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Abstract 

The quality of information generated in data-driven empirical studies is of central 

importance in Industry 4.0. However, despite the undeniable and widely accepted 

importance, not sufficient attention has been devoted to its rigorous assessment and 

analysis. Consequently, if information quality cannot be measured, it also cannot be 

improved, and therefore current efforts for extracting value from big data empirical 

studies and data collectors are exposed to the risk of generating limited findings and 

insights, leading to suboptimal solutions. In this article we describe and apply a 

framework for evaluating, analysing and improving the quality of information generated 

in empirical studies called InfoQ, in the context of the Chemical Processing Industry 

(CPI). This systematic framework can be used by anyone involved in data-driven 

activities, irrespectively of the context and specific goals. The application of InfoQ 

framework to several case studies is described in detail, in order to illustrate its practical 

relevance.  
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Introduction 

The first industrial revolution took place in the 18th century and consisted of the 

mechanization of manufacturing processes using water and steam power. The second 

revolution was powered by electricity, enabling mass production through assembly lines 

and work standardization, during the early 20th century. Computers and electronics 

elevated even more the degree of automation during the two last decades of the 20th 

century, leading to the third revolution (the digital revolution). Currently, in the down of 

the 21st century, industry is undergoing another expansion period, building over the 

success of the digital revolution, and taking advantage of the notable technological 

developments on cybernetics, distributed physical devices with built-in computing and 

communication capabilities (the internet of things, IoT), IT infrastructures (including 

cloud storage and computing), new sensor technology, new production processes 

(additive manufacturing), etc. When synergistically combined, these new technological 

ingredients create conditions for the development of what is now called “smart 

manufacturing” processes, where the units are able to communicate autonomously with 

each other and to self-adjust their operations in order to accommodate for changing 

disturbances, demands and constraints. These “smart” systems are able to collect, 

distribute and integrate information of diverse nature dispersed across the supply chain, 

and to use it for the sake of enhancing safety, productivity, efficiency (in the use of 

energy, as well as in human and material resources), environmental sustainability, 

product quality and economic performance. They constitute the basis of the 4th 

industrial revolution labelled “Industry 4.0”. 
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More than ever, data abounds in Industry 4.0. Virginia Rometty (CEO of IBM) provides 

a clear signal that the critical role of data is finally being widely acknowledged by 

Industry stakeholders. She said: “What steam was to the 18th century, electricity to the 

19th and hydrocarbons to the 20th, data will be to the 21st century. That’s why I call 

data a new natural resource.”. Therefore, the pressure is rapidly building up on 

enterprises around the world to identify how to take advantage of this resource, in order 

to turn it as a source of competitive advantage, process & quality improvement and 

economic growth.1 This process is taking place not only in large companies, 2 but also 

in small and medium enterprises (SMEs) – in spite of their natural structural limitations; 

for more on this topic see ref. 3. Consequently, the due importance currently given to 

data is being transferred and creates a sense of urgency in developing suitable analytical 

platforms able to handle their Volume, Variety, Velocity, Veracity and Value issues (the 

5 V’s of Big Data 1,4). Briefly, Volume is the existence of large amounts of data, either 

stored or in transit, and Velocity is the increasing pace with which it is created and 

transferred. Data can be in a wide Variety of formats – structured (low or high-

dimensional arrays of numbers) or unstructured (e.g., text or images) – and the 

assessment of their quality and accuracy often cannot be easily established. This 

corresponds to the Veracity issue of Big Data. Finally, the use of the Data resource must 

lead to some added Value for the companies and their stakeholders.  

The final aspect referred to in the previous paragraph, Value, is, arguably, the most 

important of the five, 5 as it determines the value of the entire empirical effort. But how 

can practitioners, engineers, data analysts, managers, etc. –i.e., all those interested in 

collecting the benefits of empirical studies – assess their potential value in a given, well-

defined, application context? This is a challenge needing urgent solutions. Data-centric 

activities are increasingly present in industrial processes, accumulating and circulating 
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data at increasing volumes and rates, but surely not all of them have the same quality, 

value, or importance, for their specific problems. As companies invest more and more 

on technology and data analytics resources (see for instance the special issue of 

Chemical Engineering Progress, “Big Data Analytics”, published in March 2016), 

including highly skilled personnel, software, computer power, IT infrastructures, etc., it 

becomes clear that something is still missing: a systematic framework for assessing the 

quality of information produced with a specific set of methods, in a given application 

context.  

A framework for measuring the quality of information generated by empirical studies is 

therefore a critical asset for all those routinely involved in the analysis of a variety of 

industrial problems or challenges. This requires the definition of a data collection 

strategy, the required analytical tools and the reporting strategies. The InfoQ framework 

allows for conducting a preliminary risk assessment of each project, in order to identify 

gaps, improvement opportunities and establish priorities (expected cost-benefit analysis) 

before diving into them. It also enables for a posteriori diagnosis of existing or past 

activities. Most of us involved in data analysis have a story (or perhaps more) to tell 

about the time invested in analysing a problem or dataset, only to conclude, with a tone 

of resigned frustration, that nothing could be done or achieved with it, while other 

burning problems were waiting to be solved… Problems of this type, and limitations of 

Big Data initiatives become clear as more experience is acquired; see for instance the 

discussions in 1,6-8. With a systematic framework available, not only situations such as 

these can be spotted in the early stages with higher probability, but also the weaknesses 

detected in the preliminary analysis will prompt effective actions to complete the project 

with missing elements and improve the quality of information it can potentially deliver.  

Page 4 of 61

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



5 
 

This article is dedicated to the description and application of a systematic framework, in 

the context of the Chemical Processing Industry (CPI). The framework is based on the 

concept of Information Quality, InfoQ, originally proposed by Kenett and Shmueli. 9,10 

InfoQ is defined as “the potential of a dataset to achieve a specific (scientific or 

practical) goal by using a given empirical analysis method”. It is a general methodology 

applicable to empirical research in general, and to the practice of data science in 

industry, in particular. The goal of the assessment is to evaluate the value of the 

information likely to be generated in an empirical study and to devise actionable 

measures to improve it, maximizing InfoQ. The process of assessing and increasing 

InfoQ, requires the definition of a set of structuring components of any data-driven 

project, namely: the specific analysis goal, g; the available dataset or data collection 

protocol, X; the empirical analysis method to use, f; an utility measure, U. According to 

the definition of InfoQ, these elements are related with each other through the following 

analytical expression (in words, it is the level of Utility, U, achieved by applying the 

analytical method f to the dataset X, given the activity goal g): 

 

 ( ) ( ){ }, , |InfoQ f X g U f X g=   (1) 

 

InfoQ is determined by the quality of its components (g, U, X, f), whose assessment 

comprises 8 partially independent dimensions (see the third section). The base 

implementation of the framework follows a Top-Down approach, starting with the 

definition of the goals, and then progressing towards the analysis of the specific dataset 

available and methods adopted. In this article we present an alternative procedure 

especially designed to the CPI context, namely for supporting the planning and 
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development of Big data initiatives for Industry 4.0, but also applicable to any data-

centric industrial activity. 

The article proceeds as follows. The next section provides an overview of some data-

centric activities in the CPI. In the third section, the InfoQ framework is introduced and 

its eight assessment dimensions described. The fourth section is dedicated to the 

presentation of case studies, where the application of framework is described in detail. 

