

Professor Ron S. Kenett

KPA Group, Israel and Neaman Institute, Technion, Israel

Statistics: A Life Cycle View

Ron S. Kenett KPA Group, Ra'anana, Israel

Information quality
ABSTRACT Statistics has gained a mathematical modeling data collection an expanded view of the role of statist service organizations. Such an approad new of statistics outlined above in an profession in the analytics domain. Thi research activities and the development o collaboration of statisticians with experts Specifically we discus here a "life cycle elicitation, (2) goal formulation, (3) data
> $\operatorname{lnfoQ}(f, X, g, U)=$ $U(f(X \mid g))$

My point of view

InfoQ dimensions

- Data resolution

O Data structure

- Data integration
- Temporal relevance

O Chronology of data and goal

- Generalizability
- Operationalization
- Communication

"After all, it is all about information quality....."

Applied statistics

is about meeting the challenge of solving real world problems with mathematical tools and statistical thinking

2018 ENBIS Box Medal

THE REAL WORK OF DATA SCIENCE
wnowe mex wowemen

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas
"Statistics is important because it is conceived as contributing to a causal understanding ... Statistics can indicate causality even in the

A journey back into the past

 absence of a mechanistic understanding.But the traditional self-conception of statistics is that it can rarely say anything about causality. This is a paradox."

Frederick Mosteller John W. Tukey

DATA ANALYSIS

 AND REGRESSIONa second course in statistics

Causation:

1. Consistency
2. Responsiveness
3. A mechanism

Data analysis and regression : a second course in statistics, Addison-Wesley, 1977

Frederick Mosteller 1916-2006

John Wilder Tukey 1915-2000
"causation, though often our major concern, is usually not settled by statistical arguments"

Albert Einstein (1879-1955)

"Development of Western science is based on two great achievements: the invention of the formal logical system (in Euclidean geometry) by the Greek philosophers, and the discovery of the possibility to find out causal relationships by systematic experiment (during the Renaissance)."

A. Einstein, April 23, 1953

Jean Piaget (1896-1980)

Piaget's (1936) theory of cognitive development explains how a child constructs a mental model of the world. His contributions include a stage theory of child cognitive development, detailed observational studies of cognition in children, and a series of tests to reveal different cognitive abilities.

"The infant's hand hits a hanging toy. The infant sees it bob about, then repeats the gesture several times, later applying it to other objects as well, developing a striking schema for striking."

The notion of causality in the infant's model entails a primitive cause-effect relationship between actions and results. For example if $\mathrm{Z}=$ 'pull string hanging from bassinet hood' $Y=$ 'toy shakes', the infant's model contains the causal relationship $\mathrm{Z} \rightarrow \mathrm{Y}$.

W. Edwards Deming (1900-1993)

"Tests of variables that affect a process are useful only if they predict what will happen if this or that variable is increased or decreased.

Statistical theory, as taught in the books, is valid and leads to operationally verifiable tests and criteria for an enumerative study. Not so with an analytic problem, as the conditions of the experiment will not be duplicated in the next trial.

Unfortunately, most problems in industry are analytic."*

*From preface to The Economic Control of Quality of nufactured product by W. Shewhart, 1931

Jerzy Neyman (1894-1981)

1990, Vol. 5, No. 4, 465-480

On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.

Jerzy Splawa-Neyman
Translated and edited by D. M. Dabrowska and T. P. Speed from the Polish original, which appeared in Roczniki Nauk Rolniczych Tom X (1923) 1-51 (Annals of Agricultural Sciences)

Abstract. In the portion of the paper translated here, Neyman introduces a model for the analysis of field experiments conducted for the purpose of comparing a number of crop varieties, which makes use of a double-indexed array of unknown potential yields, one index corresponding to varieties and the other to plots. The yield corresponding to only one variety will be observed on any given plot, but through an urn model embodying sampling without replacement from this doubly indexed array, Neyman obtains a formula for the variance of the difference between the averages of the observed yields of two varieties. This variance involves the variance over all plots of the potential yields and the correlation coefficient r between the potential yields of the two varieties on the same plot. Since it is impossible to estimate r directly, Neyman advises taking $r=1$, observing that in practice this may lead to using too large an estimated standard deviation, when comparing two variety means.

Potential

Figure 2. Latent variable path analysis model of UGPA, MCAT, and USMLE (Steps 1-3) latent variables employing ML estimation ($n=$ $24,872)$. Note. Fit indexes: $\chi^{2}(55)=11726.28, p<.001(\mathrm{CFI}=.928$, RMSEA $=.025)$. UGPA1-4 $=$ Undergraduate GPA Year $1-4 ; \mathrm{BS}=$ Biological Sciences MCAT Sublest; PS = Physical Sciences MCAT Subtest; VR $=$ Verbal Reasoning MCAT Subtest; WS $=$ Writing Sample MCAT Subtest; Step 1-3 USMLE $=$ United States Medical Licensing Exam Step 1-3.

Contingency tables

DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY COLLEGE, UNIVERSITY OF LONDON.

DRAPERS' COMPANY RESEARCH MEMOIRS. bIometric series, i.

MATHEMATICAL CONTRIBUTIONS TO THE THEORY OF EVOLUTION.
XIII. ON THE THEORY OF CONTINGENCY AND ITS RELATION TO ASSOCIATION AND NORMAL CORRELATION.

$$
\begin{gathered}
8 \mathrm{Y} \\
\text { KARL PEARSON, FR.S. }
\end{gathered}
$$

The term contingency table was first used by Karl Pearson in "On the Theory of Contingency and Its Relation to Association and Normal Correlation", the Drapers' Company Research Memoirs Biometric Series I, published in 1904.

Contingency tables

(2.) On the Conception of Contingency.

In mathematical treatises on algebra a definition is usually given o probability. If p be the probability of any event, and q the probabili event, then the two events are said to be independent, if the prob combined event be $p \times q$. Now let A be any attribute or character classified into the groups $\mathrm{A}_{3}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{s}$, and let the total number examined be N , and let the numbers which fall into these groups be respectively. Then the probability of an individual falling into one or groups is given by $n_{1} / \mathrm{N}, n_{2} / \mathrm{N}, \ldots n_{s} / \mathrm{N}$ respectively. Now supp population to be classified by any other attribute into the groups $\mathrm{B}_{1}, \mathrm{I}$ the group frequencies of the N individuals to be $m_{1}, m_{2}, \ldots m_{t}$ resp

Brit. f. Phil. Sci. 34 (1983), 105-118 Printed in Great Britain

The Fisher/Pearson Chi-Squared Controversy: A Turning Point for Inductive Inference*

by DAVIS BAIRD

I The Chi-Squared Test
2 Yule and Greenwood's 1915 Paper
3 Fisher's Argument
4 Pearson's Reply
5 Assessment
6 Goodness of Fit and Closeness to Truth
7 Goodness of Fit and Information
8 Conclusion probability of an individual falling into these groups will be respectively $m_{1} / \mathbf{v}, m_{2} / \mathbf{v}$, $m_{3} / \mathbf{N}, \ldots m_{t} / \mathbf{N}$. Accordingly the number of combinations of B_{v} with A_{v} to be expected on the theory of independent probability if N pairs of attributes are examined is

$$
\mathrm{N} \times \frac{n_{u}}{\mathrm{~N}} \times \frac{r_{v}}{\overline{\mathrm{~N}}}=\frac{n_{u} \cdot m_{v}}{\mathrm{~N}}=\nu_{u v}, \text { say. }
$$

Contingency tables

Now it must be quite clear that if we make our measurement of contingency any function whatever of such quantities as $n_{w}-\nu_{u v}$, its magnitude will be absolutely independent of the order of classification, i.e., its value will be unchanged if we re-arrange the A's and the B's in any manner whatever. This is the fundamental gain of this new conception of contingency. But precisely as we can measure position or acceleration in a great variety of ways, so it is possible to measure contingency. We must try to select out of these ways those which: (a) bring contingency into line with the customary notions of correlation and association; and (b) permit of not too laborious calculations leading to the required measure.

Contingency tables

In the chapter Contingency and correlation - the insufficiency of causation, (The Grammar of Science, 1911), Pearson says: "Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of modern science, namely, the category of cause and effect."

https://pure.mpg.de/.../item 2.../component/file 2368441/content

Regression towards the mean....

Equivalence Line

Sir Francis Galton (1822-1911)

"It is easy to see that consequence of the co-relation must be the variation of the two organs being partly due to common causes" Galton, F. (1886). "Regression towards mediocrity in hereditary stature".

The Journal of the Anthropological Institute of Great Britain and Ireland 15: 246-263

Regression towards the mean....

1. Base rate neglect,
2. Overconfidence,
3. Anchoring,
4. Representativeness,
5. Availability,
6. Regression towards the mean,
7. Spurious correlation,
8. Framing.

UNDOING
PROJECT

The International Bestseller

Thinking, Fast and Slow

Daniel Kahneman Winner of the Nodel Price

Treatment to reduce high levels of a measurement

People with extreme values of the measurement, such as high blood pressure, may be treated to bring their values closer to the mean. If they are measured again we will observe that the mean of the extreme group is now closer to the mean of the whole population, that is, it is reduced. This should not be interpreted as showing the effect of the treatment.

Relating change to initial value

We may study the relation between the initial value of a measurement and the change in that quantity over time. In antihypertensive drug trials, for example, it may be postulated that the drug's effectiveness would be different (usually greater) for patients with more severe hypertension. This is a reasonable question, but, the regression towards the mean will be greater for the patients with the highest initial blood pressures, so that we would expect to observe the postulated effect even in untreated patients.

Regression towards the mean....

1. Base rate neglect,
2. Overconfidence,
3. Anchoring,
4. Representativeness,
5. Availability,
6. Regression towards the mean,
7. Spurious correlation,
8. Framing.

Comparison of two methods of measurement When comparing two methods of measuring the same quantity researchers are sometimes tempted to regress one method on the other. The fallacious argument is that if the methods agree the slope should be 1. Because of the effect of regression towards the mean we expect the slope to be less than 1, even if the two methods agree closely.
https://www.ncbi.nlm.nih.gov/pubmed/16921578
Stephen Senn (2006), Change from baseline and analysis of covariance revisited, Stat Med.; 25(24):4334-44

Representativeness....

1. Base rate neglect,
2. Overconfidence,
3. Anchoring,
4. Representativeness,
5. Availability,
6. Regression towards the mean,
7. Spurious correlation,
8. Framing.

The "Hot Hand":
 Statistical Reality or Cognitive Illusion?

[^0]

The Hot Hand in Basketball: On the Misperception of Random Sequences

Thomas Gilovich
Cornell University
AND

Robert Vallone and Amos Tversky

Stanford University

We investigate the origin and the validity of common beliefs regarding "the hot hand" and "streak shooting" in the game of basketball. Basketball players and fans alike tend to believe that a player's chance of hitting a shot are greater following a hit than following a miss on the previous shot. However, detailed analyses of the shooting records of the Philadelphia 76ers provided no evidence for a positive correlation between the outcomes of successive shots. The same conclusions emerged from free-throw records of the Boston Celtics. The same conclusions emerged from free-throw records of the Boston Celtics, and from a controlled shooting experiment with the men and women of Cornell's varsity eams. The outcomes of previous shots influenced Cornell players' predictions but not their performance. The belief in the hot hand and the "detection" of streaks in random sequences is attributed to a general misconception of chance according to which even short random sequences are thought to be highly representative of their generating process. O 1985 Academic Press. tnc.

- 91% of the fans believe that a player has a better chance of making a shot after having just made his last two or three shots than he does after having just missed his last two or three shots
- 84% of the fans believe that it is important to pass the ball to someone who has just made several (two, three, or four) shots in a row

Framing....

1. Base rate neglect,
2. Overconfidence,
3. Anchoring,
4. Representativeness,
5. Availability,
6. Regression towards the mean,
7. Spurious correlation,
8. Framing.
MICHAEL
LEWIS
UNE
PROJECT
```
The International Bestseller
```

Thinking, Fast and Slow Daniel Kahneman Wincre of te Nod Prize

Muller-Lyer optical illusion

David Hume (1711-1776)

1. Analytical vs. empirical claims, the former are product of thoughts, the latter matter of fact
2. Causal claims are empirical
3. All empirical claims originate from experience.

"Thus we remember to have seen that species of object we call flame, and to have felt that species of sensation we call heat. We likewise call to mind their constant conjunction in all past instances. Without any farther ceremony, we call the one cause and the other effect, and infer the existence of the one from that of the other."

Agenda

1. Background on causality in science and statistics

2. Fishbone cause and effect diagrams

3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

Wiley StatsRef: Statistics Reference Online

Cause-and-Effect Diagrams

By Ron S. Kenett ${ }^{1,2}$

Keywords: scatter plots, Ishikawa diagrams, structural equation models, Bayesian networks, integrated management models

> Abstract: Cause and effect is a basic knowledge driven by theoretical and empirical considerations. Several tools have been proposed to map cause and effect relationships, with some more heuristics some highly quantitative. In this section we cover the Ishikawa fishbone diagram, structural equation models, and Bayesian networks.

