ≤ `D(f ∗)

E
[
`d(l̂s)

]
≤ 2 · `D(f ∗) + c · E

[
‖X −XΠ(s,x)‖

]
η(x) ∈ {0, 1}

Depends on dimension: curse of dimensionality

`d(f
∗) = 0 ⇐⇒ min{η(x), 1− η(x)} = 0 with probability = 1

to be true η(x) ∈ {0, 1}
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Figure 10.2: Point
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