The fifth section concludes the paper, with a summary of key aspects of the InfoQ 

framework and prospects for future activities. 

Data-driven activities in the CPI 

The scope of application of the assessment framework for the quality of information 

generated in data-centric activities is quite large and diverse. In this section, several 

activities whose InfoQ level is important to be high, are referred and briefly described. 

They can be classified, in a broader sense, as Type 1: Exploratory/descriptive studies; 

Type 2: Process monitoring & surveillance; Type 3: Predictive modelling (for 

control/optimization or for virtual metrology) and Type 4: Diagnosis or causal 

explanation. With the progress of Industry 4.0, new sources of data will be created, 

from all parts of the supply chain, as well as from the technology enabling their rapid 

and facilitated acquisition, storage, processing and reporting. It is therefore highly 

probable that other tasks will soon be added to the list presented below and become part 

of the companies’ routines, acting as new drivers for competitive advantage.  

Data visualization, fusion, selection, screening and reporting 

Process management requires, at all levels, the access and display of data necessary to 

supervise, diagnose and report the current status of the process. Clearly, the most 
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convenient way to convey the information extracted is through properly designed visual 

displays of data. 11 However, in order to be effective, information must be presented in a 

targeted way, only showing what is relevant to the user’s function, and at the adequate 

time resolution. For instance, operators require data resolutions of minute-hour; for 

process managers, hour-day resolutions are normal; as to plant directors, day-week 

resolutions are usually adopted. For the administration board, monthly or coarser time 

resolutions are adequate. Furthermore, data is displayed in a hierarchical way, starting 

with key process indicators at a first level. More detailed information is accessed only 

if, and when, it is necessary, conditionally on the analysis outcome of the key 

indicators. 

These activities belong to the class “Exploratory/descriptive studies” and Industry 4.0 

offers new opportunities for increasing InfoQ at this level. An example is the creation of 

human-centric platforms for process supervision, where better interfaces are developed 

(involving a merging of both engineering and psychology), extending the capabilities of 

the report media (any digital portable device is illegible) and promoting the 

development of new graphical solutions with the emergence of infographics, dynamic 

plots, etc. Typically, only recent snapshots of process operation data are of interest for 

reporting activities.   

Process monitoring 

Since its introduction in the early 1930’s by W.A. Shewhart 12, statistical process 

monitoring has become an important part of process operations and management in 

organizations. The main goal of this activity is to access whether process is stable in the 

present (if not, procedures are triggered to stabilize it) and whether it continues in this 

way in the future (when an out-of-control state is detected, the root cause, also called 
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special or assignable cause, should be searched and fixed). The data of interest is 

usually the most recent one, with the proper resolution for taking fast decisions about 

the state of the process. Process monitoring methods should be able to capture and 

describe in a probabilistic compact way, the normal operation conditions behavior of the 

processes, which give rise to a variety of approaches dedicated to different typologies of 

processes and operations. In short, methods were developed for addressing static 

univariate, 12-14 multivariate (full-rank), 15,16 and high-dimensional continuous 

processes, 17-22 as well as for continuous dynamic processes, 23-27 non-stationary batch 

processes, 28-33 and for product and process profiles, 34-39 among others 40-45. 

Predictive maintenance 

Process monitoring is focused on assessing the “process health”. Predictive maintenance 

and Condition Based Maintenance, 46 are focused on “Equipment Health”. Equipment 

wearing and deterioration is expected, and is responsible for non-stationary components 

in process behaviour, which are usually overlooked by process engineers. They are 

however the focus of maintenance & reliability engineers, and the center of their 

activity. Clearly, several important opportunities lie ahead from a better integration of 

both domains, typically managed as separated silos. 40 Combining both perspectives, 

allows to expand process monitoring beyond its current static and reactive dominating 

view, and tackle the true nature of processes, which are non-stationary, evolving, and 

therefore, to some extent, predictable. Maintenance & reliability also benefit from the 

technological and data resources made available within Industry 4.0. 47  

Data for predictive maintenance involves the history of all interventions in the 

equipment and records of operation settings. Contrary to visualization & reporting and 
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process monitoring applications, data for predictive maintenance requires the access to 

long records of past operation and equipment interventions. 

Process diagnosis & troubleshooting (data-driven process improvement) 

Process data bases accumulate large amounts of data. With the appearance of new 

measurement sources and the development of efficient collection, transmission and 

storage technology, much more data will be available in the future. This resource 

remains, to a large extent, unexplored in the CPI, as most current data-driven 

applications are on-line (e.g., process monitoring, process control, visualization and 

reporting of current operation, etc.). The off-line analysis of these immense data 

repositories can highlight and identify important improvement directions, such as for 

increasing productivity (reducing production cycle times), reducing chemicals 

consumption, improving process stability and product quality; reducing scrap and 

rework, etc. 19,31,48,49. 

Of interest in this activity, is all available data related to the current configuration of the 

process. Operation data from different technological environments (e.g., when other 

main pieces of equipment were in use) is usually of limited value, as they reflect a past 

reality that does not exist anymore. 

Predictive modelling (quality prediction and prognostic estimates) 

Predictive modelling is one of the most common activities in industry. It consists in 

using a set of predictors or input variables, to estimate the value or state of a set of 

response variable of interest. Many methodologies have been developed for handling 

the diversity of problems, data structures and goals. For instance, and focusing only on 

regression approaches directed to large scale settings (those likely to be found in 

Industry 4.0 applications), one can identify several categories of fundamentally different 
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approaches, such as variable selection methods, 50-52 penalized regression methods, 53-61 

latent variables methods 62-66 and tree-based ensemble methods. 56,67-69  

With the increasing complexity of industrial processes, all information available should 

be used to optimize their performance. In this regard, not only the information extracted 

from process data is relevant, but also the one available a priori about the underlying 

process structure. In this regard, multi-block methods 70-76 and Bayesian networks, 77-79 

offer good solutions to explore more in-depth in the future. 

Predictive modelling it is not an end in itself, but a mean to accomplish a certain goal, 

such as process optimization, fast product release, stability through process control, 

variability reduction, etc. The data required to be implemented covers all operation 

records, including those periods where certain perturbations took place in the process, as 

they contain information about a larger region of the operational space. However, 

despite the large amount of observational data stored, they may not be of enough quality 

to derive good prediction models. This critical aspect is highly dependent on the goal of 

the analysis that defines the purpose of the predictive model. Existing process data may 

suffice for virtual metrology and soft sensor applications, but not for process control 

and optimization tasks. For these situations, the active collection of new data through 

properly designed statistical design of experiments (DOE), should be pursued. 

Quality by design (QbD) and Product Development 

With Quality by Design, the central aim is to build quality into the products and 

processes, through appropriate planning and following a systematic approach, rather 

than a posteriori testing and inspection. This is particularly relevant for the design and 

development of new products and processes in the Pharmaceutical industry, where QbD 

has gained notoriety and is today widely accepted (see for instance the ICH Q8 
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guideline issued by the International Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceutical for Human Use). This is a science 

based approach that makes use of existent knowledge about the process and product, in 

order to guarantee compliance with the specifications required for their Critical to 

Quality Attributes. Most often, data involved in this process arises from experiments 

planned using DOE. However, a current trend is to fuse this approach with the existence 

of data collected over the years, in order to develop more efficient and informative 

designs. This approach is called retrospective QbD (rQbD) 80 and is particularly suited 

for companies with a long history of product development and production, that started 

quite often before the emergence of QbD initiatives in the field.  