Cause-Effect Diagram

- Objectives: Visual presentation of relationships between Effect and possible Causes
- How?: List of possible Causes and their Structure (Fishbone)
- Individual and Teamwork tool for improvement program initiation
- Possibility to select critical Causes based on Expert Knowledge

Cause-Effect (Ishikawa) Diagram

(Fishbone Diagram)

Kaoru Ishikawa 1915-1989

Cause-Effect Diagram Methodology

Round robin process

1. You can say "pass"
2. You can build on other's ideas
3. No critique allowed (even self)
4. Indicate where to note the idea on the fishbone diagram

Why?

Why? Why? Why?

Lost control of a car

9 participants, 2 votes each to prioritize impact, cost and feasability Lost control of a car - improvement priorities Effect

To minimize the effect we will focus on the causes in green list

Figure 3

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

Judea Pearl (1985)

Judea Pearl
Computer Science Department
University of California
Os Angeles, CA 9002
(213) 825-3243

Memory Models
Belief Systems
Inference Mechanisms
Knowledge Representation

Submitted to the Seventh Annual Conference of the Cognitive Science Society 15-17 August 1985

Bayesian networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify the existence of direct causal dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to represent the deep causal knowledge of an agent or a domain expert and turns into a computational architecture if the links are used not merely for storing factual knowledge but also for directing and activating the data flow in the computations which manipulate this knowledge.

The first part of the paper defines the properties of Bayes networks which are necessary to guarantee completeness and consistency, and shows how dependencies and conditional-independence relationships can be tested using simple link-tracing operations.

art of the paper deals with the task of fusing and propagating the Applicability of probabilistic methods to tasks requiring r automated reasoning under uncertainty.... Application areas o include diagnosis, forecasting, image understanding, multie sensor fusion, decision support systems, plan recognition, r planning and control, speech recognition - in short, almost ti any task requiring that conclusions be drawn from uncertain ${ }^{v i}$ clues and incomplete information.

e develop causal models.

https://www.sciencedirect.com/science/article/ pii/B9780080514895500059

$\mathbf{P}\left(\mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}} \mathbf{X}_{\mathbf{3}} \mathbf{X}_{\mathbf{4}} \mathbf{X}_{\mathbf{5}}\right)=$?

$x_{1} x_{2} x_{3} x_{4} \quad x_{5} \quad$ Independence

$P\left(X_{1} \cdots X_{5}\right)=P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3}\right) P\left(X_{4}\right) P\left(X_{5}\right)$	
$\left.x_{1}\right)\left(x_{2}\right) x_{3}\left(x_{4}\right)\left(x_{5}\right.$	Markov Model
	$\left(x_{3} \mid x_{2}\right) P\left(x_{4} \mid x_{3}\right) P\left(x^{\prime}\right.$

$x_{1}\left(x_{2}\right)\left(x_{3}\right)\left(x_{5} \quad\right.$ Bayesian Network $P\left(X_{1} \cdots X_{5}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{3}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4}\right) P\left(X_{5} \mid X_{3}\right)$

Five events

Earthquake

Radio

Burglary

Call

Five events, over time

time	Earthquake	Burglary	Radio	Alarm	Call
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	$\mathbf{1}$
4	0	0	0	0	0
5	0	$\mathbf{1}$	0	0	0
6	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
7	0	0	0	0	0

A Bayesian Network

$$
\begin{aligned}
& P(C, A, R, E, B)=P(B)^{*} P(E \mid B)^{\star} P(R \mid E, B)^{\star} P(A \mid B, E, R)^{\star} P(C \mid A, R, B, E) \\
& P(C, A, R, E, B)=P(B)^{*} P(E)^{*} P(R \mid E)^{\star} P(A \mid B, E)^{*} P(C \mid A)
\end{aligned}
$$

What is the effect of earthquake and radio on alarm?

$P($ Alarm \mid Earthquake, Radio $)=P($ Alarm \mid Earthquake $)$

What is causing the call?

The Law of Total Probability

Law of Total Probability

$$
\begin{aligned}
P(A) & =\Sigma_{B} P(A, B) \\
& =\Sigma_{B} P(A \mid B) P(B) \quad \text { where } B \text { is any random variable }
\end{aligned}
$$

Why is this useful? given a joint distribution (e.g., $P(A, B, C, D)$) we can obtain any "marginal" probability e.g.,

$$
P(B)=\sum_{A} \sum_{C} \sum_{D} P(A, B, C, D)
$$

Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g.,

$$
\begin{aligned}
P(c \mid b) & =\Sigma_{a} \Sigma_{d} P(a, c, d \mid b) \\
& =1 / P(b) \Sigma_{a} \Sigma_{d} P(a, c, d, b)
\end{aligned}
$$

$$
\text { where } 1 / \mathrm{P}(\mathrm{~b}) \text { is just a normalization constant }
$$

Thus, the joint distribution contains the information we need to compute any probability of interest.

The Chain Rule

We can always write

$$
\begin{aligned}
P(a, b, c, \ldots z)= & P(a \mid b, c, \ldots . z) P(b, c, \ldots z) \\
& \text { (by definition of joint probability) }
\end{aligned}
$$

Repeatedly applying this idea, we can write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b \mid c, . . z) P(c \mid . . z) . . P(z)
$$

This factorization holds for any ordering of the variables.
This is the chain rule for probabilities.

Conditional Independence

2 random variables A and B are conditionally independent given C iff

$$
P(a, b \mid c)=P(a \mid c) P(b \mid c) \quad \text { for all values } a, b, c
$$

More intuitive (equivalent) conditional formulation
A and B are conditionally independent given C iff

$$
P(a \mid b, c)=P(a \mid c) \quad O R \quad P(b \mid a, c)=P(b \mid c) \text { for all values } a, b, c
$$

Intuitive interpretation:
$P(a \mid b, c)=P(a \mid c)$ tells us that learning about b, given that we already know c, provides no change in our probability for a,
i.e., b contains no information about a beyond what c provides

Can generalize to more than 2 random variables
E.g., K different symptom variables $X_{1}, X_{2}, \ldots, X_{K}$, and $C=$ disease
$P\left(X_{1}, X_{2}, \ldots, X_{K} \mid C\right)=\prod P\left(X_{i} \mid C\right)$
Also known as the naïve Bayes assumption

Bayesian Networks

- A Bayesian network specifies a joint distribution in a structured form
- Represent dependence/independence via a directed graph
- Nodes = random variables
- Edges = direct dependence
- Structure of the graph \Leftrightarrow Conditional independence relations

In general,

The full joint distribution
The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian Network
- The graph structure (conditional independence assumptions)
- The numerical probabilities (for each variable given its parent)

A 3-way Bayesian Network

Marginal Independence: $\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B}) \mathbf{P (C)}$

A 3-way Bayesian Network

A chain

Markov dependence:
$\mathbf{P}(\mathbf{A}, \mathrm{B}, \mathrm{C})=\mathbf{P}(\mathbf{C} \mid \mathbf{B}) \mathbf{P}(\mathrm{B} \mid \mathrm{A}) \mathbf{P}(\mathrm{A})$

A 3-way Bayesian Network

A fork

Conditionally independent effects:
$P(A, B, C)=P(B \mid A) P(C \mid A) P(A)$
B and C are conditionally independent given A.

A 3-way Bayesian Network

Independent Causes:

A car's engine can fail to start (C) due either to a dead battery (A) or due to a blocked fuel pump (B). Ordinarily, we assume that battery death and fuel pump blockage are independent events, because of the essential modularity of such automotive systems. Thus, in the absence of other information, knowing whether or not the battery is dead gives us no information about whether or not the fuel pump is blocked. However, if we happen to know that the car fails to start (i.e., we fix common effect (C), this information induces a dependency between the two causes battery death and fuel blockage. Thus, knowing that the car fails to start, if an inspection shows the battery to be in good health, we can conclude that the fuel pump must be blocked.

Burglary example revisited

Consider the following 5 binary variables:
$B=a$ burglary occurs at your house
$E=$ an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
$M=$ Mary calls to report the alarm

What is $P(B \mid J, M)$?

- We can use the full joint distribution to answer this question

This requires $2^{5}=32$ probabilities

- Alternatively, we can use prior domain knowledge to come up with a Bayesian Network with fewer probabilities

Constructing a Bayesian Network

Order the variables in terms of causality

$$
\begin{aligned}
& \text { e.g., }\{E, B\}->\{A\}->\{J, M\} \\
& P(J, M, A, E, B)=P(J, M \mid A, E, B) P(A \mid E, B) P(E, B) \\
& \sim P(J, M \mid A) P(A \mid E, B) P(E) P(B) \\
& \sim P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
\end{aligned}
$$

These causality assumptions are reflected in the graph structure of the Bayesian Network

Unconstrained joint distribution requires $\mathrm{O}\left(2^{n}\right)$ probabilities. If we have a Bayesian network, with a maximum of k parents for any node, then we need $O(n 2 k)$ probabilities. Example: Full unconstrained joint distribution with $\mathrm{n}=30$ needs 10^{9} probabilities for full joint distribution but binary Bayesian network with $n=30, k=4$, requires only 480 probabilities.

The Burglary Bayesian Network Structure

Constructing the Bayesian Network

$P(J, M, A, E, B)=$

$$
P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
$$

There are 3 conditional probability tables (CPDs) to be determined: $P(J \mid A), P(M \mid A), P(A \mid E, B)$

Requiring $2+2+4=8$ probabilities
And 2 marginal probabilities $\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{B})->2$ more probabilities

These probabilities come from

- Expert knowledge
- From data (relative frequency estimates)
- Or a combination of both

The Bayesian Network

10 probabilities
Versus
$2^{5}-1=32-1=31$

The Bayesian Network for a different variable ordering

(a)

The Bayesian Network for a different variable ordering

(b)

Inference (Reasoning) in Bayesian Networks

Consider answering a query in a Bayesian Network
$\mathrm{Q}=$ set of query variables
$\mathrm{e}=$ evidence (set of instantiated variable-value pairs)
Inference = computation of conditional distribution $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

Examples

```
P(Burglary | Alarm)
P(Earthquake | JCalls, MCalls)
P(JCalls, MCalls | Burglary, Earthquake)
```


$P(B \mid A)=P(A \mid B) P(A) / P(B)$

We can use the structure of the Bayesian Network to answer such queries efficiently

Example

$P(A, B, C, D, E, F, G)$ is modeled as $P(A \mid B) P(C \mid B) P(F \mid E) P(G \mid E) P(B \mid D) P(E \mid D) P(D)$

Example

Say we want to compute $P(A \mid c, g)$

Example

Direct calculation: $\mathrm{P}(\mathrm{A} \mid \mathrm{c}, \mathrm{g})=\sum_{\text {BDEF }} \mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F} \mid \mathrm{c}, \mathrm{g})$
Complexity of the sum is $\mathrm{O}\left(\mathrm{m}^{4}\right)$

Example

Reordering:

$$
\Sigma_{\mathrm{D}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \Sigma_{\mathrm{D}} \mathrm{P}(\mathrm{~B} \mid \mathrm{D}, \mathrm{c}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{D} \mid \mathrm{E}) \Sigma_{\mathrm{F}} \mathrm{P}(\mathrm{E}, \mathrm{~F} \mid \mathrm{g})
$$

Example

Reordering:

$$
\Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \sum_{\mathrm{D}} \mathrm{P}(\mathrm{~B} \mid \mathrm{D}, \mathrm{c}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{D}|\mathrm{E}| \underbrace{\sum_{\mathrm{F}} \mathrm{P}(\mathrm{E}, \mathrm{~F} \mid \mathrm{g})}_{\mathrm{F}} \mathrm{~S})
$$

Example

Reordering:

$$
\sum_{b} p(a \mid b) \sum_{d} p(b \mid d, c) \sum_{p(d \mid g)}
$$

Example

Reordering:

$$
\Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \underbrace{\sum_{\mathrm{D}} \mathrm{P}(\mathrm{~B} \mid \mathrm{D}, \mathrm{c}) \mathrm{P}(\mathrm{D} \mid \mathrm{g})}_{\mathrm{P}(\mathrm{~B} \mid \mathrm{c}, \mathrm{~g})}
$$

Example

Reordering:

Real-valued Variables

Bayesian Networks can also handle Real-valued variables

- If we can assume variables are Gaussian, then the inference and theory for Bayesian networks is well-developed,
- E.g., conditionals of a joint Gaussian is still Gaussian, etc.
- In inference we replace sums with integrals
- For other density functions it depends...
- Can often include a univariate variable at the "edge" of a graph, e.g., a Poisson conditioned on day of week
- But for many variables there is little know beyond their univariate properties, e.g., what would be the joint distribution of a Poisson and a Gaussian? (its not defined)
- Common approaches in practice
- Put real-valued variables at "leaf nodes" (so nothing is conditioned on them)
- Assume real-valued variables are Gaussian or discrete
- Discretize real-valued variables

Take home bullets

> Bayesian networks represent a joint distribution using a graph
$>$ The graph encodes a set of conditional independence assumptions
$>$ Answering queries (or inference or reasoning) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
$>$ Probabilistic inference is intractable in the general case but can be carried out in linear time for Bayesian networks

Iournal of Statistical Software

Learning Bayesian Networks with the bnlearn R Package

Marco Scutari University of Padova
http://www.lighttwist.net/wp/uninet

BAYESIALAB

University of Pittsburgh

MSBNx is a component-based Windows application for creating, assessing, and evaluating Bayesian Networks, created at Microsoft Research
https://msbnx.azurewebsites.net/msbnx/what is msbnx.htm

Decision Systems Laboratory. Department of Information Science and Telecommunications and the Intelligent Systems Program at the University of Pittsburgh. www.bayesfusion.com

diabetesxdsl

This paper describes the role of the novel technique of causal probabilistic network (CPN) modeling as an approach to tackling control system problems fypified by that of the administration of treatment to the patien suffering from a chronic disease such as First, since diabetes arises as a consequence. First, since diabetes arises as a consequence of ability of a CPN to represent the uncertainty of a physiologically-based model is described. Second, its ability to make robust estimates of the parameters of the metabolic model is presented, and finally, in conjunction with decision theory approaches, its ability to compare ainernalin therapy for patients with insulise on dependent diabetes mellitus is illustrated.

