
Word 

Embeddings  

Master Degree in Data Science and Economics

Text Mining and Sentiment Analysis

Prof. Alfio Ferrara
Department of Computer Science, Università degli Studi di Milano 

Room 7012 via Celoria 18, 20133 Milano, Italia alfio.ferrara@unimi.it 

sed noli modo

mailto:alfio.ferrara@unimi.it


Words as vectors

Representing words as vectors in the multidimensional space defined by the other 
words is a very effective way of embedding words in a vector space representing the 
word meaning.


Moreover, it makes it possible to:

- compute distances and similarity between words

- represent documents as regions of the feature (i.e., words) space

- providing a rich input for training advanced supervised models



Naive embeddings

A natural but naive way of embedding a set Wn of words is to create an embedding 
matrix  where each entry  represents a relation between words wi and wj in a 

corpus.


Word relations may be

- co-occurrence: is the number of times wi appear within t words from wj  in 

documents

- pmi: the pointwise mutual information associated with the pair 

- context: wi  and wj appear in the same context according to a context model such as 

skip-gram or continuous bag-of-words 


However, this kind of embedding has two main limitations: i) very large number of 
dimensions and ii) sparsity

E ∈ ℝn×n eij



Dense embeddings

In order to deal with the issues of dimensionality and sparsity, we aim at obtaining 
dense word vectors


This can be done by matrix factorization or machine learning


The goal of reducing the dimensionality is not only related to the cost of processing high 
dimensional and sparse data, but also to minimize the impact of zero and outliers



Linguistic and Philosophical Issues (I)

What is the semantics, the meaning of a word?


A common sense hypothesis is to say that the meaning of a word is the real object that 
the word represents. In this framework, words that are not known to be mapped on real 
objects (e.g., new words for a reader or just random strings of characters like xvul) have 
no meaning at all.


However, this hypothesis is quite useless in a digital context, where we just have words, 
not real objects.



Linguistic and Philosophical Issues (II)

An alternative approach if the Distributional Hypothesis about language and word 
meaning that states that words that occur in the same contexts tend to have similar 
meanings. (Harris, 1954) In other words, you shall know a word by the company it keeps . 
(Firth, 1957)


Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.


John R. Firth. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis, Special volume of the Philological 
Society, pages 1–32. Firth, John Rupert, Haas William, Halliday, Michael A. K., Oxford, Blackwell Ed., 1957.



Linguistic and Philosophical Issues (III)

According to this hypothesis, any random word (i.e., xvul) may have a meaning that we 
can infer from the other words in the context is appears. Distributional semantics is the 
research interested in quantifying semantic similarities between linguistic items 
according to their distributional properties in large text corpora.


One of the main advantages for us is that this way the meaning of words is quantifiable 
and measurable in terms of distances from the other words in a corpus.



Weight contextual relations

Given a word wi and a word wj in the context of wi, we need thus to quantify the relation 
(wi, wj) and define the score [eij] in the embedding matrix.


We can do this by just counting the occurrences of (wi, wj) (i.e., how many times wi 
appears in the context of wj) or taking the normalized count:

[eij] =
count(wi, wj)

∑
w′￼

i,w
′￼
j∈D

count(w′￼
i, w′￼

j)

The drawback of this solution is to overestimate frequent words. So pairs like “the apple” 
will have higher scores than “red apple”, although the last one is more informative.



Pointwise Mutual Information

A different option is to evaluate the relation between the words joint probability and 
their marginal probability through the Pointwise Mutual Information (PMI)

[eij] = PMI(wi, wj) = log
P(wi, wj)

P(wi)P(wj)
= log ∑

w′￼

i,w
′￼

j∈D

count(w′￼

i, w′￼

j)
count(wi, wj)

count(wi)count(wj)

or, to avoid negative values, positive PMI (PPMI), PPMI(wi, wj) = max(PMI(wi, wj),0)

A drawback of PMI is that it tends to assign high value to rare events. It is therefore 
advisable to apply a count threshold before using the PMI metric, or to otherwise 
discount rare events.