CPI has still a lot to gain from the adoption of QbD and rQbD principles. However, 

some data-driven initiatives for improving product design were already proposed and 

implemented in the CPI context. For instance, MacGregor and co-workers fitted latent 

variable models using historical data records, where process constraints and operating 

policies are already implicitly incorporated in the data correlation structure, and used 

them to address the development of new products, exhibiting a set of specified 

properties. 81,82 The necessary operating windows are derived from the definition of the 

desired quality specifications for the new product and an inversion in the latent variable 

model space (from the Y to the X space). The solution thus found, will not only comply 

with the required properties, but will also be compatible with past operating policies 81. 

QbD studies tend to fall in the scope of “predictive modelling for control & 

optimization” or “diagnosis or causal explanation.” 
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The InfoQ framework 

The activities referred in the previous section should lead to high quality of information 

– high InfoQ. In order to effectively manage these tasks, and improve the way they are 

carried out, it is fundamental to develop a suitable referential for measuring the quality 

of information generated – remembering the celebrated Lord Kelvin’s citations: “If you 

can’t measure it, you can’t improve it” and “To measure is to know”. In this regard, we 

present the InfoQ framework as an effective solution for measuring the value of 

information in the context CPI data-centric applications. The InfoQ framework will be 

presented here, with necessary adaptations to CPI. 

As mentioned in the introduction, the InfoQ framework assesses the quality of the 

information generated by any empirical study, taking into account the following four 

building blocks linked through equation (1): 

• Analysis goal, g. The purpose of the analysis, in statistical or analytic terms. 

Activities described in the previous section, have distinct analysis goals. Some 

include being able to make reliable predictions (of future values or about the 

state of the process or equipment, etc.), others are focused on diagnosis (causal 

explanation, for troubleshooting and process improvement) and others on 

description (for supervision and reporting). These are general types of goals 

commonly found in practice. The different applications bring different 

particularities to their fine definitions. 

• Dataset, X. The dataset to be used for accomplishing the goal. Data can arise 

from different sources, such as observational industrial data, data collected from 

planned experiments, laboratory data, computer simulations, etc. Furthermore, 

they can have any structure: scalar quantities (i.e., zeroth order tensors, such as 
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industrial sensors and univariate quality parameters), first order tensors (i.e., 1-D 

profiles, such as spectra, chromatograms, particle size distributions), second-

order tensors (e.g., grey-level and thermographic images), third-order tensors 

(e.g., hyper-spectral images, hyphenated data), etc. They can also contain 

unstructured data, namely text, such as tags from operation alarms and warnings, 

or from operator introduced comments. 

• Empirical analysis method, f. The data analysis method adopted to process the 

dataset X, in order to achieve the goal, g. Methods can be of different types, such 

as parametric / semi-parametric / non-parametric, probabilistic / deterministic / 

algorithmic, linear / non-linear, single-block / multi-block, etc. 

• Utility, U. A measure of the extent to which the analysis goal, g, is achieved. It 

usually consists of suitable performance metrics such as root mean square error 

of prediction (RMSEP) or 2
PredR for predictive activities, measures of statistical 

power (e.g., p-values) for diagnosis, and goodness of fit or discrimination for 

descriptive goals. In many occasions however, practitioners need to access the 

potential of their activity, before implementing it, in order to establish priorities 

and make decisions where to invest the limited resources they manage. This 

happens, for example, during the Definition phase of process improvement and 

troubleshooting activities (e.g., in Six Sigma projects), and in the Design stages 

of new processes or products where alternatives are preliminarily screened. In 

these occasions, U needs to be estimated before full application of f to X, in 

order to make some decisions about the most favourable alternatives or on how 

to improve the base solution. In these cases, the utility can be evaluated through 

semi-quantitative assessment of X and f, w.r.t. g, as described in the next section. 

This is a new procedure, proposed for the first time in this article that is 
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particularly relevant to the scope of the CPI. It will avoid design errors, mitigate 

the consequences of bad practices and allow for improvement actions, before the 

activity is implemented, leading to gains in efficiency and quality of results. 

 

The quality of the information generated in an empirical study is measured by its InfoQ 

level. The InfoQ level depends on the quality of the four components: quality of goal 

definition, data quality, analysis quality and quality of the utility measure, as well as the 

relationships between them. 

The quality of goal, regards the adequacy of the translation of the practical goal, 

expressed in the words of the problem owner, to a goal stated in objective statistical or 

data analytic terms. Several goals may be posed, and for some, the dataset X may be 

suitable, for others, useless. For instance, observational datasets are adequate for 

descriptive studies, but may of limited value for some predictive or even diagnostic 

studies, where causality is required. In the words of Tukey:83 “Far better an 

approximate answer to the right question, which is often vague, than an exact answer to 

the wrong question, which can always be made precise”.  

Data quality regards the appropriateness of the dataset available, for achieving the 

intended purpose. How relevant is the data for answering the research question? In 

analytical terms, data quality reflects the potential utility of X in the universe of the 

analytical methods applicable to achieve the goal g, gΨ :  

 

 ( ){ }: |
i gf iDataQuality E U f X g∀ ∈   Ψ

  (2) 
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where, [ ]E ⋅  stands for the expectation operator. In practice this assessment is usually 

made in qualitative terms and translated into some categorical scale. However, recent 

developments on the simultaneous testing and assessment of a wide variety of methods 

84 can make this assessment more quantitative and precise. 

The quality of analysis regards the adequacy of the analytical method to the purpose g, 

and to the dataset available X, as well as the way the methods are implemented (the 

analysis technique 85). For instance, collinearity is usually a characteristic of data 

collected passively in Industrial 4.0 applications, given the existence of relationships 

between process variables, which arise from mass and energy conservation, control 

policies, redundant measurements, etc. Therefore, when addressing modelling problems, 

ordinary least squares (OLS) is of limited value (lower analysis quality), when 

compared with other alternatives such as variable selection methods, 50-52,86 penalized 

regression methods 53-61 or latent variables methods 62-66. 

The quality of the utility U, depends on the goal g. It addresses the appropriateness of 

the performance metric to evaluate the utility of the empirical study with a given goal. 

For instance, a common mistake is the use of quality of fit metrics to assess the 

predictive performance or methods. This is not appropriate in general and easily leads to 

overfitting and a wrong assessment of prediction capability. Another example is the use 

of p-values for testing statistical hypothesis in large samples – given the higher power 

of the statistical tests in these conditions, any small difference will be signalled as 

statistically significant, even if the deviation is not relevant for all practical purposes. 
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The eight dimensions of InfoQ 

The evaluation of InfoQ can be made directly upon the analysis of its four components. 