The management of chronic noncommunicable diseases such as diabetes (diabetes mellitus), raised blood pressure (hypertension), and elevated levels of cholesterol poses some difficult challenges for the clinician. In most cases, from an engineering or systems perspective, such diseases can be viewed as arising from a partial or complete failure of one or more of the multitude of feedback control loops of the human organism. The management of such diseases requires regu-
by R. Hovorka S. Andreassen
J. J. Benn
K. G. Olesen
K. G. Olesen

The basic building block of the system is a one hour model of the intake and utilization of food, blood glucose and insulin. The nodes BG and CHO acts as status variables denoting respectively the glucose in the blood stream and the glucose reservoir in the stomach. Intermediate nodes are primarily describing processes that utilizes the glucose

ACTIV INS-10
A ACTIV INS-11
O ACTIVINS-12
A ACTIV Ins-13
ACTIV INS-14
ACTIV INS-15
A ACTIV INS-16
A ACTIV INS-17
ACTIV INS-18 O ACTIV INS-19 ACTIV INS-2
O ACTIV Ins-20
O ACTIV Ins-21
O ACTIV Ins-22
ACTIV Ins-23
\bigcirc ACTIVINS-23
ACTIV INS-3
ACTIV INS-4
ACTIV INS-5
ACTIV INS-6
ACTIV INS-7
ACTIV INS-8
ACTIV Ins-9
\bigcirc BASAL-BAL-0
BASAL-BAL-1
\bigcirc BASAL-BAL-10
\bigcirc BASAL-BAL-11
O BASAL-BAL-12
O BASAL-BAL-13
BASAL-BAL-14
O BASAL-BAL-15
BASAL-BAL-16
BASAL-BAL-17
O BASAL-BAL-18
O BASAL-BAL-19
O BASAL-BAL-2

A preliminary model for insulin dose adjustment.
Quthor = "Steen Andreassen and Roman Howorka and Jonathan Benn and Kristian G. Olesen and Ewart I author = "A Moeen Andreassen and Roman Hovorka and Jonathan Benn and Kristian G. ooktitle = "Proceedings of the Third Conference on Artificial Intelligence in Medicine", year $=1991$,
ditor = 'TM. Stefanelli and A. Hasman and M. Fieschi and J. Talmon", pages = "239--248",
publisher = "Springer-Verlag"

New ERONIIERS

In 50 Words Or Less - Absyocisn notwat can graphicallyrepre-
sent cause and affoct reltitionehige botmern variblles and provide monghomort with
 fitwip prime - Todomorstrato their effectivenesa, Byspion notwarks warc applised to annlying an annusa
customar ratifoction urivey and a pabic. sprian survey abos gerition in wiry abe

Bayesian networks give insight into survey-data analysis
by Ron Kenett and Silvia Salini

But: Correlation is not causation...

2. THE BALLOON IDEA

The basic idea consists of surrounding the sample plot with a kind of "birthday balloon" that is in fact an ellipse. But let us apply this method to an example taken from a well-known volume by Hoel (1971). The sample plot from page 189 of Hoel's book is reproduced in Figure 1.

First, we draw the balloon so as to surround all or most of the points and to fit the plot. Second, we measure the vertical height of the balloon at its center, h, and its vertical height at the extremes, H. Then we compute the formula

$$
F=\sqrt{1-\left(\frac{h}{H}\right)^{2}}
$$

If the points inside the balloon are "well distributed," then the result of the computation usually gives a fairly good idea of the value of Pearson's correlation coefficient.

Chatillon, G. (1984) The Balloon Rules for a Rough Estimate of the Correlation Coefficient, The American Statistician, 38(1), 58-60.

Correlation is not causation...

Scatterplot of Y vs X

Correlations

Pearson correlation -0.501
P -value
0.252

$$
F=\sqrt{1-\left(\frac{h}{H}\right)^{2}} .
$$

$$
\operatorname{Sqr}\left\{\left[1-\left(\frac{7.5}{8.75}\right)^{2}\right\}\right.
$$

$$
=0.5
$$

Correlation is not causation...

Correlations
Pearson correlation -0.501
P -value
0.252

Correlation is not causation...

Correlation is not causation...

The population of Oldenburg in Germany and the number of observed storks in 1930-1936*

year	1930	1931	1932	1933	1934	1935	1936
Population in thousands	50	52	64	67	69	73	76
Number of storks	130	150	175	190	240	245	250

[^1]
Spurious correlation

Time is a confounding variable

1. Base rate neglect,
2. Overconfidence,
3. Anchoring,
4. Representativeness,
5. Availability,
6. Regression towards the mean,
7. Spurious correlation,
8. Framing.

The International
Bestseller
Thinking,
Fast and Slow

Spurious correlation

Spurious correlation

Correlations

Pearson correlation 0.93
P -value

Pearson correlation

Navigation

- WebPower
- Ask Power
- My Analyses
- New Analysis
- Tools
- Manual
- References
- What's new
- Workshop
- FAQ

How many observations are needed to determine significant correlation?

Correlation Coefficient

Parameters (Help)	
Sample size	50
Correlation	0.3
\# of vars partialed out	0
Significance level	0.05
Power	
H1	Two sided $\mathbf{~ v}$
Power curve	Show power curve
Note	Power for correlation

Calculate

Output

Power for correlation

$$
\begin{array}{rrrr}
\text { n } & r & \text { alpha } & \text { power } \\
50 & 0.3 & 0.05 & 0.5729
\end{array}
$$

URL: http://psychstat.org/correlation

Power Curve
 Download PDF figure

https://webpower.psychstat.org/models/cor01/ http://www.divms.uiowa.edu/~rlenth/Power/ \bullet
http://www.tylervigen.com/spurious-correlations

Per capita consumption of mozzarella cheese
 correlates with
 Civil engineering doctorates awarded

On spurious correlations

$$
\mathrm{S}^{\mathrm{D}}=\left\{\mathbf{x} \in \mathrm{R}_{+}^{\mathrm{D}}: x_{1}+x_{2}+\cdots+x_{\mathrm{D}}=k\right\} \quad \text { Compositional data }
$$

On spurious correlations

$\mathbf{x 1}$	$\mathbf{x} \mathbf{2}$	$\mathbf{x} \mathbf{x}$	$\mathbf{x 4}$
0.1	0.2	0.1	0.6
0.2	0.1	0.1	0.6
0.3	0.3	0.2	0.2

$$
\mathrm{S}^{\mathrm{D}}=\left\{\mathbf{x} \in \mathrm{R}_{+}^{\mathrm{D}}: x_{1}+x_{2}+\cdots+x_{\mathrm{D}}=k\right\}
$$

Full composition			Subcomposition			
$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{x 3}$	$\mathbf{x 4}$	$\mathbf{x} \mathbf{x} \mathbf{2}$	$\mathbf{x 2} \mathbf{2}$	$\mathbf{x 3} \mathbf{~ 2 ~}$
0.1	0.2	0.1	0.6	0.25	0.5	0.25
0.2	0.1	0.1	0.6	0.5	0.25	0.25
0.3	0.3	0.2	0.2	0.375	0.375	0.25

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

"No aphorism is more frequently repeated in connection with field trials, than that we must ask Nature few questions, or, ideally, one question, at a time. The writer is convinced that this view is wholly mistaken. Nature, he suggests, will best respond to a logical and carefully thought out questionnaire. A factorial design allows the effect of several factors and interactions between them, to be determined with the same number of trials as are necessary to determine any one of the effects by itself with the same degree of accuracy."
R.A. Fisher (1926). The arrangement of field experiments, Journal of the Ministry of Agriculture of Great
Britain 33, 503-513. Britain 33, 503-513.

Design of Experiments

Le seul moyen de prévenir ces écarts, consiste à supprimer, ou au moins à simplifier, autant qu'il est possible, le raisonnement qui est de nous, \& qui peut seul nous égarer, à le mettre continuellement a l'épreuve de l'expérience; à ne conserver que les faits qui sont des vérités données par la nature, \& qui ne peuvent nous tromper ; à ne chercher la verité que dans l'enchaînement des expériences \& des observations, sur-tout dans l'ordre dans lequel elles sont présentées, de la même manière que les mathématiciens parviennent à la solution d'un problême par le simple arrangement des données, \& en réduisant le raisonnement à des opérations si simples, à des jugemens si courts, qu'ils ne perdent jamais de vue l'évidence qui leur sert de guide.

Methode de Nomenclature chimique,

 A. L. Lavoisier, 1787.Formerly Fellow of Gonville and Caius College, Cambridge Honorary Member, American Statistical Association and American Academy of Arts and Sciences Galton Professor, University of London

Oliver and Boyd
Edinburgh: Tweeddale Gourt
London: 33 Paternoster Row E.C.

I have assumned, as the experimenter always does assume, that it is possible to draw valid inferences from the results of experimentation ; that it is possible to argue from consequences to causes, from observations to hypotheses; as a statistician would say, from a sample to the population from which the sample was drawn, or, as a logician might put it, from the particular to the general.

An implicit definition of causal effects by Fisher is the following:

If we say, 'This boy has grown tall because he has been well fed,' we are not merely tracing out cause and effect in an individual instance; we are suggesting that he might quite probably have been worse fed, and that in this case he would have been shorter. We are, in fact, suggesting that existing differences of nutrition can account for differences of stature comparable to the standard deviation of stature. Now this is just what is meant when we speak of nutrition as a cause of variability; we thereby mean that in a population absolutely uniform in regard to other causes, such as breeding and exercise, existing differences of nutrition would produce a certain variability-in fact, that a certain percentage of the variance must be ascribed to nutrition.

In the 1920s RA Fisher presented randomization as an essential ingredient of his approach to the design and analysis of experiments, validating significance tests. In its absence, the experimenter had to rely on his judgement that the effects of biases could be discounted.

Twenty years later, Bradford Hill promulgated the random assignment of treatments in clinical trials as the only means of avoiding systematic bias between the characteristics of patients assigned to different treatments. The two approaches were complementary, Fisher appealing to statistical theory, Hill to practical needs. The two men remained on good terms throughout most of their careers.

Bradford Hill, A. (1953). Observation and experiment. New England Journal of Medicine 248:995-1001
Bradford Hill, A. (1965). The environment and disease: association or causation? Proceedings of the Royal Society of Medicine 58:295-300

Strength (effect size): A small association does not mean that there is not a causal effect, though the larger the association, the more likely that it is causal.
Consistency (reproducibility): Consistent findings observed by different persons in different places with different samples strengthens the likelihood of an effect.
Specificity: Causation is likely if there is a very specific population at a specific site and disease with no other likely explanation. The more specific an association between a factor and an effect is, the bigger the probability of a causal relationship.
Temporality: The effect has to occur after the cause (and if there is an expected delay between the cause and expected effect, then the effect must occur after that delay).
Biological gradient: Greater exposure should generally lead to greater incidence of the effect. However, in some cases, the mere presence of the factor can trigger the effect. In other cases, an inverse proportion is observed: greater exposure leads to lower incidence.[
Plausibility: A plausible mechanism between cause and effect is helpful (but Hill noted that knowledge of the mechanism is limited by current knowledge).
Coherence: Coherence between epidemiological and laboratory findings increases the likelihood of an effect. However, Hill noted that "... lack of such [laboratory] evidence cannot nullify the epidemiological effect on associations".
Experiment: "Occasionally it is possible to appeal to experimental evidence".
Analogy: The effect of similar factors may be considered.

