
Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor
Design a learning algorithm that predict with small statistical risk

(D, `) `d(h) = E [ `(y), h(x) ]

were D is unknown
`(y, ŷ) ∈ [0, 1] ∀y, ŷ ∈ Y

We cannot compute statistical risk of all predictor.
We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).
Before design a learning algorithm with lowest risk, How can we estimate
risk?
We can use test error → way to measure performances of a predictor h. We
want to link test error and risk.
Test set S ′ = {(x′1, y′1)...(x′n, y′n)} is a random sample from D
How can we use this assumption?
Go back to the de�nition of test error

Sample mean (IT: Media campionaria)

ˆ̀
s(h) =

1

n
·

n∑
t=1

`(ŷt, h(x
′
t))

i can look at this as a random variable `(y′t, h(x
′
t))

E [ `(y′t, h(x
′
t))] = `D(h) −→ risk

Using law of large number (LLN), i know that:

ˆ̀−→ `D(h) as n→∞

We cannot have a sample of n =∞ so we will introduce another assumption:
the Cherno�-Ho�ding bound

1.0.1 Cherno�-Ho�ding bound

Z1, ..., Zn iid random variable E [Zt] = u

all drawn for the same distribution

t = 1, ..., n and 0 ≤ Zt ≤ 1 t = 1, ..., n then ∀ε > 0
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P

(
1

n
·

n∑
t=1

zt > u+ ε

)
≤ e−2 ε

2 n or P

(
1

n
·

n∑
t=1

zt < u+ ε

)
≤ e−2 ε

2 n

as sample size then ↓

Zt = `(Y ′t , h(X
′
t)) ∈ [0, 1]

(X ′1, Y
′
1)...(X

′
n, Y

′
N) are iid therefore,

` (Y ′t , h (X
′
t)) t = 1, ..., n are also iid

We are using the bound of e to bound the deviation of this.

Union Bound

Union bound: a collection of event not necessary disjoint, then i know that
probability of the union of this event is the at most the sum of the probabil-
ities of individual events

A1, ..., An P (A1 ∪ ... ∪ An) ≤
n∑

t=1

P (At)

Figure 1.1: Example

that's why ≤

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
This is the probability according to the random draw of the test set.

If test error di�er from the risk by a number epsilon > 0. I want to bound
the probability. This two thing will di�er by more than epsilon. How can i
use the Cherno� bound?

| ˆ̀s′ (h)− `D (h) | > ε ⇒ ˆ̀
s′ (h)− `D (h) > ε ∨ ˆ̀

D (h)− `s′ (h) > ε

A,B A⇒ B P (A) < P (B)

2



Figure 1.2: Example

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
≤ P

(
|ˆ̀s′ (h)− `D (h) |

)
∪ P

(
|ˆ̀D (h)− `s′ (h) |

)
≤

≤ P
(
ˆ̀
s′ > `D (h) + ε

)
+P
(
ˆ̀
s′ < `D (h)− ε

)
≤ 2·e−2 ε2 n ⇒ we call it δ

ε =

√
1

2 · n
ln

2

δ

The two events are disjoint

This mean that probability of this deviation is at least delta!

| ˆ̀s′ (h)− `D (h) | ≤
√

1

2 · n
ln

2

δ
with probability at least 1− δ

Test error of true estimate is going to be good for this value (δ)
Con�dence interval for risk at con�dence level 1-delta.

Figure 1.3: Example

I want to take δ = 0, 05 so that 1− δ is 95%. So test error is going to be an
estimate of the true risk which is precise that depend on how big is the test
set (n).
As n grows I can pin down the position of the true risk.
This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.
We can measure how accurate is our risk error estimate.
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Test error is an estimate of risk for a given predictor (h).

E [ ` (Y ′t , h (X
′
t)) ] = `D (h)

h is �xed with respect to S' −→ h does not depend on the test set. So
learning algorithm which produce h not have access to test set.
If we use test set we break down this equation.

Now, how to build a good algorithm?
Training set S = {(x1, y1) ... (xm, ym)} random sample
A A (S) = h predictor output by A given S where A is learning algo-
rithm as function of traning set S.
∀S A (S) ∈ H h∗ ∈ H

`D (h∗) = min `D (h) ˆ̀
s (h

∗) is closed to `D (h∗) −→ it is going to have small error

where `D (h∗) is the training error of h∗

Figure 1.4: Example

This guy `D (h∗) is closest to 0 since optimum

Figure 1.5: Example

In risk we get opt in h∗ but in empirical one we could get another h′ better
than h+

In order to �x on a concrete algorithm we are going to take the empirical
Islam minimiser (ERM) algorithm.
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