In this case, each component entails several aspects that should be considered and 

properly weighted during their individual assessment. This unspecified 

multidimensional assessment process raises questions of reproducibility and 

operationalization, which adversely affect the adoption by industrial practitioners. In 

order to make it well-defined and systematic, and to prevent overlooking important 

aspects to consider during the assessment of InfoQ, a set of eight dimensions were 

proposed that should be explicitly addressed during the assessment process. They cover 

different aspects that are necessary, in general, for determining the value of information 

in a data-driven empirical study. These dimensions, [ ]1 2 8

T
D D Dθ = L , intervene 

in the quality of the four InfoQ components (g, U, X, f), in a way that may be different, 

depending on the component. Therefore, as an alternative to compute InfoQ by 

assessing directly the quality of the four components, one can do it indirectly, analysing 

the eight underlying dimensions that structure their quality, using the following function 

composition:  

 

 

( ) ( ){ }
( ) ( ) ( ) ( )( ){ }

( )

, , |

|

InfoQ f X g U f X g

U f X

n QI

g

fo

θ θ θ θ

θ

=

=

=

  (3) 

 

The following dimensions are based on the original proposal of Kenett and Shmueli 9,10. 

However, some adjustments were made in their definitions, in order to adapt the 

framework to the CPI context, and to facilitate the operationalization of the structured 
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assessment scheme proposed in this article (also, a new procedure is put forward for 

estimating InfoQ from the eight dimensions; see third section). 

Data Resolution (D1) 

In CPI context, resolution is usually connected to the aggregation level of data. One 

type of aggregation, regards data granularity. It often occurs that collected data may 

have different levels of granularity, meaning that their values regard the state of the 

process over different windows of time, during which measurements were collected and 

averaged, resulting eventually in a single aggregated value. This process results in 

recorded values representing averages of minutes, hours, days, weeks, shifts, production 

units (lots), etc. Another way of performing aggregation is through 

compound/composite sampling, i.e. through sampling schemes that combine a number 

of discrete samples collected from a process stream or amount of material into a single 

homogeneous sample for the purposes of experimental analysis. The existence of 

variables with multiple resolutions, i.e., containing different levels of aggregation, has 

been greatly overlooked in data science and statistics. In the CPI context, only a few 

multiresolution methodologies were developed for large-scale monitoring of industrial 

processes 87 and for soft sensor development. 88 

A distinct topic (but often confused with multiresolution), is multirate data. 89 Multirate 

regards the existence of multiple acquisition rates, usually from instantaneous (high 

resolution) measurements. For instance, quality variables tend to be available at much 

lower acquisition rates than process sensors. 

In the scope of this InfoQ dimension, one considerer the appropriateness of both data 

granularity and acquisition rate for the purposes of analysis. 
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In case of process/quality monitoring applications, data aggregation is also related with 

the formation of rational subgroups. 90 The strategy for forming rational subgroups 

affects the process variability that is monitored and the type of faults that can be 

detected. Therefore, it is an important aspect to assess the quality of this InfoQ 

dimension for statistical process/quality control applications. 

Data Structure (D2) 

Data structure refers to the types of data and their characteristics: 

• Structure (arrays of numbers, cross-sectional, network data, time series) or 

unstructured (text, images, sound & vibration records); 

• Tensor nature (0th-order, such as process sensors; 1st-order, such as spectra, etc.) 

• Presence of noise, outliers, missing data, bad segments (plant shutdowns and 

transients); 

• Single-block or multi-block (i.e., when a single or multiple natural groups of 

variables exist and their integrity should be maintained); 

• Static or time-delayed structure (meaning a lagged-correlation pattern); 

• Observational (i.e. “happenstance data”, using R.A. Fisher terminology) or 

Casual (namely collected following a DOE plan). 

The way these aspects are considered during the InfoQ assessment, depends on the 

actual components being addressed (see third section). They will impact both the Data 

and Methods, InfoQ components. Data should have the right structure for achieving the 

analysis goal, but the methods must also have the capability to properly incorporate and 

deal with all their features. For instance, they should handle all variables and their 

dynamics and time-lagged behaviour; this is particularly challenging in large-scale 

contexts, where classic or VARMA/VARIMA time series models are no longer reliably 
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applicable. Alternatives may pass by the use of dynamic latent variable methods 26,27,91-

93 or subspace state-space models. 94-97 

Data Integration (D3) 

This dimension regards the existence of multiple sources of data that convey relevant 

information for achieving the project goal, if they could be properly integrated through 

f. Examples include the existence of several advanced instrumentation technologies, 72 

data collected from different points in the supply chain (raw materials, process, quality 

laboratory, customer, service, etc.), additional meta data (process and alarm tags), etc. 

Temporal Relevance (D4) 

The extraction of knowledge from data happens in a workflow, roughly composed by 

the following stages: i) planning; ii) data collection; iii) data analysis; iv) deployment. 

Dimension D4 regards the impact of the duration of each stage, and the gaps in between, 

on InfoQ. For instance, the data collection time may increase or decrease InfoQ, 

depending on whether the study goal is longitudinal or cross-sectional. In predictive 

studies, the existence of a temporal gap between data collection and deployment usually 

decreases InfoQ, as a result of unmodelled non-stationary components present in CPI. 

This is connected with the timeliness concept: 98 “solving the right problem too late.” 

The time for data analysis is also relevant (i.e., to implement f). Methods based on first 

principle mechanistic models can lead to more accurate and interpretable results, but 

require highly skilled personnel (often working in academia or consulting companies) 

and take much more time to be completed, which can raise timeliness issues. On the 

other hand, data-driven process improvement initiatives can be implemented with the 

plant personnel and take less time for achieving good results. The complexity of method 

f is another related aspect to consider (see also section on the dimension 
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“Operationalization”). More complex methods involve more parameters to tune and 

more time to run and analyse. Unless there is enough information to provide good 

settings for the tuning parameters, they tend to be less robust and prone to overfitting, 

despite their potential for being more accurate. 31  

As further example, typical from an Industry 4.0 context, let us consider the case where 

the goal is to perform a graphical descriptive analysis of a large structured dataset. In 

this case, conventional Principal Components Analysis (PCA) can lead to higher D4-

scores than the option of graphically analysing all the possible univariate and bivariate 

plots. PCA only requires the graphical analysis of a few score vectors and loadings, 

whereas the alternative (graphical analysis of all variables in a univariate or bivariate 

way) is usually impossible to accomplish within the time-frame available, and is much 

less informative. 

Chronology of Data and Goals (D5) 

This dimension regards the variables selected and the temporal relationships between 

them, in the context of g. Much of the success of constructing models for process 

optimization and diagnosis goals rely on having access to measurements of critical 

variability drivers. This is fundamental for developing input-output models for process 

control & optimization or to perform troubleshooting activities, and not so critical for 

process monitoring and soft sensor applications. When some of the variation drivers are 

not observable, latent variable methods provide a way to incorporate their role in the 

analysis, either explicitly trough path modelling and structural equations, or implicitly 

through multivariate regression frameworks such as Principal Components Regression 

and Partial Least Squares. 64,65,99  
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The chronology aspect is related to the retrospective vs. prospective scope of the study 

and to whether the goal is causal explanation, prediction or description. 10 For instance, 

for soft sensor development, inputs and outputs must be available at the same time and 

for the same samples, where as in causal explanation applications, the system 

architecture and operation determine the actual time structure connecting the different 

variables to be analysed. 