The Environment and Disease: Association or Causation?
by Sir Austin Bradford Hill Cbe dsc frcp(hon) frs (Professor Emeritus of Medical Statistics, University of London)

Amongst the objects of this newly-founded Section of Occupational Medicine are firstly 'to provide a means, not readily afforded elsewhere, whereby physicians and surgeons with a special knowledge of the relationship between sickness and injury and conditions of work may discuss their problems, not only with each other, but also with colleagues in other fields, by holding joint meetings with other Sections of the Society'; and, secondly, 'to make available information about the physical, chemical and psychological hazards of occupation, and in particular about those that are rare or not easily recognized'.

BRITISH MEDICAL JOURNAL

London saturday september 301950
SMOKING AND CARCINOMA OF THE LUNG

|*U.S. Surgeon General Luther Terry holds a copy of the 387 page report of the Advisory Committee to the Surgeon General of the Public Health Service on the relationship of smoking to health Jan 11, 1964. He spoke at a Washington news conference at which the study was released. It termed smoking a health hazard calling for corrective action." (AP Photo/hwg)

Richard Doll

Cornfield Inequality

Cornfield J (1956). A statistical problem arising from retrospective studies. Proceedings 3rd Berkeley Symposium on Mathematical Statistics, 4:135-48.
R_{0} is the observed relative risk between an exposed and unexposed group, which could be explained by an unmeasured confounder, U. R_{O} is no greater than the ratio of the prevalence of U in the exposed to that in the unexposed population. $R_{O} \leq R_{U}$, where R_{U} is the ratio of risk in those with U compared to those without U.

Lung cancer in asbestos workers: relative risk of asbestos exposed workers dying from lung cancer is 6.8 times their expected number in general population.

60\% of all males smoke, 80% of males in asbestos-related occupations. The prevalence ratio, $0.8 / 0.6=1.33$, is much less than $R_{o}=6.8$, so Cornfield's inequality implies that smoking cannot explain the entire association between asbestos and lung cancer.

Cornfield Inequality

Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL (1954) Smoking and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst 1954;22:
"The consistency of all the epidemiologic and experimental evidence also supports the conclusion of a causal relationship with cigarette smoking...results in animals are fully consistent with the epidemiologic findings in man.

When a demonstrable parallelism exists between epidemiologic data and laboratory findings, greater significance accrues to both."

Design of Experiments Strategy

Experiment

Make it your motto day and night Experiment
And it will lead you to the light
The apple on the top of the tree Is never too high to achieve
So take an example from Eve
Experiment

Be curious
Though interfering friends may frown, Get furious
At each attempt to hold you down
If this advice you'll only employ
The future can offer you infinite joy
And merriment
Experiment
And you'll see

Rubin: What if, in a randomized experiment, the chosen randomized allocation exhibited substantial imbalance on a prognostically important baseline covariate?
Cochran: Why didn't you block on that variable?
Rubin: Well, there were many baseline covariates, and the correct blocking wasn't obvious; and I was lazy at that time.

Cochran: This is a question that I once asked Fisher, and his reply was unequivocal:
Fisher (recreated via Cochran): Of course, if the experiment had not been started, I would rerandomize.

Don Rubin, Annual meeting of Israeli Statistical Association,31/5/ 2018

When asked: How you would handle a random order with a perceptible pattern? Fisher responded that he did not understand the question: "I would of course rerandomize"
D.R. Cox (personal communication, 26/2/2019)

Planning of Experiments

> D. R. COX Reuder in Statistics Birkback Colloge Uniursity of Lenden

On randomization and re-randomization

and $T_{2} T_{1}$, giving each equal probability. The full discussion of this process of
randomization is deferred to Chapter 5 .
A typical arrangement of treatments resulting from such a randomization is shown in Table 3.1 together with some fictitious observations. For each pair of units the difference between the observation on T_{2} and the observation on T_{1} is calculated. The treatment effect is estimated by \bar{d}, the mean of these differences, and the estimated standard error of \bar{d}, and a test of the statistical significance of \bar{d} can be obtained by simple standard statistical calculations (Goulden, 1952, p. 51), the amount of the uncontrolled variation being estimated from the observed dispersion of the differences in the last column of Table 3.1.

A treatment is applied
as T1 or T2.
What is the treatment effect? Is the effect at T2 greater than the effect at T1?

TABLE 3.1
Paired Comparison Experiment

Day	First Unit	Second Unit
1	$T_{1}: 2.8$	$T_{2}: 3.2$
2	$T_{2}: 3.1$	$T_{1}: 3.1$
3	$T_{2}: 3.4$	$T_{1}: 2.9$
4	$T_{1}: 3.0$	$T_{2}: 3.5$
5	$T_{2}: 2.7$	$T_{1}: 2.4$
6	$T_{2}: 2.9$	$T_{1}: 3.0$
7	$T_{2}: 3.5$	$T_{1}: 3.2$
8	$T_{1}: 2.6$	$T_{2}: 2.8$

5.7 SOME FURTHER POINTS

There are some difficulties that arise in the application of randomization, articularly to small experiments, and these will now be discussed.
The first point concerns the rejection of an arrangement produced by

Following this introduction, Cox discusses three approaches marked below in red, green and blue.

Further discussion is marked in yellow.

the randomization when it seems particularly unsuitable. As an exampry consider the paired comparison experiment, Example 3.1, with eight pat of units. Suppose that, as in our first account of this experiment, units are arranged in a definite order within each pair, but that it decided that this ordering is not of sufficient importance to warm balancing it in the design of the experiment by the method of Example 3.10. Now it will happen, actually about once in 128 times in the long run, that the ordering of treatments is the same for every pair, cither $T_{1} T_{2}$ every time or $T_{2} T_{1}$ every time. Further, once in about 14 timestes arrangement is either of this type or has just one pair showing a differer ordering from the remaining 7 .
It is clearly undesirable to use these arrangements. Even though we think that there is probably not an important order effect, there are likely to be various things, connected say with the experimental technique, that could produce such an effect. In other words a pattern of uncontrollad variation with a substantial systematic difference between the first and second unit in the pair, is a priori considerably more probable than other particular patterns we can think of.

Similar considerations apply in other experiments where the randomization produces an arrangement that fits in with some physically meaningful pattern in the experimental material, even though this pattern is thoughi probably unimportant. Other examples are if a Latin square on randomization has a line of treatment T_{1}, say, down a diagonal, or if a randomized block experiment gives the same order of treatments within each block. The chances of these particular arrangements occurring art

[^2]method, if obse that if any arra obtained by per ment with eigh $T_{2} T_{1}$'s. There extreme case, as unsatisfacto extreme cases. are to be rejec advice about w to have no hesi common-sense not nearly so in above, extreme small experime

The third n restricted rand is a very inge a very special extreme arran way that the follow. The the quasi-Lati duced, and oth in itself, but w

There are three ways of dealing with the difficulty, all depending on curtailing the randomization. The first method is to incorporate a condition about order into the formal design of the experiment, as was done in Example 3.10, where T_{1} and T_{2} each occurred four times in the first position. This is probably the best solution in the present case, but it is certainly not a general answer to the problem, since there are variows reasons why it may be impracticable or undesirable to introduce further constraints into the design. For example we lose degrees of freedom for residual in eliminating a source of variation that is probably not important, we make the experiment more complicated and there may already $b:$ several different systems of grouping in the design, making the introduction of further conditions difficult or impossible.

The second method is to reject extreme arrangements whenever the) occur, i.e.. to rerandomize For examnla in tha moimod amnarison
curtailing the randomzat formal design of the exper ime tion about order into where T_{1} and T_{2} each occurred four times in the first in Example 3.10, position. This is general answer to the problem, since there are various is certainly not a be impracticable or undesirable to introduce further residual in eliminating a source of variation that is probably not important, we make the experiment more complicated and there may already be several different systems of grouping in the design, making the introduction ffurther conditions difficult or impossible.

The second method is to reject extreme arrangements whenever they occur, i.e., to rerandomize. For example in the paired comparison experiment, we may decide to reject all arrangements with seven or more pairs in the same order. A highly desirable condition in using this
method, if observer biases like those of Example 5.6 are to be avoided, is that if any arrangement is to be rejected, so must all other arrangements obtained by permuting the names of the treatments. Thus if the arrangement with eight $T_{1} T_{2}$'s is rejected, so must the arrangement with eight $T_{2} T_{1}$'s. There would be little likelihood of disagreement over such an extreme case, but since the decision as to what arrangements to regard as unsatisfactory is arbitrary, there could be disagreement with less extreme cases. The best plan is, if possible, to decide which arrangements are to be rejected before randomization. It is difficult to give general advice about which arrangements to reject, but the best rule is probably to have no hesitation in rejecting any arrangement that seems on general common-sense grounds to be unsatisfactory. Fortunately this matter is not nearly so important in practice as might be thought, since, as remarked above, extreme arrangements occur with appreciable chance only in very small exporimantc
common-sense grounds to be unsatisfrangement that seems on general not nearly so important in practice as mighty. Fortunately this matter is above, extreme arrangements occur with be thought, since, as remarked mall experiments appreciable chance only in very

The third method is to use a special device, known technically as restricted randomization (Grundy and Healy, 1951; Youden, 1958). This is a very ingenious idea, in which a design is selected at random from a very special set of arrangements. The set is chosen to exclude both the extreme arrangements and the very balanced arrangements, in such a way that the full mathematical consequences of ordinary randomization follow. The method is probably of most value for a special design called the quasi-Latin square (Chapter 12), for which the method was first introduced, and otherwise in a series of small experiments, each of some interest in itself, but which also need to be considered collectively. The method is however too specialized to discuss here and its full implications have not yet been worked out; the nonstatistical reader requiring more information about it should consult a statistician.
The reader may object that the second method, the rejection of extreme arrangements, will falsify the mathematical consequences of randomization described in $\$ 5.6$. This is true of the estimation of error, although
duced, and oner wise in a series of small experi.... mentod was first introin itself, but which also need to be consideriments, each of some interest however too specialized to discuss here and collectively. The method is not yet been worked out; the nonstatistical full implications have infarmation about it should an-..... a statistical reader requiring more The reader may object that the second mictan arrangements, will falsify the mathematical tion described in $\S 5.6$. This is true of the estimequences of randomizanot of the absence of bias in the error, although estimate of error will only be unbiased if there is in themselves. The order effect. However in single small experiments the estimate of error is very inaccurate anyway. More importantly we have here a mathematical interpretation of randomization: that it leads to desirable properties in the long run, or on the average, and on the other hand a practical problem-namely the designing and drawing of useful conclusions from a particular single experiment that we are now in the process of considering. Usually the concept that our procedures will work out well in the long run is a very helpful one, both qualitatively and in giving a vivid physical picture of the meaning of probabilities calculated in connection with a
particular experiment. However to adopt arrangements that we suspect are bad, simply because things will be all right in the long run, is to force our behavior into the Procrustean bed of a mathematical theory. Our object is the design of individual experiments that will work well: good

THE PROCRU'STEAN APPROACH

Dun Nainat no long-run properties are concepts that help us in doing this, but the exact fulfillment of long-run mathematical conditions is not the ultimate aim.

The second general matter is olncaly molnted is tim firsi. Suppose that we design and carry out a randomized experiment, and that when we come to analyze and interpret the results we realize either that the arrangement we have used is probably an unfortunate one and should have been
 $T_{1} T_{2}$ and two receiving the experiment with, say, six pairs receiving the order suggest a substantial order effect $T_{2} T_{1}$. Inspection of the results may Another examnla effect comnarahla
object is me...erties are concepts that nerp us min uoms ams, out the e
fana-run properties are concepts Fortunat
The second general matter is closely related to the first. Suppose that reason whother we design and carry out a randomized experiment, and that when we comer to analyze and interpret the results we realize either that the arrangement we have used is probably an unfortunate one and should have been rejected, or, by inspection of the results, that there is some particular form of uncontrolled variation. For example, we might have the above paired comparison experiment with, say, six pairs receiving the order $T_{1} T_{2}$ and two receiving the order $T_{2} T_{1}$. Inspection of the results may suggest a substantial order effect comparable to the treatment effect. Another example would be if an agricultural field trial arranged in randomized blocks shows a systematic trend from one end to the other of the experimental area. What do we do in such situations?