Distributed word representation
Count-based methods (such as PMI) represent a word as a vector  where each 
dimension corresponds to a word in the corpus dictionary, so that  represents the 
score of the relation between  and a word  (for example, ). Such vectors 
are typically sparse and is usually large.

w ∈ ℝn

wi

w wi wi = PMI(w, wi)

On the opposite, the distributed representation of words meaning associates each 
word with a dense vector  with . The vector dimensions do not represent 
words nor concepts, and we are not allowed to interpret them as concepts.


The semantics of words is completely represented by the mutual position of words in 
the vector space. In particular, we want to preserve the proximity assumption for which 
if two word vectors are close one to the other, then the two words have a similar 
meaning. 

w ∈ ℝd d ≪ n



Neural network models (I)

An example is given in the work of Bengio at al., 2003. We exploit a neural network 
having as input an n-gram of words  and having as output a probability distribution 
over the next word. 

w1:n

Preliminary set up: The training set is a sequence  of words, where wt is a word 
in the corpus vocabulary V.

w1, …, wT

The objective function is  (for a n-gram), under the 
constraint that, for any 

f(wt, …, wt−n+1) = ̂P(wt ∣ w1, …, wt−1)
w1, …, wt−1

V

∑
i=1

f(wi, wt−1, …, wt−n+1) = 1, with f > 0

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. 
Journal of machine learning research, 3 (Feb), 1137-1155



Neural network models (II)

The function  is decomposed in two parts:f(wt, …, wt−n+1)

A mapping from any word  to a vector . The mapping is then a matrix 
 of free parameters and represents the distributed feature vectors of each 

word in the vocabulary;

wi ∈ V wi ∈ ℝm

W ∈ ℝV×m

A probability function over words, that is a function g that maps and input sequence of 
word vectors  to a conditional probability distribution for the next word wt. 
The output is then a vector  such that 


Thus, according to the decomposition, we have

wt−n+1, …, wt−1

g ∈ ℝV gi = ̂P(wt = i ∣ w1, …, wt−1)

f(wi, wt−1, …, wt−n+1) = g(wi, wt−1, …, wt−n+1)



Neural network models (III)

The function g is then implemented by a neural 
network that has its own parameters . 


The complete set of parameters is then . 
Learning is performed by stochastic gradient 
ascent (with  as learning rate) as:

ω

θ = (X, ω)

ϵ

θ ← θ + ϵ
∂ log ̂P(wt ∣ wt−1,…,wt−n+1

)

∂θ



Neural network models for word embeddings

As we have seen, the neural language model learns the embedding as part of its 
parameter estimation process.


From the work of Bengio, other models have been proposed in particular by relaxing the 
probabilistic output requirement.


Instead of computing a probability distribution over target words given a context, the 
Collobert and Weston model only attempts to assign a score to each word, such that the 
correct word scores above incorrect ones.


Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing: Deep  neural networks 
with multitask learning. In Proceedings of the 25th international conference on Machine learning (pp. 160-167).



Word2vec

Word2vec is a method for efficiently 
represent words in vector space.


It uses either the Continuous Bag of Words 
(CBOW) or the Skip-gram models for 
representing the word context and two 
different optimization objectives that are 
Negative-Sampling and Hierarchical 
Softmax. We will se Negative-Sampling.


See the online Word2Vec Tutorial (http://
mccormickml.com/2016/04/19/word2vec-tutorial-

the-skip-gram-model) where it is possible too 
find a intuitive view of the Word2vec main ideas.


http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model


CBOW vs SKIPGRAM

At lunch, the restaurant food is delicious

RESTAURANT

LUNCH

THE

FOOD

IS

CBOW

LUNCH

RESTAURANT

SKIPGRAM
THE

FOOD

IS

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation 
of word representations in vector space. arXiv preprint arXiv:[1301.3781]

(https://arxiv.org/abs/1301.3781).

By Aelu013 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=66797648

https://arxiv.org/abs/1301.3781


Word2vec

Consider a set  of correct word pairs  (e.g., valid bigrams) and a set  of bad word 

pairs. The goal of the algorithm is to estimate . The objective is to maximize 

the log-likelihood of the pairs in .