In summary, this dimension is related with having the adequate set of variables for 

achieving the analysis goal, at the right chronological order. 

Generalizability (D6) 

This InfoQ dimension regards the potential to generalize the analysis outcome to the 

desired universe, targeted by the empirical study. Observational data allows inferences 

regarding similar operation conditions. On the other hand, the active collection of data 

(through DOE) provides the capability for exploring operation modes beyond those 

used before, generalizing inferences to other conditions. Therefore, this dimension 

assesses the ability of X and f to be extended to the circumstances of interest 

(established in g), as well as the adequacy of U to capture this performance. For 

instance, more parsimonious models tend to be more stable and generalizable. 31,100 The 

use of dimensional analysis and the Buckingham π theorem, 101 can be used to extend 

experimental studies to wider domains. First principle mechanistic models are more 

generalizable than empirical data-driven models, though more complex (see D7) and 

time consuming to develop (see D4). 

In CPI, one is more interested in the “engineering generalization”, i.e., extending the 

results obtained to other conditions, processes, units, laboratories, etc., rather than 

“statistical generalization”, where inferences are restricted to the population where data 
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was collected. For example, over-parametrized data-driven methods are prone to 

overfitting, which compromises engineering generalizability, namely the ability to 

predict new observations in the future. 

Operationalization (D7) 

This seventh dimension addresses the complexity in operationalizing the empirical 

study within the existent capabilities of the company. It regards the difficulties involved 

in data collection, analysis and deployment of solutions. Timeliness (D4) addressed the 

aspect of time, but here the emphasis is in the complexity of carrying out the several 

stages involved and the access to the necessary resources to do it (other than time). 

Considering the example provided in the section regarding dimension D4 – Timeliness, 

and recalling the use of PCA which led to a higher InfoQ score in the visual analysis of 

large datasets with descriptive purposes: it may happen that, in some contexts 

(especially in SME’s), no employee is aware of how to conduct this analysis or there 

may be no software available for doing it. This would decrease the InfoQ score 

regarding operationalization in this particular setting. In general, some methods may 

offer good solutions to accomplish a given goal, but are outside the domain of skills or 

assets in the organizations, or their implementation is significantly more complex.  

Communication (D8) 

This final dimension comprises the rigor, completeness and clarity, by which the 

following aspects are established and communicated: 

• The goals of the project – to the project team; 

• The results obtained – to the project stake holders. 
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Goals should obey to the SMART principles (Specific, Measurable, Achievable, 

Relevant and Timely), 102 where it should become clear whether they regard to a 

prediction, diagnosis (causal explanation) or descriptive analysis, or even the specific 

activity to be carried out (see list in the second section). The communication of results 

should be carefully planned, including the methods to adopt (e.g., visualization tools 11) 

and organization issues. 103 

 

Operationalization of the InfoQ assessment in CPI activities 

The eight dimensions described in the previous subsection (InfoQ-dimensions) need to 

be properly combined in order to compute an InfoQ-score. 

We propose here a new InfoQ assessment strategy, that is based on the original 

decomposition of InfoQ into its 4 components, and then on the 8 dimensions that 

contribute to them: InfoQθ γ→ → , where [ ]1 2 8

T
D D Dθ = L  represents the 

eight InfoQ-dimensions, and [ ], , ,
T

g U X fγ =  stands for the 4-dimensional vector of 

InfoQ-components.  

Contrary to the standard assessment protocol, where eight dimensions are combined to 

compute directly the final Info-Q score, in the new proposed scheme, each InfoQ-

dimension, iθ , is assessed w.r.t. a given InfoQ-component, 
jγ , with which it is related. 

In fact, the InfoQ-dimensions are not necessarily related with all InfoQ-components (as 

will become clear below), and the way each InfoQ-dimension is assessed, depends on 

the particular component being considered. For instance, one perspective is to analyse 

D1 – data resolution in the scope of the component, X – dataset: “Do collected data 

have the adequate resolution to address the project goal?”, and another is to assess its 

Page 23 of 61

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



24 
 

quality in the scope of component, f – method: “Does the method f has the capability to 

deal with the resolution or multiple resolutions existent in data?” (note that similar 

questions apply to dimension D2 – data structure, by replacing the term “resolution” 

with “structure”, etc.). These are clearly different problems, which were analysed 

conjointly in previous InfoQ assessment schemes. The proposed approach has the 

advantage of making it clear in which scope should each dimension be regarded, 

making the process more systematic, streamlined and reproducible for practitioners. 

Furthermore, it safeguards against the possibility that some important aspects are 

overlooked during the assessment, because their analysis is now explicitly solicited. The 

new assessment strategy is described in the following sections. 

InfoQ assessment structure and workflow 

Figure 1 presents the proposed InfoQ decomposition into its 4 InfoQ-components and 

finally into the 8 InfoQ-dimensions. This scheme provides structure to the quantitative 

assessment as presented next.  

 

[Insert Figure 1 approximately here] 

Figure 1. The decomposition of InfoQ into its components (X, f, g, U) and then on the 8 dimensions that determine 

their quality. Also shown, is the connection between dimensions and the components in which assessment they take 

part. 

 

The relationships between the InfoQ-dimensions and the components are depicted in 

Figure 1. As their identification may not be easy, Table 1 provides the respective 

connectivity matrix. 

Page 24 of 61

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



25 
 

 

[Insert Table 1 approximately here] 

Table 1. Summary Table of the InfoQ-Dimensions Affecting the Four Components (X,f,g,U) 

 

The computation of InfoQ comprises the following three stages to be carried out: 

• Stage 1. For each component, Cj, assess each dimension, Di, connected to it (see 

Figure 1 and Table 1) and compute the associated scores: j

iscore−d  

• Stage 2. Combine the scores obtained from stage 1 for each component and 

compute the scores for the quality of each component: j InfoQ

i jscore score− → −d c  

• Stage 3. Combine the component scores, and obtain InfoQ: InfoQ

jscore InfoQ− →c  

In the first stage, the user assesses each dimension, w.r.t. a given component. Stage 2 

and 3 are computational stages, where the quality of the components and InfoQ are 

successively obtained. These two stages can easily be implemented with resort to a 

spreadsheet application (one such application can be made available upon request to the 

corresponding author).  

By decomposing the assessment in a hierarchical way (Figure 1), the assessment is 

made more focused, objective and reproducible. As referred above, it constitutes a 

fundamentally different problem assessing the quality of the dimension “Data 

Structure” w.r.t. to the component “Dataset” or to the component “Method”: in the first 

case, on assess the information content in the dataset for achieving the analysis goal, 

arising from the underlying structure, whereas in the second case one evaluates the 

method’s capability to process data with a that structure and produce the desired 
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outcome. Furthermore, it becomes possible to explore different levels of aggregation in 

the analysis of framework outcomes. These aspects were not so conveniently handled in 

the conventional InfoQ procedure. To support the assessment to be performed during 

Stage 1, we present in Appendix A a list of questions that may provide a useful template 

for users to adopt in the future, which can easily be adapted to new applications.  

With the proposed structured assessment scheme supported by focused and precisely 

made questions, the assessment subjectivity of the original approach is greatly reduced. 

Assessment subjectivity is just an informal way of referring to measurement uncertainty 

104-107 in the current scenario. But measurement uncertainty is a common trace of any 

evaluation system, and therefore ours must necessarily be subjected to it to some extent.  