In some cases, possibly in the first, we may decicie tnat tie vata be regarded with suspicion. Suppose, however, that we do wish to what conclusions we can. The previous discussion shows that it good enough to say that the long-run properties are valid whate form of the uncontrolled variation and on those grounds to anal experimental results by the usual methods. On the other hand, to duce modificationc inta the anolucie haoad an inamantion of the anc https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-
obj Split-plot-experiments/ba-p30716

REML Variance Component Estimates

Random	Var				Pct of		
Effect	Var Ratio Component Std Error	95\% Lower	95\% Upper	Total			
Animal	0.3369366	0.0009742	0.0014479	-0.001864	0.003812	25.202	
Residual		0.0028914	0.0011798	0.0014872	0.0078735	74.798	
Total		0.0038656	0.0017459	0.0018763	0.0120769	100.000	

-2 LogLikelihood $=5.2031109955$
Note: Total is the sum of the positive variance components, Total including negative estimates $=0.0038656$

Fixed Effect Tests

Source	Nparm	DF	DFDen	F Ratio	Prob $>$ F
Antibiotic	1	1	1.82	13.1960	0.0783
Timing	2	2	12.01	3.2182	0.0760
Concentration	3	3	12.06	9.2033	$0.0019 *$
Antibiotic ${ }^{*}$ Timing	2	2	12.01	0.3831	0.6898
Antibiotic ${ }^{*}$ Concentration	3	3	12.03	0.7022	0.5667
Timing ${ }^{*}$ Concentration	6	6	12.47	0.6574	0.6849

duce modifications into the analysis design must lead to some loss of and on personal judgement about procedure is suggested.
(a) Work through the conventional analysis of the observations ignoring the suspected complication.
(b) Make a special statistical analysis of the observations taking account of the complication in whatever seems the most reasonable way. The reader who is not familiar with fairly advanced statistical methods will probably need statistical advice in this. The method will usually involve the analysis of what is known technically as a nonorthogonal least-squares situation.
(c) If the conclusions of the two analyses are for practical purposes equivalent there is no difficulty. If the conclusions do differ, care is needed. The assumptions underlying the second analysis should be carefully thought over, and if they seem reasonable, the second analysis should be regarded as correct.
(d) In reporting on the experiment, conclusions from both analyse
should be given, at any rate briefly. If the first analysis is rejected, reasons should be outlined. The general idea should be to make it clear to the reader what has been done and to give him the opportunity of forming his own conclusions as far as practicable.

Fortunately these difficulties tend to occur infrequently in practice.
Another difficulty that occasionally arises is that there is some practical reason why certain treatment arrangements are not allowable. One example arises in raspberry variety trials (Taylor, 1950). The point here is that additional canes spring up near many of the canes originally planted and it is necessary to remove these new canes from each plot. For this to be possible varieties that resemble each other closely must not occur close together, thus restricting the randomization. Another example occurs in carpet wearing trials, in which dyed and undyed carpets are under comparison. An experimental carpet is formed by sewing together squares of carpet of different types and the whole carpet placed say in a busy corridor. It would often be desirable that the carpet should look presentable and this would preclude full randomization of the dyed and undyed sections. The procedure in such cases is either to do as much randomization as possible or to use a systematic arrangement taking whatever steps are practicable to avoid bias.

CUTTER LECTURE

Statistical science: a grammar for research
David. R. Cox ${ }^{1}$

Received: 13 July 2017 © The Author(s) 2017.

Causality

There are broadly at least three views of causality in the literature; for a brief review, see Cox and Wermuth [6].

First, largely in the time series field, there is WienerGranger causality essentially about the ability of one time series to predict the future of another. Wiener was an outstanding MIT pure mathematician and Granger an econometrician.

The second and widely used definition involves the notion of an exposure being hypothetically changed, other things being equal. It can be regarded as underpinning the classical theory of randomized experiments and, generalized into broader settings, it has a large and rich literature.

The third notion adds to the second some notion of evidence-based explanation in terms of an underlying process, biological or physical perhaps. Of course such explanations are not "ultimate". Their danger is that they can nearly always be manufactured after the event, but very much more than that is required, typically explicit independent evidence. Davey-Smith coined the term triangulation for this view of causality.

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

Cited by

	All
Citations	89932
h-index	98
i10-index	307

Judea Pearl

2011 Turing Award for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning

Statistical analysis with missing data
RJA Little, DB Rubin
Bayesian data analysis
21341
1983
ARC press J Carlin, H Stern, DB Rubin
CRC press
The central role of the propensity score in observational studies for causa
PR Rosenbaum DB Rubin
Siometrika 70 (1), 41-55

Don Rubin

Cited by

	All
Citations	279566
h-index	128
i10-index	364

CAUSAL INFERENCE FOR

STATISTICS,

 SOCIAL, AND BIOMEDICAL SCIENCESAN INTRODUCTION
GUIDO W. IMBENS
DONALD B. RUBIN

Causal Analysis

For causal questions, we need to infer aspects of the data generation process.

We need to be able to deduce:

- the likelihood of events under static conditions, (as in standard statistical analysis) and also
- the dynamics of events under changing conditions.

Causal Analysis

"dynamics of events under changing conditions" includes:

- Predicting the effects of interventions.
- Predicting the effects of spontaneous changes.
- Identifying causes of reported events.

Population \& Outcome Variable

Define the population by U.
Each unit in U is denoted by u.
The outcome of interest is Y. Also called the response variable.

For each $u \in U$, there is an associated value $Y(u)$.

Causes/Treatment

Causes are those things that could be treatments or conditions in hypothetical experiments.

For simplicity, we assume that there are just two possible states:

- Unit u is exposed to treatment/condition and
- Unit u is exposed to comparison.

The Treatment/Condition Variable

Let D be a variable that indicates the state to which each unit in U is exposed.

$$
D= \begin{cases}1 & \text { If unit } u \text { is exposed to treatment/condition } \\ 0 & \text { If unit } u \text { is exposed to comparison }\end{cases}
$$

Where does D come from?

- In a controlled study:
constructed by the experimenter.
- In an uncontrolled study: determined by factors beyond the experimenter's control.

Linking Y and D

$Y=$ response variable
$D=$ treatment/condition variable
The response Y is potentially affected by whether u receives treatment or not.

Thus, we need two response variables:
$Y_{1}(u)$ is the outcome if unit u is exposed to treatment.
$Y_{0}(u)$ is the outcome if unit u is exposed to comparison.

The Effect of Treatment/Condition on Outcome

Treatment variable D

$D= \begin{cases}1 & \text { If unit } u \text { is exposed to treatment } \\ 0 & \text { If unit } u \text { is exposed to comparison }\end{cases}$
Response variable Y
$Y_{1}(u)$ is the outcome if unit u is exposed to treatment
$Y_{0}(u)$ is the outcome if unit u is exposed to comparison

$$
\delta_{u}=Y_{1}(u)-Y_{0}(u)
$$

Counterfactuals

Le nez de Cléopâtre: s'il eut été plus court, toute la face de la terre aurait change.

Pascal (1669)

For any unit u, treatment causes the effect

$$
\delta_{u}=Y_{1}(u)-Y_{0}(u)
$$

Fundamental problem of causal inference
For a given unit u, we observe either $Y_{1}(u)$ or $Y_{0}(u)$, it is impossible to observe the effect of treatment on u by itself!

We do not observe the counterfactual

If we give u treatment, then we cannot observe what would have happened to u in the absence of treatment.

The propensity score (PS) is the probability of treatment assignment conditional on observed baseline
characteristics. The propensity score allows one to design and analyze an observational
(nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial.
Warning: PS for an incomplete blocks design is identical to a completely randomized design https://onlinelibrary.wiley.com/d oi/10.1002/sim. 3133

Bridging observational studies and randomized experiments by embedding the former in the latter

Abstract

Consider a statistical analysis that draws causal inferences from a being valid in the standard frequentist senses; i.e. the analysis pro valid in the sense of rejecting true null hypotheses at the nom which are presented as having at least their nominal coverage fo statements, the analysis must embed the observational study in observed data, or a subset of that hypothetical randomized data involves: (1) a purely conceptual stage that precisely formulate th experiment where the exposure is assigned to units; (2) a de before any outcome data are observed, (3) a statistical analysis st and non-exposed units of the hypothetical randomized experime statistical evidence for the sizes of possible causal effects. Stage the effort, whereas Stage I demands careful scientific argume readers of the proffered statistical analysis. Otherwise, the rest a presentation of scientifically meaningless arithmetic calculation most scientifically interesting to the dedicated researcher a perspective is rarely implemented with any rigor, for example, approach using an example examining the effect of parental smol in East Boston in the 1970s.

CAUSAL INFERENCE IN RETROSPECTIVE STUDIES

PAUL W. HOLLAND
Research Statistics Group
Educational Testing Service
DONALD B. RUBIN
Harvard Universily

Philosophical discussions of causality often emphasize the meaning of causation. Scientists are usually concerned with understanding causal mechanisms. Purely statistical discussions of causality are substantially more limited in scope, because the unique contribution of statistics is to measuring causal effects and not to the understanding of causal mechanisms or to the meaning of causation. This distinction is sometimes expressed as "statistics can establish correlation, but not causation." We feel our emphasis on measurement is more appropriate, because it focuses on what statistical theory can contribute to discussions of causality. Measuring causal effects accurately without any understanding whatsoever of the causal mechanisms

AUTHORS' NOTE: \boldsymbol{A} version of this article titled "Causal Inference in Prospective and Retrospective Studies" was delivered at the Jerome Cornfield Memorial Session of the American Statistical Association, Auguss 1980, in Houston. The topic of the article was especially appropriate for that session since many important contributions to the study of health effectsfrom prospective and retrospective studies were made by Jerome Cornfield.
evaluation review, vol. 12 No. 3, June 1988203 -231

- 1988 Sage Pubications, Inc.

Causal diagrams for empirical research (Wiṭ Discussions)

Cognitive Systems Laboratory, Computer Science Department, University of California, Los Angeles, California 90024, U.S.A.

Summary

The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained.

JUDEA PEARL winner of the turing award and dana mackenzie

THE

W H Y

The new science
of cause and effect

Imagining

Doing

Seeing
1

Graph Terminology

- Nodes - vertices on a graph $\left(X_{i}\right)$
- Edge - line or arrow connecting two nodes
- Adjacent - two variables connected by an edge
- Path - sequence of edges (p)
- Directed Path - arrows at the end of every edge
- Acyclic - No loops
- DAG - directed acyclic graph (G)
- Parents, children, descendants, etc.

A Structural Causal Network

SPRINKLER X_{3}

Q1: If the season is dry, and the pavement is slippery, did it rain? A1: Unlikely, it is more likely the sprinkler was ON.

Q2: But what if we see that the sprinkler is off?
A2: Then it is more likely that it rained

From Bayesian Networks to Causal Graphs

A DAG G is a causal graph or structural causal network (SCN) if,
for each node X_{i}, with parents PA_{i},
we have $X_{i}=f_{i}\left(\mathrm{PA}_{i}, e_{i}\right)$,
e_{i} independent random variables
and f_{i} a deterministic function.

A Structural Causal Network

What we have

What we want

What we get with

 randomizaton
https://foreignpolicy.com/2019/10/22/economics-development-rcts-esther-duflo-abhijit-banerjee-michael-kremer-nobel/ Abhijit Banerjee and Esther Duflo: The Nobel couple fighting poverty

Example 1

The M-bias

$$
\begin{aligned}
& X=\text { exposure of interest } \\
& Y=\text { disease } \\
& E=\text { education } \\
& Z=\text { type of car owned by patient } \\
& A=\text { age }
\end{aligned}
$$

Back door path blocked by Z so that there is no need to control for anything

The M-bias

$X=$ exposure of interest
$\mathrm{Y}=$ disease
$\mathrm{E}=$ education
Z. type of car owned by patient

A = age

- The back-door criterion suggests that the effect of X and Y is not confounded by A, Z or E .
- The only arrow into X is the one traversing (X, E, Z, A, Y) and this path contains two arrows pointing head-to-head at Z.

The M-bias

$\mathrm{X}=$ exposure of interest
$\mathrm{Y}=$ disease
$\mathrm{E}=$ education
Z. type of car owned by patient

A = age
Consequences of Adjusting for Z

- Statistically adjusting for Z, when estimating the effect of X on Y, will give a biased effect estimate.
- Thus, one should not necessarily "control" for every variable that is related to both the disease and the treatment/exposure of interest.

Example 2

The expanded M-bias

What variables one needs to adjust to get unconfounded effect of X_{i} (risk variable) on X_{j} (outcome).

Fig. 2. A diagram representiog the back-adoor eniterion: adjusting for variables $\left\{X_{3}, X_{4} y\right.$ or $\left\{X_{4}, x_{5}\right\}$ yields a consisitent estimate or pr($\left.x_{j} \mid x_{1}\right)$.

The expanded M-bias

In this case, one could adjust for $\left\{\mathrm{X}_{3}, \mathrm{X}_{4}\right\}$ or $\left\{\mathrm{X}_{4}, \mathrm{X}_{5}\right\}$ but not just for $\left\{\mathrm{X}_{4}\right\}$.

Rules to control information from A to C

1. In a chain, $A->B->C$, controlling for B prevents information about A, through B, from getting to C
2. In a fork, $A<-B->C$, controlling for B prevents information about A, through B, from getting to C
3. In a collider, $A->B<-C$, the opposite holds. A and C start independent so that information about A tells nothing about C, but, controlling for B, causes information, through B, to flow
4. Controlling for descendants is partially controlling for the variable itself. Controlling for a descendant of a collider partially opens the information flow.
d (directional) - separation vs. d - connected

A path, p, is said to be d-separated by a set of nodes Z if and only if:

1. p contains a fork $i \leftarrow m \rightarrow j$ or a chain $i \rightarrow m \rightarrow j$ such that the middle node m is in Z, or
2. p contains an inverted fork (or collider) $i \rightarrow m \leftarrow j$ such that the middle node m is not in Z and such that no descendent of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a node in Y.
A pair of d-separated nodes are independent.

