Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor
Design a learning algorithm that predict with small statistical risk

(D, 6)  La(h) =E[L(y), h(z)]

were D is unknown

Uy, 9) € [0,1] Vy,geY

We cannot compute statistical risk of all predictor.

We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).

Before design a learning algorithm with lowest risk, How can we estimate
risk?

We can use test error — way to measure performances of a predictor h. We
want to link test error and risk.

Test set 5" = {(z,v1)...(x},,y,,)} is a random sample from D

How can we use this assumption?

Go back to the definition of test error

Sample mean (IT: Media campionaria)

R I o .
Lh) = 3 € h(al)
=1
i can look at this as a random variable /(y;, h(x}))

E[0(y, h(z})] = Lp(h) —> risk

Using law of large number (LLN), i know that:
{ —s lp(h) as n— oo

We cannot have a sample of n = 0o so we will introduce another assumption:
the Chernoff-Hoffding bound

1.0.1 Chernoff-Hoffding bound
2y ey Ly tid random variable  E[Z)] =u

all drawn for the same distribution
t=1,...,n and 0<z,<1 t=1,...,n then Ve >0
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P(E-Zzt>u+6>§62€2” or P(E-Zzt<u+5)§e%2

t=1 t=1

as sample size then |
Zy = 0¥/, h(X))) € [0,1]

(X1, YY))...(X], YY) are iid therefore,
(Y, h(X]) t=1,..,n are also iid
We are using the bound of e to bound the deviation of this.

Union Bound

Union bound: a collection of event not necessary disjoint, then i know that
probability of the union of this event is the at most the sum of the probabil-
ities of individual events

A, Ay P(AULLUA,) <D P(A)
t=1
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Figure 1.1: Example

that’s why <

P (|£S, (h) — lp (h) | > 5)
This is the probability according to the random draw of the test set.

If test error differ from the risk by a number epsilon > 0. I want to bound
the probability. This two thing will differ by more than epsilon. How can i
use the Chernoff bound?
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10y (W) —lp(h) | > = Lly(h)—lp(h)>ec NV {Ip(h)—"Ly(h)>c¢
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Figure 1.2: Example

P16y ()~ to(n) | > &) <P (L) =tom)]) U P(lip(r)~te()]) <

IN

P(ly>tp(h)+2)+P(ly<tp(h)—2) < 27" = wecall it

The two events are disjoint

This mean that probability of this deviation is at least delta!

10y (h) — £p (h) | <4/ ——In

with probability at least 1 — ¢
2.n

SN

Test error of true estimate is going to be good for this value (6)
Confidence interval for risk at confidence level 1-delta.
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Figure 1.3: Example

I want to take § = 0,05 so that 1 — § is 95%. So test error is going to be an
estimate of the true risk which is precise that depend on how big is the test
set (n).

As n grows I can pin down the position of the true risk.

This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.

We can measure how accurate is our risk error estimate.



Test error is an estimate of risk for a given predictor (h).

E[€(Y{, h(X}))] = b (h)

h is fixed with respect to S’ — h does not depend on the test set. So
learning algorithm which produce h not have access to test set.
If we use test set we break down this equation.

Now, how to build a good algorithm?

Training set S = {(z1,¥1) ... (¥m, Ym)} random sample

A A (S) = h predictor output by A given S where A is learning algo-
rithm as function of traning set S.

V.S A(S)e H h*eH

~

lp (R*) =minlp (h) ls (h*)is closed to {p (h*) — it is going to have small error

where ¢p (h*) is the training error of h*
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Figure 1.4: Example

This guy ¢p (h*) is closest to 0 since optimum
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Figure 1.5: Example

In risk we get opt in A* but in empirical one we could get another h’' better
than A

In order to fix on a concrete algorithm we are going to take the empirical
Islam minimiser (ERM) algorithm.



