
1 Lecture 3 - 07-04-2020

Data point x represented as sequences of measurement and we called this
measurements features or attributes.

x = (x1, ..., xd) x1 feature valuex ∈ Xd X = Rd X = X1·x·...·Xd·x

Label space Y
Predictor f : X → Y

Example (x, y) y is the label associated with x
(→ y is the correct label, the ground truth)

Learning with example (x1, y1)...(xm, ym) training set

Training set is a set of examples with every algorithm can learn.......

Learning algorithm take training set as input and produces a predictor as
output.

......DISEGNO

With image recognition we use as measurement pixels.
How do we measure the power of a predictor?
A learning algorithm will look at training set, algorithm and generate the
predictor. Now the problem is verify the score.
Now we can consider a test set collection of example

Test set (x′1, y
′
1)...(x

′
n, y

′
n)

Typically we collect big dataset and then we split in training set and test set
randomly.
Training and test are typically disjoint
How we measure the score of a predictor? We compute the average loss.
The error is the average loss in the element in the test set.

Test error
1

n
·

n∑
t=1

`(f(x′t), y
′)
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In order to simulate we collect the test set and take the average loss of the
predictor of the test set. This will give us idea of how the..
Proportion of test and train depends in how big the dataset is in general.
Our Goal: A learning algorithm ‘A’ must output f with a small test error.
A does not have access to the test set. (Test set is not part of input of A).
Now we can think in general on how a learning algorithm should be design.
We have a training set so algorithm can say:
‘A’ may choose f based on performance on training set.

Training error ˆ̀(f) =
1

m
·

m∑
t=1

`(f(xt), yt)

Given the training set (x1, ..., xm)(y1, ..., ym)
If ˆ̀(f) for same f, then test of f is also small
Fix F set of predictors output f̂

f̂ = arg min ˆ̀(f)f ∈ F

This algorithm is called Empirical Risk Minimiser (ERM)
When this strategy (ERM) fails?
ERM may fails if for the given training set there are:
Many f ∈ F with small ˆ̀(f), but not all of them have small test error

There could be many predictor with small error but some of them may have
big test error. Predictor with the smallest training error doesn’t mean we
will have the smallest test error.
I would like to pick f ∗ such that:

f ∗ = arg min
1

n
·

m∑
t=1

`(f(x′t), yt) f ∈ F

where `(f(x′t), yt) is the test error
ERM works if f ∗such that f ∗ = arg min ˆ̀(f) f ∈ F
So minimising training and test????? Check videolecture
We can think of f as finite since we are working on a finite computer.
We want to see why this can happen and we want to formalise a model in
which we can avoid this to happen by design: We want when we run ERM
choosing a good predictor with ...... PD
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1.1 Overfitting

We called this as overfitting: specific situation in which ‘A’ (where A is the
learning algorithm) overfits if f output by A tends to have a training error
much smaller than the test error.
A is not doing his job (outputting large test error) this happen because test
error is misleading.
Minimising training error doesn’t mean minimising test error. Overfitting is
bad.
Why this happens?
This happen because we have noise in the data

1.1.1 Noise in the data

Noise in the data: yt is not deterministically associated with xi.

Could be that datapoint appears more times in the same test set. Same
datapoint is repeated actually I’m mislead since training and dataset not co-
incide. Minimising the training error can take me away from the point that
minimise the test error.
Why this is the case?

� Some human in the loop: label assigned by people.(Like image con-
tains certain object but human are not objective and people may have
different opinion)

� Lack of information: in weather prediction i want to predict weather
error. Weather is determined by a large complicated system. If i have
humidity today is difficult to say for sure that tomorrow will rain.

When data are not noise i should be ok.
Labels are not noisy
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Fix test set and trainign set.

∃f ∗ ∈ F y′t = f ∗(x′t) ∀(x′t, y′t) in test set

yt = f+(xt) ∀(xt, yt) in training set

Think a problem in which we have 5 data points(vectors) :
~x1, ... ~x5 in some space X
We have a binary classification problem Y = {0, 1}
{ ~x1, ..., ~x5} ∈ X Y = {0, 1}

F contains all possible calssifier 25 = 32 f : {x1, ..., x5} → {0, 1}

Example
x1 x2 x3 x4 x5

f 0 0 0 0 0
f

′
0 0 0 0 1

f ” .. .. .. .. ..

Training set x1, x2, x3 f+

Test set x4, x5 f ∗

4 classifier f ∈ F will have ˆ̀(f) = 0

(x1, 0) (x2, 1) (x3, 0)
(x4, ?) (x5, ?)
f ∗(x4) f ∗(x5)
If not noise i will have deterministic data but in this example (worst case)
we get problem.
I have 32 classifier to choose: i need a larger training set since i can’t distin-
guish predictor with small and larger training(?) error. So overfitting noisy
or can happen with no noisy but few point in the dataset to define which
predictor is good.
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1.2 Underfitting

‘A’ underfits when f output by A has training error close to test error but
they are both large.
Close error test and training error is good but the are both large.

A ≡ ERM , then A undefits if F is too small→ not containing too much predictors

In general, given a certain training set size:

� Overfitting when |F | is too large (not enough points in training set)

� Underfitting when |F | is too small

Proportion predictors and training set

|F |, i need ln|F | bits of info to uniquely determine f ∗ ∈ F

m >> ln|F | when |F | <∞where m is the size of traning set

1.3 Nearest neighbour

This is completely different from ERM and is one of the first learning algo-
rithm. This exploit the geometry of the data. Assume that our data space
X is:
X ≡ Rd x = (x1, ..., xd) y − {−1, 1}
S is the traning set (x1, y1)...(xm, ym)
xt ∈ Rd yt ∈ {−1, 1}

d = 2→ 2-dimensional vector

....– DISEGNO –...
where + and - are labels

Point of test set
If i want to predict this point?
Maybe if point is close to point with label i know then. Maybe they have
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the same label.
ŷ = + or ŷ = −

.....– DISEGNO – ...
I can came up with some sort of classifier.

Given S training set, i can define hNN X → {−1, 1}
hNN(x) = label yt of the point xt in S closest to X
(the breaking rule for ties)
For the closest we mean euclidian distance
X = Rd

‖x− xt‖ =

√√√√ d∑
e=1

(xe − xt, e)2

ˆ̀(hNN) = 0

hNN(xt) = yt

training error is 0!
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