Example of d-separated paths

$X=\left\{X_{2}\right\}$ and $Y=\left\{X_{3}\right\}$ are d-separated by $Z=\left\{X_{1}\right\}$.
The path $X_{2}-X_{4}-X_{3}$ is blocked by collider X_{4}
However, X and Y are not d-separated by $Z^{\prime}=\left\{X_{1}\right.$, $\left.X_{5}\right\}$ since X_{5} is a descendant of the collider, X_{4}.

So, knowing X_{5} causes X_{2} and X_{3} to be dependent

Interventions in Causal Graphs

The causal effect of a variable (node) X_{i} can be defined as how the outcome, Y , changes when this variable is set to some value, thereby breaking the influence of predecessors.
This basic insight translates into the G-estimation algorithm of Robins (1986).

After intervening in the graph, by setting $X_{i}=x_{i}^{\prime}$, then the joint distribution of the data becomes:

$$
P\left(x_{1}, x_{2}, \ldots, x_{n} \mid x_{i^{\prime}}\right)=\left\{\begin{array}{ll}
P\left(x_{1}, x_{2}, \ldots, x_{n}\right) / P\left(x_{i} \mid p a_{i}\right) & \text { if } x_{i}=x_{i^{\prime}} \\
0 & \text { if } x_{i} \neq x_{i^{\prime}}
\end{array}\right\}
$$

$\mathrm{ACE}=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))$

Rule 1: Ignoring observations

$$
\begin{aligned}
P(y \mid d o\{x\}, z, w)=P(y \mid & d o\{x\}, w) \\
& \text { if }(Y \Perp Z \mid X, W)_{G_{\bar{X}}}
\end{aligned}
$$

Rule 2: Action/observation exchange

Do calculus

$$
\begin{aligned}
P(y \mid d o\{x\}, d o\{z\}, w)= & P(y \mid d o\{x\}, z, w) \\
& \text { if }(Y \Perp Z \mid X, W)_{G-\bar{X} \underline{Z}}
\end{aligned}
$$

Rule 3: Ignoring actions

$$
\begin{array}{r}
P(y \mid d o\{x\}, d o\{z\}, w)=P(y \mid d o\{x\}, w) \\
\text { if }(Y \Perp Z \mid X, W)_{G_{\bar{X}} \overline{Z(W)}}
\end{array}
$$

FIGURE 1. Network Pre and Post Intervention.

Adjustment formula $P(Y=y \mid d o(X=x))=\operatorname{Sum} P(Y=y \mid X=x, Z=z) P(Z=z)$

$\mathrm{ACE}=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))$

Recovery rates with and without drug $[(Y=1) / n]$

	Drug $(X=1)$	No Drug $(X=0)$
Men $(Z=0)$	$81 / 87(93 \%)$	$234 / 270(87 \%)$
Women $(Z=1)$	$192 / 263(73 \%)$	$55 / 80(69 \%)$
Total	$273 / 350(78 \%)$	$289 / 350(83 \%)$

Do calculus

$$
\begin{aligned}
& P(Y=1 \mid d o(X=1))=\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=1, \mathrm{Z}=1) \mathrm{P}(\mathrm{Z}=1)+\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=1, \mathrm{Z}=0) \mathrm{P}(\mathrm{Z}=0) \\
& P(Y=1 \mid \operatorname{do}(X=1))=(0.93(87+270)) / 700+(0.73(263+80) / 700)=0.832 \\
& P(Y=1 \mid \operatorname{do}(X=0))=(0.87(87+270)) / 700+(0.69(263+80) / 700)=0.7818
\end{aligned}
$$

$\mathrm{ACE}=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))=0.832-0.7818=0.0502$

Adjustment formula $P(Y=y \mid d o(X=x))=\operatorname{Sum} P(Y=y \mid X=x, Z=z) P(Z=z)$

$\mathrm{ACE}=P(Y=1 \mid d o(X=1))-P(Y=1 \mid d o(X=0))$

The Causal Effect Rule

Do calculus

Given a graph G in which a set of variables PA are designed as the parents of X, the causal effect of X on Y is given by

$$
P(Y=y \mid d o(X=x)=\operatorname{Sum} P(Y=y \mid X=x, P A=z) P(P A=z)
$$

Where z ranges over all the combinations of values that the variable PA can take.

$$
\begin{gathered}
P(Y=y \mid d o(X=x)=\operatorname{Sum} P(X=x, Y=y, P A=z) P(X=x \mid P A=z) \\
\text { Propensity score }=P(X=x \mid P A=z)
\end{gathered}
$$

Adjustment formula $P(Y=y \mid \operatorname{do}(X=x))=\operatorname{Sum} P(Y=y \mid X=x, Z=z) P(Z=z)$

Lord's Paradox and Causal Graphs

"A large university is interested in investigating the effects on the students of the diet provided in the university dining halls. Various types of data are gathered. In particular, the sex and weight of each student at the time of his arrival in September and his weight the following June are recorded." (Lord, 1967). Lord posits two statisticians who use different but respected statistical methods to reach opposite conclusions about the effects of the diet provided in the university dining halls on students' weights.
One statistician does not adjust for initial weight or sex; using analysis of variance (ANOVA), and treating gain scores (June - September) as the outcome, he finds no significant difference between dining halls and states that there is no evidence of any effect of diet on student weights. The second statistician adjusts for initial weight; using analysis of covariance (ANCOVA), and treating June weights as the outcome, he finds a significant difference between the two dining halls.

	Baseline	Outcome	$Y_{B}-Y_{A}=X_{B}-X_{A}=D$. Is there an effect?
Diet A (Hall 1)	\bar{X}_{A}	\bar{Y}_{A}	$\left(Y_{B}-Y_{A}\right)-r\left(X_{B}-X_{A}\right)=D-r D=(1-r) D$,
Diet B (Hall 2)	\bar{X}_{B}	\bar{Y}_{B}	

$\left(Y_{B}-X_{B}\right)-\left(Y_{A}-X_{A}\right)=\left(Y_{B}-Y_{A}\right)-\left(X_{B}-X_{A}\right)=D-D=0 . \longleftarrow$ Who is right?

In neither halls students gain weight but in each stratum Hall 2 tend to gain more weight than Hall 1

Lord's Paradox and Causal Graphs (Original)

Consult the story behind the data. Account for S. The variable of interest is G .

$$
G=W f-W i
$$

No backdoor between S and G need to be blocked so the aggregated data provides the answer (statistician one).

Wi is a mediating variable of S and G, and controlling for Wi provides the direct effect of S on G.

Sex strongly affects the percentages of students in each stratum

Lord's Paradox and Causal Graphs (Adapted)

Consider another story behind the data. Account for Hall (Diet).

Again, the variable of interest is G. Wi is a confounder for D and Wf. Controlling for Wi de-confounds D and Wf , as well as D and G .
P(Gain \mid Diet $=A)=P($ Gain \mid Diet $=B) \neq$ $\mathrm{P}($ Gain \mid do(Diet=A) $)=\mathrm{P}($ Gain \mid do(Diet=B $))$ Association:
Switching from Diet A to Diet B has no effect $\left(Y_{B}-X_{B}\right)-\left(Y_{A}-X_{A}\right)=\left(Y_{B}-Y_{A}\right)-\left(X_{B}-X_{A}\right)=D-D=0$.

Causation:

$$
\mathrm{P}\left(\mathrm{G} \mid \mathrm{do}(\text { Diet })=\sum\{\mathrm{Wi}\} \mathrm{P}(\mathrm{G} \mid \text { Diet, Wi) } \mathrm{P}(\mathrm{Wi})\right.
$$

Lord's Paradox and Causal Graphs

Stephen John Senn @stephensenn. Aug 15
I) I don't find the equation in the tweet but the key issue is how are any parameters estimated ii) This shows a weakness of the DAG approach since the two cases are fundamentally different. Compare fig $1 \&$ fig 3 of my blog.
Q 1
$\uparrow \downarrow$
O 1
\uparrow
Judea Pearl @yudapearl. Aug 15
The adjustment equation is this:
$P(Y \mid$ do (Diet $)$) $=\Sigma W _I P(Y \mid$ Diet, WI) $P(W I)$
taken from ucla.in/2YZjVFL, and telling us precisely how things are estimated. No weaknesses, no "two cases", no complications -- straight causal analysis and a paradox dissolved. \#Bookofwhy
Q 1
$\uparrow \downarrow$
0
へ

Stephen John Senn @stephensenn • Aug 15
$1 / 2$) The terms in such an equation have to be estimated to be of any use and as statistical theory teaches and as the simulations in Fig $1 \&$ Fig 3 of my post show, design matters. See also Holland \& Rubin.
Q 1
$\uparrow \downarrow$
O 1
\uparrow

Stephen John Senn @stephensenn.Aug 15
2/2) Are you claiming that varying treatment within or between centres in clinical trials is a distinction that is irrelevant to interpretation? Statistical theory \& drug regulation disagrees. See TARGET onlinelibrary.wiley.com/doi/abs/10.100... for evidence.

BLOCKSTRUCTURE Hall/Student
TREATMENTSTRUCTURE Diet
COVARIATE Base
ANOVA Weight

Back door adjustment formula

Average causal effect of an interventions by first estimating its effect at each level of the de-confounder.

Then, compute a weighted average of those levels, where each level is weighted according to its prevalence in the population.

A Structural Causal Model

Definition: A structural causal model is a 4-tuple $\langle V, U, F, P(u)\rangle$, where

- $V=\left\{V_{1}, \ldots, V_{n}\right\}$ are endogeneus variables
- $U=\left\{U_{1}, \ldots, U_{m}\right\}$ are background variables
- $F=\left\{f_{1}, \ldots, f_{n}\right\}$ are functions determining V,

$$
v_{i}=f_{i}(v, u) \quad \text { e.g., } \quad y=\alpha+\beta x+u_{Y}
$$

- $P(u)$ is a distribution over U
$P(u)$ and F induce a distribution $P(v)$ over observable variables

A Structural Causal Network

$$
\begin{aligned}
& X=\text { Treatment } \\
& Z=\text { Study Time } \\
& Y=\text { Score }
\end{aligned}
$$

$$
x=\varepsilon_{1}
$$

$$
z=\beta x+\varepsilon_{2}
$$

$$
y=\alpha x+\gamma z+\varepsilon 3
$$

Data shows: $\alpha=0.7, \beta=0.5, \gamma=0.4$
A student named Joe, measured $X=0.5, Z=1, Y=1.5$
Q_{1} : What would Joe's score be, had he doubled his study time?

Q_{1} : What would Joe's score be had he doubled his study time?
Answer: Joe's score would be 1.9
Or,
In counterfactual notation:

$$
Y_{z=2}(u)=1.9
$$

"do" calculus example

Q_{2} : What would Joe's score be, had the treatment been 0 , and had he studied at whatever level he would have studied had the treatment been 1 ?

RANDOMIZED EXPERIMENTS AND OBSERVATIONAL STUDIES: CAUSAL INFERENCE IN STATISTICS

Internal and
 external validity

PAUL R ROSENBAUM

AbSTRACT. This talk describes the theory of causal inference in randomized experiments and nonrandomized observational studies, using two simple theoretical/actual examples for illustration. Key ideas: causal effects, randomized experiments, adjustments for observed covariates, sensitivity analysis for unobserved covariates, reducing sensitivity to hidden bias using design strategies

1. Seven Key Contributions to Causal Inference

1.0.1. Ronald A. Fisher (1935). The Design of Experiments. Edinburgh: Oliver \& Boyd. Although Fisher had discussed his randomized experiments since the early 1920's, his most famous discussion appears in Chapter 2 of this book, in which Fisher's exact test for a 2×2 table is derived from randomization alone in the experiment of the 'lady tasting tea.'
1.0.2. Jerzy Neyman (1923). On the application of probability theory to agricultural experiments. Essay on principles. Section 9. (In Polish) Roczniki Nauk Roiniczych, Tom X, pp1-51. Reprinted in English in Statistical Science, 1990, 5, 463-480, with discussion by T. Speed and D. Rubin. In this paper, Neyman writes the effects caused by treatments as comparisons of potential outcomes under alternative treatments.

Causal, Casual and Curious

Judea Pearl*

Generalizing Experimental Findings

DOI 10.1515/jci-2015-0025
Abstract: This note examines one of the most crucial questions in causal inference: "How generalizable are randomized clinical trials?" The question has received a formal treatment recently, using a non-parametric setting, and has led to a simple and general solution. I will describe this solution and several of its ramifications, and compare it to the way researchers have attempted to tackle the problem using the language of ignorability. We will see that ignorability-type assumptions need to be enriched with structural assumptions in order to capture the full spectrum of conditions that permit generalizations, and in order to judge their plausibility in specific applications.