Methodological and computational details 

This section provides more detailed information on how to execute the operations and 

computations associated with each stage of the proposed procedure for assessing the 

value of information in data-driven studies, i.e., to compute their InfoQ. 

Stage 1 

The assessment of each dimension, Di, w.r.t. a given component, Cj, is made by 

answering the questions in Appendix A, with resort to a Likert scale. For instance, a 5 

level Likert scale can be adopted, [1–5], with “1” indicating low achievement in that 

dimension and “5” indicating high achievement. These ratings, { }
1:8

j

i i=
d , are filled by the 

user, and are then normalized using a desirability function approach 108,109 into a scale 

[0–1], leading to the normalized assessment scores, represented by j

iscore − d , through 

following mapping: ( )j j

i iscore desirability− =d d , with:  
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⇐ =
 ⇐ == ⇐ =
 ⇐ =

⇐ =

  (4) 

 

This assessment can be implemented directly by the knowledgeable user, or following 

the Delphi consensus approach, in case the team counts with several experts on 

industrial data analytics. 110,111 

Stage 2 

In stage 2, the scores obtained from the assessment of the expert are combined in order 

to obtain the quality of each InfoQ component ( j InfoQ

i jscore score− → −d c ). The fusion 

is made through the weighted geometric mean of the individual desirabilities that are 

relevant to a given component. Contrary to the original approach, weights are now 

introduced, to reflect the different focus and priorities associated with the different 

analysis goals (more details on the selection of the weights are provided further ahead in 

the text). The computation details are provided below. 

• Let j
D  be the set containing the relevant dimensions necessary for establishing 

the quality of the InfoQ-component, Cj. 

• Let j
I  be the set of indices for the dimensions in j

D . 

The scores for InfoQ-components, InfoQ

jscore − c , are obtained by the following 

weighted geometric expression: 
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1

jj
kk

jk

j

ww
InfoQ j

j k

k

score score ∈

∈

 ∑
− = − 

 
∏ I

I

c d   (5) 

The weights used in equation (5) depend on the type of problem under analysis. In order 

to facilitate the InfoQ assessment scheme we have considered 5 distinct categories of 

problems, and defined typical weighting profiles for each one of them. These categories 

are: exploratory/descriptive analysis; process monitoring; diagnosis and causal 

explanation; predictive modelling for virtual metrology; predictive modelling for 

control & optimization. The tables of weights associated with each category are 

presented in Appendix B. According to the type of problem, the user just needs to select 

the corresponding table of weights. These weighting profiles were defined based on the 

authors’ accumulated experience in driving multiple empirical studies and on the 

hierarchy of importance attributed to the different dimensions w.r.t. to the InfoQ 

components. Therefore, they reflect, in general, the expert’s knowledge and experience, 

and constitute a way to state his assumptions explicit and defined in a clear and 

transparent way, making the analysis reproducible and shareable. These weights should 

be interpreted as the analysis defaults, and the user can always change them to better 

reflect his priorities or preferences (this is straightforward to do in the evaluation 

spreadsheet). 

Stage 3 

In this final stage, the InfoQ-component scores are combined, and the quality of 

information generated in the data-driven activity obtained. In this work, we did not 

consider different weights for the different components, which amounts to assume that 

they are all equally relevant for establishing InfoQ (this option can easily be changed in 
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the future, in case a differentiation reflecting the importance of the different components 

is justifiable). 

 

 ( )
1

4

1:4

InfoQ

j

j

InfoQ score
=

 
= − 
 
∏ c   (6) 

 

 

Pre- vs Post- Assessment 

Pre-assessment regards the analysis and evaluation of the study design (strategy, 

technical components, workflow, and restrictions). It is made before applying method f 

to the dataset X, but some quick analysis over X may be carried out in case (some) data 

is already available. The main focus is to evaluate the appropriateness of all InfoQ 

components w.r.t. to the goal to be achieved (g). We will also call it a Type B 

assessment (“B”, from “Before”). Post-assessment refers to the analysis and evaluation 

of the way the study was actually carried out, conclusions were made and 

communicated, as well as the quality of the final results achieved and how they were 

assessed. It will be also referred as Type A assessment (“A”, from “After”). 

The difference between pre- and pos- assessment is important, as they have different 

purposes and imply distinct mindsets. Type B assessment addresses the planning, cost-

benefit and risk assessment stages of a project. The decisions may be to improve it 

(using the assessment outcomes) and to go ahead, or to decide not to implement the 

study, due to adverse cost-benefit considerations (high cost of data collection) or 

intrinsic limitations (no data available under certain conditions, or with a given 
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structure) in the design. On the other hand, Type A is more directed to the critic analysis 

of the study, making sure that the results are solid and meaningful, in order to use them 

as factual support for decision making. For instance, when addressing a prediction 

problem, the utility, U, may be the value of 2
PredR  actually achieved in the empirical 

study for a Type A assessment, whereas for a Type B it is the appropriateness of using 

this metric w.r.t. to the goal that is accessed. 

Case Studies 

In this section, several case studies regarding different industrial data-centric activities 

are presented, and the quality of information generated assessed. The impact of options 

followed at the level of the methods adopted, f, or regarding features present in the 

dataset, X, are also brought to the analysis and discussed. 

 

 

InfoQ assessment of an industrial semiconductor process 

Description 

This case study is based on a project conducted in collaboration with a semiconductor 

company (companies’ name cannot be disclosed), whose purpose was to derive an 

inferential model (virtual metrology) to be used in the future for purposes of fast release 

of wafer batches and maybe for process control (run-to-run control). FDC data was 

provided by the semiconductor manufacturer (FDC means Fault Detection and 

Classification, and consists mostly of process operation variables, such as flows, 

pressures, temperatures, etc.), together with Metrology data for the key dimensions of 
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the wafer. The FDC data contains information about almost 1000 wafer batches, but the 

Metrology data was collected for only approximately 50 batches, which furthermore do 

not always coincide with those in the FDC dataset. 

The analytics team decided to fuse the two datasets (FDC and Metrology) using the 

wafer lot code as reference for performing the merging operation, and developed 

inferential models using several predictive modelling approaches, such as least squares 

regression with variable selection (forward stepwise variable selection), penalized 

regression (LASSO) and partial least squares (PLS). The methods’ performance was 

assessed on the basis of the prediction cross-validation errors (internal validation). Good 

fitting and predictive scores were obtained for the least squares variable selection 

methodology. 

First InfoQ Assessment 

Implementing the workflow for InfoQ assessment (Stage 1), each component was 

evaluated using the dimensions that are relevant for its quality (see Table 1). The 

following paragraphs contain some observations of the ratings given to each dimension 

w.r.t. to a given component (g, U, X, f). The weights profiles were selected for the 

problem category: predictive modelling for virtual metrology (Table B4). 

