Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor

Design a learning algorithm that predict with small statistical risk

$$(D, \ell)$$
 $\ell_d(h) = \mathbb{E} [\ell(y), h(x)]$

were D is unknown

$$\ell(y, \hat{y}) \in [0, 1] \quad \forall y, \hat{y} \in Y$$

We cannot compute statistical risk of all predictor.

We assume statistical loss is bounded so between 0 and 1. Not true for all losses (like logarithmic).

Before design a learning algorithm with lowest risk, How can we estimate risk?

We can use test error \rightarrow way to measure performances of a predictor h. We want to link test error and risk.

Test set $S' = \{(x'_1, y'_1)...(x'_n, y'_n)\}$ is a random sample from D

How can we use this assumption?

Go back to the definition of test error

Sample mean (IT: Media campionaria)

$$\hat{\ell}_s(h) = \frac{1}{n} \cdot \sum_{t=1}^n \ell(\hat{y}_t, h(x_t'))$$

i can look at this as a random variable $\ell(y_t', h(x_t'))$

$$\mathbb{E}\left[\ell(y'_t, h(x'_t))\right] = \ell_D(h) \longrightarrow risk$$

Using law of large number (LLN), i know that:

$$\hat{\ell} \longrightarrow \ell_D(h)$$
 as $n \to \infty$

We cannot have a sample of $n = \infty$ so we will introduce another assumption: the Chernoff-Hoffding bound

1.0.1 Chernoff-Hoffding bound

$$Z_1,...,Z_n$$
 iid random variable $\mathbb{E}\left[Z_t\right]=u$

all drawn for the same distribution

$$t = 1, ..., n$$
 and $0 \le Z_t \le 1$ $t = 1, ..., n$ then $\forall \varepsilon > 0$

$$\mathbb{P}\left(\frac{1}{n} \cdot \sum_{t=1}^{n} z_{t} > u + \varepsilon\right) \leq e^{-2\varepsilon^{2}n} \qquad or \qquad \mathbb{P}\left(\frac{1}{n} \cdot \sum_{t=1}^{n} z_{t} < u + \varepsilon\right) \leq e^{-2\varepsilon^{2}n}$$

as sample size then \downarrow

$$Z_t = \ell(Y_t', h(X_t')) \in [0, 1]$$

 $(X_1', Y_1')...(X_n', Y_N')$ are *iid* therefore, $\ell(Y_t', h(X_t'))$ t = 1, ..., n are also *iid*

We are using the bound of e to bound the deviation of this.

Union Bound

Union bound: a collection of event not necessary disjoint, then i know that probability of the union of this event is the at most the sum of the probabilities of individual events

$$A_1, ..., A_n$$
 $\mathbb{P}(A_1 \cup ... \cup A_n) \leq \sum_{t=1}^n \mathbb{P}(A_t)$

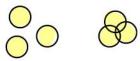


Figure 1.1: Example

that's why \leq

$$\mathbb{P}\left(\left|\,\hat{\ell}_{s'}\left(h\right) - \ell_D\left(h\right)\,\right| \, > \varepsilon\right)$$

This is the probability according to the random draw of the test set.

If test error differ from the risk by a number epsilon > 0. I want to bound the probability. This two thing will differ by more than epsilon. How can i use the Chernoff bound?

$$|\hat{\ell}_{s'}(h) - \ell_D(h)| > \varepsilon \quad \Rightarrow \quad \hat{\ell}_{s'}(h) - \ell_D(h) > \varepsilon \quad \lor \quad \hat{\ell}_D(h) - \ell_{s'}(h) > \varepsilon$$

$$A, B \qquad A \Rightarrow B \qquad \mathbb{P}(A) < \mathbb{P}(B)$$

Figure 1.2: Example

$$\mathbb{P}\left(\left|\hat{\ell}_{s'}\left(h\right) - \ell_{D}\left(h\right)\right| > \varepsilon\right) \leq \mathbb{P}\left(\left|\hat{\ell}_{s'}\left(h\right) - \ell_{D}\left(h\right)\right|\right) \quad \cup \quad \mathbb{P}\left(\left|\hat{\ell}_{D}\left(h\right) - \ell_{s'}\left(h\right)\right|\right) \leq \\
\leq \mathbb{P}\left(\hat{\ell}_{s'} > \ell_{D}\left(h\right) + \varepsilon\right) + \mathbb{P}\left(\hat{\ell}_{s'} < \ell_{D}\left(h\right) - \varepsilon\right) \quad \leq \quad 2 \cdot e^{-2\varepsilon^{2}n} \quad \Rightarrow we \ call \ it \ \delta$$

$$\varepsilon = \sqrt{\frac{1}{2 \cdot n} \ln \frac{2}{\delta}}$$

The two events are disjoint

This mean that probability of this deviation is at least delta!

$$|\hat{\ell}_{s'}(h) - \ell_D(h)| \le \sqrt{\frac{1}{2 \cdot n} \ln \frac{2}{\delta}}$$
 with probability at least $1 - \delta$

Test error of true estimate is going to be good for this value (δ) Confidence interval for risk at confidence level 1-delta.

Figure 1.3: Example

I want to take $\delta = 0.05$ so that $1 - \delta$ is 95%. So test error is going to be an estimate of the true risk which is precise that depend on how big is the test set (n).

As n grows I can pin down the position of the true risk.

This is how we can use probability to make sense of what we do in practise.

If we take a predictor h we can compute the risk error estimate.

We can measure how accurate is our risk error estimate.

Test error is an estimate of risk for a given predictor (h).

$$\mathbb{E}\left[\ell\left(Y_{t}^{\prime},h\left(X_{t}^{\prime}\right)\right)\right]=\ell_{D}\left(h\right)$$

h is fixed with respect to $S' \longrightarrow h$ does not depend on the test set. So learning algorithm which produce h not have access to test set. If we use test set we break down this equation.

Now, how to build a good algorithm?

Training set $S = \{(x_1, y_1) \dots (x_m, y_m)\}$ random sample

A A(S) = h predictor output by A given S where A is learning algorithm as function of training set S.

$$\forall S \qquad A(S) \in H \qquad h^* \in H$$

 $\ell_D(h^*) = \min \ell_D(h)$ $\hat{\ell}_s(h^*)$ is closed to $\ell_D(h^*) \longrightarrow \text{it is going to have small error}$ where $\ell_D(h^*)$ is the training error of h^*

Figure 1.4: Example

This guy $\ell_D(h^*)$ is closest to 0 since optimum

Figure 1.5: Example

In risk we get opt in h^* but in empirical one we could get another h' better than h^+

In order to fix on a concrete algorithm we are going to take the empirical Islam minimiser (ERM) algorithm.