Keywords: generalizability, transportability, selection bias, admissibility, ignorability

1 Transportability and selection bias

The long-standing problem of generalizing experimental findings from the trial sample to the population as a whole, also known as the problem of "sample selection-bias" [1, 2], has received renewed attention in the past decade, as more researchers come to recognize this bias as a major threat to the validity of experimental findings in both the health sciences [3] and social policy making [4]. Since participation in a randomized trial cannot be mandated, we cannot guarantee that the study population would be the same as the population of interest. For example, the study population may consist of volunteers, who respond to financial and medical incentives offered by pharmaceutical firms or experimental teams, so, the distribution of outcomes in the study may differ substantially from the distribution of outcomes under the policy of interest.

Query of interest: $Q=P^{*}(y \mid d o(x))$
Target population
$\left.\begin{array}{|c|c|c|}\hline \text { Arkansas } & \text { New York } & \begin{array}{c}\text { Los Angeles } \\ \text { Survey data } \\ \text { available }\end{array} \\ \hline \begin{array}{c}\text { Survey data } \\ \text { Resembling target }\end{array} & \begin{array}{c}\text { Survey data } \\ \text { Youngish } \\ \text { population }\end{array} \\ \hline \begin{array}{c}\text { Boston } \\ \text { Age not recorded }\end{array} & \begin{array}{c}\text { San Francisco } \\ \text { High post-treatment } \\ \text { Mlood pressure }\end{array} & \begin{array}{c}\text { Texas } \\ \text { Mostly Spanish } \\ \text { subjects } \\ \text { lawyers }\end{array}\end{array} \begin{array}{c}\text { High attrition }\end{array}\right]$

(Intervention)
(Outcome)

(Observation)

Experimental study in LA Observational study in NYC
Measured: $\quad P(x, y, z)$ Measured:

$$
\begin{aligned}
& P^{*}(x, y, z) \\
& P^{*}(z) \neq P(z)
\end{aligned}
$$

Needed: $\quad P^{*}(y \mid d o(x))=?=\sum_{z} P(y \mid d o(x), z) P^{*}(z)$
Transport Formula (calibration): $F\left(P, P_{d o}, P^{*}\right)$

Causal Inference Without Counterfactuals

A. P. DAWID

Abstract

A popular approach to the framing and answering of causal questions relies on the idea of counterfactuals: outcomes that would have been observed had the world developed differently; for example, if the patient had received a different treatment. By definition, one can never observe such quantities, nor assess empirically the validity of any modeling assumptions made about them, even though one's conclusions may be sensitive to these assumptions. Here I argue that for making inference about the likely effects of applied causes, counterfactual arguments are unnecessary and potentially misleading. An alternative approach, based on Bayesian decision analysis, is presented. Properties of counterfactuals are relevant to inference about the likely causes of observed effects, but close attention then must be given to the nature and context of the query, as well as to what conclusions can and cannot be supported empirically. In particular, even in the absence of statistical uncertainty, such inferences may be subject to an irreducible degree of ambiguity.

KEY WORDS: Average causal effect; Causes of effects; Causation; Determinism; Effects of causes; Metaphysical model; Potential response; Treatment-unit additivity.

Fact-Fiction. Are counterfactuals to be regarded as genuine features of the external world, or are they purely theoretical terms?
Real-Instrumental. Can any inferences based on counterfactuals be allowed, or should they be restricted to those that could in principle be formulated without mention of counterfactuals?
Clear-Vague. Do counterfactual terms in a model have a clear relationship with meaningful aspects of the problem addressed? Can counterfactual constructions and arguments help to clarify understanding?

Helpful-Dangerous. Can use of counterfactuals streamline thinking and assist analyses, or do they promote misleading lines of argument and false conclusions?

Dimensions for assessing counterfactuals

Causality

Statistical Perspectives and Applications

Edited by
Carlo Berzuini - Phillip Dawid - Luisa Bernardinelli Satistical Laboratory, Centre for Mathematical Sciences University of Cambridge, Cambridge, UK

Statistical Causality from a

 Decision-Theoretic Perspective A. Philip DawidCentre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WB, United Kingdom; cmail: apd@statslab.cam.ac.uk

4.9 Postscript

The existence of a variety of different formal explications of statistical causality is somewhat embarrassing - we can only pray for the arrival of a messianic figure who (just as Kolmogorov did for probability theory) will sweep away the confusion and produce a single theory that everyone can accept. Meanwhile, let us put a positive gloss on this babel of different languages: since different people seem to find different approaches naturally appealing, there may be something for everyone. In that understanding I suggest that DT deserves careful attention from those who currently choose to think about statistical causality in other terms.

Journal of
Business \&
Economic
Statistics
$=$

Journal of Business \& Economic Statistics

Causal Interpretations of Black-Box Models

Qingyuan Zhao \& Trevor Hastie

To cite this article: Qingyuan Zhao \& Trevor Hastie (2019): Causal Interpretations of Black-Box Models, Journal of Business \& Economic Statistics, DOI: 10.1080/07350015.2019.1624293

To link to this article: https://doi.org/10.1080/07350015.2019.1624293

Partial Dependence Plot and Causality

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5):1189\{1232, 2001.

- Given the output $g(x)$ of a machine learning algorithm (commonly estimates $\mathrm{E}[Y \mid X=x]$), the PDP of g on a subset of variables $X_{\mathcal{S}}$ is defined as (let \mathcal{C} be the complement set of \mathcal{S})

$$
g_{\mathcal{S}}\left(x_{\mathcal{S}}\right)=\mathrm{E}_{X_{\mathcal{C}}}\left[g\left(x_{\mathcal{S}}, X_{\mathcal{C}}\right)\right]=\int g\left(x_{\mathcal{S}}, x_{\mathcal{C}}\right) \mathrm{d} P\left(x_{\mathcal{C}}\right)
$$

- This is different from the conditional expectation

$$
\mathrm{E}\left[g\left(X_{\mathcal{S}}, X_{\mathcal{C}}\right) \mid X_{\mathcal{S}}=x_{\mathcal{S}}\right]=\int g\left(x_{\mathcal{S}}, x_{\mathcal{C}}\right) \mathrm{d} P\left(x_{\mathcal{C}} \mid X_{\mathcal{S}}=x_{\mathcal{S}}\right)
$$

Back-door adjustment

If the causal relationship of (X, Y) can be represented by a graph and $X_{\mathcal{C}}$ satisfies a graphical back-door criterion, then

$$
\begin{aligned}
\mathrm{P}\left(y \mid \operatorname{do}\left(X_{\mathcal{S}}=x_{\mathcal{S}}\right)\right) & =\int \mathrm{P}\left(y \mid \operatorname{do}\left(X_{\mathcal{S}}=x_{\mathcal{S}}\right), x_{\mathcal{C}}=x_{\mathcal{C}}\right) \mathrm{d} P\left(x_{\mathcal{C}}\right) \\
& =\int \mathrm{P}\left(y \mid X_{\mathcal{S}}=x_{\mathcal{S}}, x_{\mathcal{C}}=x_{\mathcal{C}}\right) \mathrm{d} P\left(x_{\mathcal{C}}\right)
\end{aligned}
$$

Here $\mathrm{P}\left(y \mid d o\left(X_{\mathcal{S}}=x_{\mathcal{S}}\right)\right)$ stands for the distribution of Y after we make an intervention on $X_{\mathcal{S}}$ that sets it equal to $x_{\mathcal{S}}$.

- $\mathrm{E}\left(y \mid d o\left(X_{\mathcal{S}}=x_{\mathcal{S}}\right)\right)$ is essentially $\mathrm{E}\left[Y\left(x_{\mathcal{S}}\right)\right]$ in the Neyman-Rubin potential outcome framework.

PDP is the same as Pearl's back-door

 adjustment formula!A set of variables X_{C} satisfies the back-door criterion with respect to X_{S} and Y if

1) No node in X_{c} is a descendant of X_{S}, and
2) X_{c} blocks (d-separates) every back-door path between X_{S} and Y (contains an arrow into X_{S}).

$X_{s}=X_{1}$,
$X_{c}=\left\{X_{3}\right\},\left\{X_{4}\right\}$ or $\left\{X_{3} ; X_{4}\right\}$.

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

Information Quality
The Potential of Data and Analytics to Generate Knowledge

Ron S. Kenett = Galit Shmueli

3.Data integration
4.Temporal relevance
5.Chronology of data and goal
6.Generalizability
7.Operationalization
8.Communication

Generalizability

Statistical generalizability

Scientific generalizability

THE REAL WORK OF DATA SCIENCE

HOW TO TURN DATA INTO INFORMATION, BETTER DECISIONS, AND STRONGER ORGANIZATIONS
https://www.amazon.co.uk/Real-Work-Data-Scienceorganizations/dp/1119570700/ref=sr 1 7?s=books\&ie=UTF8\&q id=1550994497\&sr=1-7\&refinements=p 27\%3ARon+S.+Kenett

1. "A higher calling."
2. "The difference between a good data scientist and a great one."
3. "Learn the business."
4. "Understand the real problem."
5. "Get out there."
6. "Sorry, but you can't trust the data. Deal with it."
7. "Make it easy for people to understand your insights."
8. "When the data leaves off and your intuition takes over."
9. "Take accountability for results."
10. "What does it mean to be 'data-driven,""
11. "Rooting out bias in decision-making."
12. "Teach, teach, teach."
13. "Evaluating data science outputs more formally"
14. "Educating senior management."
15. "Putting data science, and data scientists, in the right spots."
16. "Moving up the analytics maturity ladder."
17. "The industrial revolutions and data science."
18. Epilogue

Level 5: Learning and discovery - This is where attention is paid to information quality. Data from different sources is integrated. Chronology of Data and Goal and Generalization is a serious consideration in designing analytic platforms. Leverage causality models.

Level 4: Quality by Design - Experimental thinking is introduced. The data scientist suggests experiments, like A/B testing, to help determine which website is better. Develop causality analysis.

Level 3: Process focus - Probability distributions are part of the game. The idea that changes are statistically significant, or not, is introduced. Some attention is given to model fitting. Introduce causality analysis.

Level 2: Descriptive statistics level - Management asks to see histograms, bar charts and averages. Models are not used, data is analyzed in rather basic ways.

Level 1: Random demand for reports driven by firefighting - New reports address questions such as: How many components of type X did we replace last month or how many people in region Y applied for a loan?

Condition Based Maintenance (CBM) Health and Usage Monitoring Systems (HUMS) Prognostics and Health Management (PHM)

- Monitoring
- Diagnostics
- Prognostics
- Prescriptive

MTBF statistical expected life

Factory Productivity
Dispatching, Scheduling, Reporting, Prediction

Planning and Simulation
Factory Execution
WIP, WORKFLOW, EXPERIMENTS,

Material Controls

PRODUCT DELIVERY TO EQUPNIENT AUTONOMOUS ROBOTS

- Monitoring Min
- Diagnostics
- Prognostics - Prescriptive

Equipment Controls

Equipment Productivity
data Collection, Big Data Detection: SPC

SYSTEMS ENGINEERING In the FOURTH INDUSTRIAL REVOLUTION

BIG DATA, NOVEL TECHNOLOGIES, AND MODERN SYSTEMS ENGINEERING

STATISTICS IN PRACTICE

- Monitoring

- Diagnostics
- Prognostics
- Prescriptive

Dr. Ran Balicer at Exponential Medicine

Picture this: instead of going to a physician with your ailments, your doctor calls you with some bad news: "Within six hours, you're going to have a heart attack. So why don't you come into the clinic and we can fix that." Crisis averted.

Prognostic analysis

Change in Systolic Blood Pressure During Stroke, Functional Status, and Long-Term Mortality in an Elderly Population

Avraham Weks, ${ }^{\text {² }}$ Ychayaou Beloosesky, ${ }^{\text {* }}$ RonS. Kenett, ${ }^{2}$ and Ehud Grossman ${ }^{2}$

Holter monitor with ECG reading

Stroke

Systolic Blood Pressure Daring Acute Stroke Is Associated With Functional Status and Avraham Weiss, Yichayaou Beloosesky, Ron S. Kenett and Ehud Grossman

Strohe 2013;44:2434-2440; originally published online Joly 18, 2013; Sole is publidnal by the American Hear Avoriation 7272 Greemille Aveme, Dullax. TX 75231

Agenda

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

-

Information Quality (InfoQ)

Traditional Data Sources

Small volume - low statistical power Limited variety - Biased estimates Low velocity - estimates may not be valid in the future

Untapped Sources

High volume - high statistical
significance - small p value
High variety - small bias
High velocity - dynamic update of estimates

Information Quality (InfoQ)

若: InfoQ - JMP Pro $\quad-\quad \square \times$

Help

This is a rating-based approach to quantifying InfoQ that scores each of the eight dimensions. This coarse grained approach rates each dimension on a 5 point scale, with 5 indicating "Very High" achievement in that dimension.

The ratings are then normalized into a desirability function for each dimension, which are then combined to produce an overall InfoQ score using the geometric mean of the individual desirabilities.

By dragging the slider handles, each dimension can be assigned a plausible range of ratings, or a specific rating.