• Assessing InfoQ-X. Several datasets are available, namely FDC and Metrology 

data, but their integration is limited because the overlap of records from both 

sources is low (small number of records for the same wafers). Therefore, the 

collection protocol could have been better designed from the standpoint of 

potentiating better integration capabilities (D3). Therefore, the rating given to 

the dimension 3 (data integration) w.r.t. X (dataset), is 3 3XD =  (scale [1-5]). The 

low superposition between datasets also causes many records to be discarded, 
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leading to low resolution data, 1 3XD = . On the other hand, the dataset took 

considerable time to be collected and to be made available to the analytics team, 

and the collection process was very complex ( 7 4XD = ) – by the time it was 

analysed, the process may have suffered changes, which can limit the 

deployment of results ( 4 3XD = ). The data structure correspond to a 2-way table 

composed by observational or passively collected data ( 2 4XD = ), and the main 

process variables were included in the analysis ( 5 5XD = ), which are both 

positive aspects for developing a Virtual Metrology predictive model for this 

process. However, the generalization to other products and tools is limited, as 

the inference basis provided by the collected data is restricted ( 6 3XD = ). 

• Assessing InfoQ-f. The methods adopted are in general capable to deal with the 

features present in the dataset, such as multicollinearity, sparsity and noise (

1 5fD = , 2 5fD =  3 4fD = ), and can be implemented in useful time and within the 

resources available in the team ( 4 5fD = , 7 5fD = ). The methods also have built-

in features for selecting the relevant variables ( 5 5fD = ) and for generalization to 

the process of interest (namely parsimony and parameter estimation stability, 

6 4fD = ). The results were properly communicated using a summary table 

containing the relevant performance indicators, supported by graphs ( 8 5fD = ). 

• Assessing InfoQ-g. It is not clear from the goal statement whether the objective 

is to develop a predictive model for Virtual Metrology or for 

Control/Optimization. A better goal definition is therefore needed ( 8 3gD = ), as 

the nature of the models required for these two goals can be quite different. 
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• Assessing InfoQ-U. The performance of the predictive model was evaluated 

using cross-validation, which is a sound approach for assessing the predictive 

capabilities of the model, under situations where data is not so abundant. 

However an independent test set would be a preferable solution in the future, 

especially if the purpose is to conduct process control ( 6 4UD = ). 

The assessment of the initial study resulted in the combined scores for the components 

and in the overall InfoQ, presented in [Insert Figure 2 approximately here] 

Figure 2. From the analysis of these results, one can verify that the overall quality of 

information is not high (0,68), and the main concerns are in the InfoQ-components: 

dataset (X) and goal (g). Therefore these components should be carefully analyzed 

(focusing on the dimensions that contribute to them) and solutions devised for their 

improvement, in order to increase the value of information generated in the study. 

[Insert Figure 2 approximately here] 

Figure 2. Semiconductor case study. Decomposition of the InfoQ assessment: analysis of the initial study. 

 

Final InfoQ Assessment 

After a careful analysis of the elements of the initial study and the InfoQ assessment 

performed, several improvement opportunities were identified, namely: 

• The decision of the data to be collected should result from a consensus 

discussion between the process team and the analytics team and not only a 

decision of the process team. With this, better integration capabilities ( 3 5XD = ) 
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can be expected and the resolution of data will also be improved ( 1 5XD = ), as 

well as their structure ( 2 4XD = ). 

• The goal definition must also be clearly defined, namely if it regards the 

development of a virtual metrology model, or if the purpose is to derive an 

input-output model for process control and optimization. This can make a 

significant difference on the type of models and the data structure required for 

analysis. For instance, input-output models for process control involve the 

realization of system identification experiments, which were not contemplated in 

the original data collection plan ( 8 5gD = ). 

• An independent test set should be collected, especially if the purpose is to 

conduct process control ( 6 5UD = ). 

With these changes implemented in the future, the quality of information generated by 

the study can improve from the initial level of 0.68 to 0.92, indicating a significantly 

higher level of achievement of the project goals (Figure 3). 

 

[Insert Figure 3 approximately here] 

Figure 3. Semiconductor case study. Decomposed InfoQ assessment: follow-up analysis. 

 

InfoQ assessment of an industrial crystallization process 

Description 

A dataset was collected from an industrial crystallization operating in a batch mode 31, 

i.e., where process variables can present different types of profiles (usually, non-
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stationary), that repeat themselves from batch to batch. In the process under analysis, 

there are two driers operating in parallel, which lately have been found to be producing 

products with different levels of impurity. This happens even though they both share the 

same recipes and follow the same stages, a situation that motivated a more detailed 

analysis of their operation, looking for possible sources for the different behavior. The 

goal of the study was to conduct an exploratory analysis over the collected dataset, in 

order to identify relevant patterns of variation in the driers’ operation and pinpoint 

possible sources of systematic or unstructured variability justifying the different levels 

of impurities. An additional goal was also set by the industrial company, which 

consisted in developing a model that could reasonably predict the amount of impurities. 

 

Pre-assessment of the exploratory study (Type B) 

The InfoQ assessment for each component, performed before conducting the 

exploratory analysis, can be summarized as follows. 

• Assessing InfoQ-X. Data was collected at a sufficiently high sampling rate, using 

the IT industrial infrastructure and the local DCS ( 1 5XD = ). The data collection 

process if facilitated by the existence of a query system that speeds up data 

retrieving from the process units, requiring some curation (for instance, not all 

variables are relevant in all stages) and cleaning. Given its complex structure 

(see below), data is not easy to handle or manipulate ( 7 4XD = ), which also 

introduces some delay in the process ( 4 4XD = ). Process data was fused with the 

available quality data (impurity measurements), leading to the final merged 

dataset for analysis ( 3 5XD = ). Being a batch process, the data structure is very 
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complex. It consists of time-profiles for the process variables, for the different 

stages and for all batches. These profiles do not have the same duration, nor are 

synchronized/aligned, as required by many batch data analysis tools 112-115. Even 

though this operationalization issues, data potentially contains all the necessary 

information for conducting the exploratory study ( 2 5XD = ), as all relevant 

process variables were successfully collected (overall, 20 process variable were 

analyzed, in the different batch stages; 5 5XD = ). The dataset is confined to a 

process unit and limited operation, and any generalization is therefore limited (

6 3XD = ).  

• Assessing InfoQ-f. The complexity of multi-stage, unsynchronized batch data is 

very high, and there is a current lack of methodological approaches to handle its 

resolution and structure, in an efficient way ( 1 3fD = , 2 2fD = ). Combining all 

variable profiles from several stages is also difficult, given the variability in their 

durations and misalignment, which raise relevant integration and 

operationalization problems ( 3 2fD = , 7 3fD = ) to the current 2-way 28,29,116,117 

and 3-way 118-120 batch data analysis approaches. These methods are not 

particularly capable of performing variable selection and are often 

overparameterized, hence potentially unstable (see ref. 31 for a discussion); 

therefore 5 3fD =  and 6 3fD = . This obstacles increase the analysis time and 

delay the deployment of results ( 4 3fD = ). Finally, the results obtained by 

classical methods are not easy to communicate, as they involve the time-

resolved analysis of many variables, in multiple stages ( 8 3fD = ). 

• Assessing InfoQ-g. The goal statement is clear regarding the purpose of the 

exploratory study. However, the secondary objective is not so clear, and the 
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predictive goal should be better defined. It may be the case that the purpose is 

not even predictive, but of conducting a diagnosis of potential root-causes using 

an empirical modelling approach ( 8 4gD = ). For this reason, this goal was not 

further pursued. 