D (wi, wj) D

P(D = 1 ∣ wi, wj)
D ∪ D

ℒ(Θ; D; D) = ∑
wi,wj∈D

log P(D = 1 ∣ wi, wj) + ∑
wi,wj∈D

log P(D = 0 ∣ wi, wj),

where, given the score s(wi, wj)

P(D = 1 ∣ wi, wj) =
1

1 + e−s(wi,wj)



Word2vec

The positive samples D are taken from the corpus, while the negative ones are sampled 
according to the word frequency in the corpus.


CBOW: the scoring function is defined as  for a word context of k words


Skip-gram: in the skip-gram variant, assumes that the elements of the context are all 
independent, such that


k

∑
j=1

wi ⋅ wj

P(D = 1 ∣ wi, w1:k) =
k

∑
j=1

log
1

1 + e−wi⋅wj



Word2vec

In practice, Word2vec is implemented by a neural network composed by a  input 
layer, a  hidden layer, and a  output layer, where V is the size of the vocabulary, 
( ) is the one-hot encoding representation of words, and m is the dimension of the 
embedding vectors.


The hidden layer stores the weights that are used to feed the output layer and that are 
learned by the network.


WV×V

HV×m wV

WV×V



Word2vec

The output layer is a softmax regression classifier that given the one-hot vector of a word wi and the 
weights in the hidden layer estimates the probability of each word wj to be a word in the context of wi.


The main idea of Word2vec is to discard the input and the output layers and keep the hidden layer as 
the word embedding dense matrix of dimension .


The main interesting property of Word2vec is that it assigns similar vectors to words that have 
similar contexts. Why? 


Suppose to have (wi, wj) and (wz, wj) such that the word wj  appears in the contexts of both wi and wz. 


Since the target to estimate for wi and wz is the same, the only way the network has to assign the 
same prediction to wi and wz is to learn the same weights in Hi and Hz.

V × m



GloVe

GloVe stands for Global vectors and this summarizes the main idea of the algorithm. We have seen 
that Word2vec relies only on local information about a word because the word semantics is only 
affected by the surrounding words.


Glove starts instead from a global co-occurence matrix having the intuition that ratios of word-word 
co-occurrence probabilities have the potential for encoding some form of meaning (see the overview 
on the GloVe web page (https://nlp.stanford.edu/projects/glove).


By learning the vectors that are good for predicting co-occurrences instead of single words (like in 
Word2vec) we inject more information in the final word embedding vectors.


Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In 
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

https://nlp.stanford.edu/projects/glove


GloVe

The main intuition of GloVe is represented by its objective function that is


where  and  represent bias parameters that are learned together with the word vectors.


In other terms, the training objective of GloVe is to learn word vectors such that their dot product 
equals the logarithm of the words' probability of co-occurrence. Owing to the fact that the logarithm 
of a ratio equals the difference of logarithms, this objective associates (the logarithm of) ratios of co-
occurrence probabilities with vector differences in the word vector space. Because these ratios can 
encode some form of meaning, this information gets encoded as vector differences as well.

bi bj

wi ⋅ wj + bi + bj = log p(wi, wj),



Using word embedding

Word vectors can be used in two ways: training a specific word embedding model (Word2vec, GloVe 
or others) for a corpus (assuming to have enough contents) or exploit a pre-trained model (trained 
usually over milions or even bilions of data) to embed the corpus words


Word embedding is extremely useful for a variety of applications:


- Text search and retrieval

- Measuring the semantic distance among words

- Feeding a neural network language model (see next lecture)

- Text classification, either supervised or unsupervised



Properties of word embedding

Similarity among group of words: thanks to linearity, computing the average cosine similarity from a 
group of words to all other words can be calculated as

sim(w, (w1, …, wk)) =
1
k

k

∑
i=1

simcos(w, wi)

analogy(wi : wj → wk : ?) = argmaxw∈V∉{wi,wj,wk}cos(w, wk − wi + wj)

Analogy