InfoQ

Lower Bound: 0.49
Upper Bound: 0.75

InfoQ.jmpaddin

https://community.jmp.com/t5/JMP-Add-Ins/Calculate-InfoQ-score-with-JMP/ta-p/34898
High \longrightarrow Very High

-Data Integration

$$
\text { High } \rightleftharpoons \text { Very High }
$$

-Temporal Relevance

$$
\text { High } \rightleftharpoons \text { Very High }
$$

Chronology of Data and Goal

Communication
Low Acceptable

Unfoo Components

$\operatorname{InfoQ}(f, X, g)=U(f(X / g))$

Info@ Score

\#	Dimension	Note	Value	Index
1	Data resolution		5	1.0000
2	Data structure		4	0.7500
3	Data integration		5	1.0000
4	Temporal relevance		5	1.0000
5	Generalizability		3	0.5000
6	Chronology of data and goal		5	1.0000
7	Concept operationalization		2	0.2500
8	Communication		3	0.5000
InfoQ Score = 0.68				

InfoQ=68\%

Big data

Causality

Unbiased

Estimates Data integration

Statistical

Significance

Operationalization of findings

An historical perspective

Eli Whitney
(1765-1825)

Process
Quality

Service
Quality

Design
Management
Quality

Information Quality

- Monitoring
- Diagnostics
- Prognostics
- Prescriptive

Without seatbelt

Counterfactuals

With seatbelt
Untreated

https://papers.ssrn.com/sol3/papers.cfm?abstract id=3033588

Applications and Theoretical Results of Association Rules and
 Compositional Data Analysis: A Contingency Table Perspective

Marina Vives-Mestres*, Josep Antoni Martín-Fernández* Santiago
Thió-Henestrosa* Ron S. Kenett**

Abstract: Association rule mining was originally developed for basket analysis. To generate an association rule, the collection of more frequent itemsets must be detected. The association rules are then ranked using measures of interestingness. Using the associaton rule expression as a contingency table a representation on the unit simplex is appropiate. Compositional data analysis provides nice properties such as subcompostional coherence and scalability. We explore here the implication of compositional data analysis to association rule mining in large databases and big data and propose compositional measures of interestingness. Visualization of compositional measures on a simplicial representation of the itemsets gives new insights in association rule mining. The case study used here to demonstrate our approach is derived from a medical data set of side effects from Nicardipine.

	\mathbf{B}	${ }^{\mathbf{c}} \mathbf{B}$
\mathbf{A}	x_{1}	x_{2}
${ }^{\mathbf{c}} \mathbf{A}$	x_{3}	x_{4}

	\mathbf{B}	${ }^{\mathbf{c}} \mathbf{B}$
\mathbf{A}	$x_{1} \sqrt{x_{2} x_{3}}$	$x_{2} \sqrt{x_{1} x_{4}}$
${ }^{\mathbf{c}} \mathbf{A}$	$x_{3} \sqrt{x_{1} x_{4}}$	$x_{4} \sqrt{x_{2} x_{3}}$

$\mathbf{T}_{\text {ind }}$ of AR $\{\mathbf{A} \Rightarrow \mathbf{B}\}$

	\mathbf{B}	${ }^{\mathbf{c}} \mathbf{B}$
\mathbf{A}	$1 / \sqrt{x_{2} x_{3}}$	$1 / \sqrt{x_{1} x_{4}}$
${ }^{\mathbf{c}} \mathbf{A}$	$1 / \sqrt{x_{1} x_{4}}$	$1 / \sqrt{x_{2} x_{3}}$

$$
\mathbf{T}_{\text {int }} \text { of } \operatorname{AR}\{\mathbf{A} \Rightarrow \mathbf{B}\}
$$

ilr-coordinates	ilr $_{1}$	ilr $_{2}$	ilr $_{3}$
\mathbf{T}	$\frac{1}{2} \ln \left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right)$	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{1}}{x_{4}}\right)$	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{2}}{x_{3}}\right)$
$\mathbf{T}_{\text {ind }}$	0	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{1}}{x_{4}}\right)$	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{2}}{x_{3}}\right)$
$\mathbf{T}_{\text {int }}$	$\frac{1}{2} \ln \left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right)$	0	0

	\mathbf{B}	${ }^{\mathbf{c}} \mathbf{B}$
\mathbf{A}	x_{1}	x_{2}
${ }^{\mathbf{c}} \mathbf{A}$	x_{3}	x_{4}

- SUPPORT How frequent is the itemset $\{A, B\}$?
support $\{A, B\}=S\{A, B\}=p_{11}$
- CONFIDENCE Among the antecedent A, how frequent is the consequent B ? confidence $\{A \rightarrow B\}=C\{A \rightarrow B\}=p_{11} / p_{1+}$
- LIFT Deviation of the support from that expected under independence

$$
\operatorname{lift}\{A \rightarrow B\}=S\{A, B\} /(S\{A\} \cdot S\{B\})=p_{11} /\left(p_{1+} p_{+1}\right)
$$

$$
\text { lift }\{A \rightarrow B\}\left\{\begin{array}{l}
<1 \rightarrow \text { when } A \text { holds, support of } B \text { decreases } \\
=1 \rightarrow N \text { association between } A \text { and } B \\
<1 \rightarrow \text { when } A \text { holds, support of } B \text { increases }
\end{array}\right.
$$

Causal

interpretation

	\mathbf{B}	${ }^{\mathbf{c}} \mathbf{B}$
\mathbf{A}	$x_{1} \sqrt{x_{2} x_{3}}$	$x_{2} \sqrt{x_{1} x_{4}}$
${ }^{\mathbf{c}} \mathbf{A}$	$x_{3} \sqrt{x_{1} x_{4}}$	$x_{4} \sqrt{x_{2} x_{3}}$
$\mathbf{T}_{\text {ind }}$ of AR $\{\mathbf{A} \Rightarrow \mathbf{B}\}$		
		\mathbf{B}
\mathbf{A}	$1 / \sqrt{x_{2} x_{3}}$	$1 / \sqrt{x_{1} x_{4}}$
${ }^{\mathbf{c}} \mathbf{A}$	$1 / \sqrt{x_{1} x_{4}}$	$1 / \sqrt{x_{2} x_{3}}$

$$
\mathbf{T}_{\text {int }} \text { of } \operatorname{AR}\{\mathbf{A} \Rightarrow \mathbf{B}\}
$$

ilr-coordinates	ilr $_{1}$	ilr $_{2}$	ilr $_{3}$
\mathbf{T}	$\frac{1}{2} \ln \left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right)$	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{1}}{x_{4}}\right)$	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{2}}{x_{3}}\right)$
$\mathbf{T}_{\text {ind }}$	0	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{1}}{x_{4}}\right)$	$\frac{\sqrt{2}}{2} \ln \left(\frac{x_{2}}{x_{3}}\right)$
$\mathbf{T}_{\text {int }}$	$\frac{1}{2} \ln \left(\frac{x_{1} x_{4}}{x_{2} x_{3}}\right)$	0	0

From association to causation

Discover causal rules from large databases of binary variables

A	B	C	D	E	F	Y	\#repeats
1	1	1	1	1	1	1	14
1	0	1	1	1	1	1	8
1	1	0	1	0	1	1	15
0	1	1	1	1	1	1	8
0	1	0	0	0	0	0	5
0	0	0	0	1	0	1	6
1	0	0	0	0	1	0	4
1	0	1	1	1	0	0	3
0	1	0	1	1	0	0	3
0	1	0	0	1	0	0	5

ibai Pulishning
www.ibai-publishing.org

Relative Linkage Disequilibrium Applications to Aircraft Accidents and Operational Risks

Ron S. Kenett ${ }^{1}$ and Silvia Salini ${ }^{2}$
${ }^{1}$ KPA Ltd., Raanana, Israel and University of Torino, Torino, Italy ron@kpa.co.it
${ }^{2}$ Department of Economics, Business and Statistics, University of Milan, Italy silvia.salini@unimi.it

From association to causation

Discover causal association rules from large databases of binary variables

A	B	C	D	E	F	Y
1	1	1	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	0	1	1
0	1	1	1	1	1	1
0	1	0	0	0	0	0
0	0	0	0	1	0	1
1	0	0	0	0	1	0
1	0	1	1	1	0	0
0	1	0	1	1	0	0
0	1	0	0	1	0	0

$A \rightarrow Y$						Fair dataset
A	B	c	D	E	F	
1	1	1	1	1	1	
1	0	1	0	1	1	
1	1	0	1	0	1	
1	0	1	0	1	0	
0	1	1	1	1	10	
0	0	1	0	1	10	
0	1	0	1	0	1	
0	0	1	0	1	0	

From association to causation

Discover causal association rules from large databases of binary variables

Fair dataset	A	B	C	D	E	F	Y
	1	1	1	1	1	1	1
	1	0	1	0	1	1	1
	1	1	0	1	0	1	0
	1	0	1	0	1	0	0
	0	1	1	1	1	1	0
	0	0	1	0	1	1	0
	0	1	0	1	0	1	1
	0	0	1	0	1	0	1

- A: Exposure variable
- $\{B, C, D, E, F\}$: controlled variable set.
- Rows with the same color for the controlled variable set are called matched record pairs.

	$\mathbf{A}=\mathbf{0}$	
$\mathbf{Y}=1$	$\mathrm{Y}=1$	$\mathrm{Y}=0$

An association rule $\mathrm{A} \rightarrow \mathrm{Y}$ is a causal association rule if: OddsRatio $_{D_{f}}(A \rightarrow Y) \gg 1$

From association to causation

Discover causal association rules from large databases of binary variables

A	B	C	D	E	F	G	Y
1	1	1	1	1	1	0	1
\ldots	\cdots						\ldots
1	1	0	1	0	1	0	1

A	B	C	D	E	Y
1	1	1	1	1	1
\ldots	\ldots				\ldots
0	1	1	1	1	0
\ldots					\ldots

1. Remove irrelevant variables (support, local support, association)
For each association rule (e. g. $A \rightarrow Y$)
2. Find the exclusive variables of the exposure variable (support, association), i.e. G, F. The controlled variable set $=\{B, C, D, E\}$.
3. Find the fair dataset. Search for all matched record pairs
4. Calculate the odds-ratio to identify if the testing rule is causal
5. Repeat 2-4 for each variable which is the combination of variables. Only consider combination of non-causal factors.

Special Issue

Joseph M. Juran, a Perspective on Past Contributions and Future Impact

A. Blanton Godfrey ${ }^{1, I . I}$ and Ron S. Kenett ${ }^{2, *, \dagger, \ddagger, \$}$
${ }^{1}$ College of Textiles, North Carolina State University, U.S.A. ${ }^{2}$ KPA Lid., Israel

This paper combines presentations by the authors in a special session dedicated to the work of Joseph M. Juran at the sixth annual conference of the European Network for Business and Industrial Statistics in Wroclaw, Poland. The paper offers an historical perspective of the contributions of J. M. Juran to management science emphasizing aspects of cause and effect relationships and Integrated Models. Specifically, the paper presents the Juran concepts of Management Breakthrough, the Pareto Principle, the Juran Trilogy ${ }^{\left({ }^{(1)}\right.}$ and Six Sigma. The impact of these contributions, put in an historical perspective of key thinkers who investigated cause and effect relationships, is then discussed. The impact of these contributions to modern Integrated Models is then assessed. Copyright $\odot 2007$ John Wiley \& Sons, Ltd.

Received 29 January 2007; Revised 16 April 2007; Accepted 18 April 2007
KEY WORDS: J. M. Juran; the Juran Trilogy®; Management Breakthroughs; the Pareto Principle; Six Sigma; quality systems; Integrated Models; cause and effect relationships

5. CAUSE AND EFFECT MODELS

At a pre sentation celebrating 50 years to the establishment of a Masters Degree in Statistics in Norway Odd O. Aalen has been quoted as stating that: 'Stautisics is important because is is conceived as contributing to a sence of a mechanissic underssanding.
y anything about causaliry. This is a

Causality in science

ith causality (e.g. Cox?). A famous ermany and the number of observed ing variable, time ${ }^{10}$. Sketch a scatter plot of population size versus number of storks in the table below and you will see what we mean, if a cause and effect relationship is implied by the data. This simple plot has been used in hundreds of statistics courses-and now in almost every Six Sigma course-to wam students of the dangers of assuming causality too quickly.

Sir Francis Bacon 1561-1626

...the true method of experience. . . first lights the candle, then by means of the candle shows the way; commencing as it does with experience duly ordered and digested, not bungling or erratic, and from it educing axioms, and from established axioms again new experiments. .

So, what did we cover

1. Background on causality in science and statistics
2. Fishbone cause and effect diagrams
3. Bayesian networks
4. Randomization in experimental designs
5. Propensity scores in observational studies
6. Counterfactuals and do calculus
7. Personalized medicine, condition based maintenance and Industry 4.0
8. Future research areas

Science

Engineering
Analytics

Computer Science

Thank you for your attention

[^0]: Amos Tversky and Thomas Gilovich

[^1]: * Box, Hunter and Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, J. Wiley, 1978

[^2]: Thand small, except in experiments with a a