• Assessing InfoQ-U. The performance of the exploratory study is mainly 

evaluated by the clarity, interpretability and usefulness of the graphical 

outcomes produced by the analysis. Contrary to other descriptive studies, where 

goodness-of-fit measures are recommended, here the goal is essentially process 

data visualization, regarding which more research is needed to define clear 

figures of merit to evaluate the associated performance. The evaluation is 

therefore qualitative and based on the knowledge of the spectrum of solutions 

available ( 6 4UD = ). 

With the evaluation performed during Stage 1 as detailed above, the computations of 

Stage 2 were performed using the table or weights for problems of the type 

“exploratory/descriptive analysis” (Table B1). The overall InfoQ was then computed in 

Stage 3, using equation (6). Figure 4 presents the pre-assessment of the InfoQ for the 

exploratory empirical study, indicating a rather moderate potential for generating 

information of quality. The main reasons lie in methodological limitations (component 

f) to cope with the complexity of the available dataset.  

 

[Insert Figure 4 approximately here] 

Figure 4. Crystallization case study. Decomposed InfoQ assessment: pre-assessment of the exploratory analysis 

study (Type B). 
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Post-assessment of the exploratory study (Type A) 

In order to circumvent the main limitations detected during the pre-assessment stage, a 

new framework was developed to handle complex batch process data. This framework, 

called FOBA (Feature Oriented Batch Analytics), provides an alternative solution to 

handle batch data, by converting profiles into features that characterize the fundamental 

aspects of their trends. Features are profile-specific, and therefore the individuality of 

the time-profiles is retained and preserved. In this approach, there is no need to perform 

complex synchronization and alignment operations (which are simply transferred to 

normal variation in the features domain) and the batch runs can have different durations. 

In the feature-oriented representation, the three-dimensional array is converted into a 

structured 2-way array, where most of the current well-developed analytical approaches 

can be applied. The implementation of FOBA to this dataset, easily identified a subset 

of variables, and their respective stages, that exhibit distinct trajectories in the two driers 

(a difference that was also found to be statistically significant), namely those regarding 

product feed and water washing stages. With this approach available and implemented, 

a post-evaluation was made, as described next. 

• Assessing InfoQ-X. This component was left unchanged, as no major concerns 

were found at the level of the dataset. Therefore, using the Pareto action 

principle, the focus is directed primarily to the few aspects having a bigger 

impact in information quality, which lie in component f. 

• Assessing InfoQ-f. By design, FOBA is able to handle batch data with arbitrary 

complexity regarding the resolution, structure and integration dimensions (

1 5fD = , 2 5fD = , 3 5fD = ). The analysis becomes much simpler ( 7 5fD = ) and 

faster ( 4 5fD = ), which also means that more people will be able to apply it in 
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the shop floor and benefit from the analysis of data from batch processes for 

process improvement. The analysis models constructed from it are more 

parsimonious, which makes them more stable and generalizable (see examples 

in 31; 6 4fD = ). Efficient approaches for variable selection can be implemented, 

allowing the identification of relevant variables/stages ( 5 5fD = ). All results can 

be easily communicated using conventional plots, because the problem was 

converted into the feature space 8 5fD = . 

• Assessing InfoQ-g and Assessing InfoQ-U. The evaluation of these components 

was maintained, since the project goal were not revised and no conceptual 

evolution took place during the project duration, regarding new and better 

figures of merit for exploratory process visualization studies. 

 

With the introduction of FOBA in the analysis of the industrial dataset, a significant 

evolution in the quality of component f was accomplished, which resulted in an increase 

of InfoQ from 0.62 to 0.85 (Figure 5), which is an interesting score for an exploratory 

study. 

 

[Insert Figure 5 approximately here] 

Figure 5. Crystallization case study. Decomposed InfoQ assessment: post-assessment of the exploratory analysis 

study (Type A). 

 

Post-assessment assessment of the predictive study 
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A clarification of the objective regarding the secondary aspect, led to an improvement 

of the accuracy in the goal statement. The purpose should not be to develop a predictive 

model of the impurities level in the final product ( 8 5gD = ) with the purpose of process 

tuning and optimization. The dataset does not present the right structure for that, nor 

exhibit enough variability to embrace this ambitious goal. 

 

Conclusions 

In this article we present a framework aimed at assessing the value of information 

generated in data-centric activities in the context of Chemical Processing Industry. The 

proposed framework decomposes the assessment of information quality (InfoQ) into 4 

components (analysis goal, data set, methods and utility), which are related through 

equation (1) and can be evaluated using 8 dimensions. These dimensions are evaluated 

by the user using a template of questions (Appendix A) leading to scores expressed in a 

Linkert scale. The assessment scores are then processed in 2 stages, leading to 

normalised dimension scores, component scores, and finally to InfoQ. The 

decomposition approach followed provides a clear structure to the assessment scheme 

(previously, the assessment was made in a single step), making it more systematic, 

objective, reproducible and informative. Weights are now introduced, reflecting the 

different focus and priorities associated with the different analysis goals. Several 

weightings profiles are suggested for different online or off-line data analysis activities 

(process monitoring, predictive modelling, diagnosis or causal explanation, etc.), which 

can easily be adjusted by the user to reflect personal experience or preferences 

(Appendix B). 
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The proposed approach fills an existing gap in the assessment of the merits of data-

centric activities. It is therefore an important asset providing support to the management 

of these activities in Industry 4.0 scenarios, where their importance will tend to grow 

and the quality of information generated will become a central issue.  

The InfoQ framework can be applied, for instance, in the following contexts: 

• Planning and optimization of data-driven activities in Industry 4.0. 

• Risk assessment of data-driven empirical studies (InfoQ-RISK analysis). 

• Tool for supporting decision making on how to improve the design of data-

driven activities, maximizing InfoQ. 

• A posteriori diagnosis and reporting of strengths and weaknesses of any data 

analysis activities (InfoQ-SWOT analysis). 

Future work will contemplate the reporting and analysis of more applications of this 

methodology, with the purpose supporting practitioners in developing their data-centric 

projects in the era of Industry 4.0.  
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List of Figures Captions 

Figure 1. The decomposition of InfoQ into its components (X, f, g, U) and then on the 8 

dimensions that determine their quality. Also shown, is the connection between 

dimensions and the components in which assessment they take part. 

Figure 2. Semiconductor case study. Decomposition of the InfoQ assessment: analysis 

of the initial study. 

Figure 3. Semiconductor case study. Decomposed InfoQ assessment: follow-up 

analysis. 

Figure 4. Crystallization case study. Decomposed InfoQ assessment: pre-assessment of 

the exploratory analysis study (Type B). 

Figure 5. Crystallization case study. Decomposed InfoQ assessment: post-assessment 

of the exploratory analysis study (Type A). 
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Figure 3 
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Tables 

Table 1. Summary Table of the InfoQ-Dimensions Affecting the Four Components 

(X,f,g,U) 

InfoQ-dimens.(↓) / InfoQ-compon.(→) X f g U 

Data Resolution (D1)     

Data Structure (D2)     

Data Integration (D3)     

Temporal Relevance (D4)     

Chronology of Data and Goals (D5)     

Generalizability (D6)     

Operationalisation (D7)     

Communication (D8)     
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