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- Eigenvalues/Eigenvectors and applications

Based on Linear Algebra and Its Applications, David C. Lay, Steven R.
Lay, and Judi J. McDonald, PEARSON 52th ed.



Principal Component Analysis (PCA)
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- PCA projects the data along the directions where the data varies most.

- These directions are determined by the eigenvectors of the covariance matrix corresponding to the largest
eigenvalues.

- The magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector directions.
- Find the projection that best preserves the variance.

- PCA preserves as much information as possible by minimizing the “reconstruction” error:



Almost all vectors change direction, when they are multiplied by A. Certain exceptional vectors x are in the same

direction as Ax. Those are the * ". Multiply an eigenvector by A, and the vector Ax is a number A
times the original x. Y
Ax=
(The term eigenvalue is from the German word Eigenwert, meaning . 7
“proper value”)
[
= Eigenvalue and Eigenvector: X
A: an nxn matrix sy

A: a scalar (could be zero)

- Geometric Interpretation
X: a nonzero vector in R

* Eigenvalue problem (one of the most important problems in the linear algebra):

If 4 is an nxn matrix, do there exist nonzero vectors x in R” such that 4x is a scalar multiple of x?

Eigenvalue

Ax = Jx
| |

Eigenvector



Introduction to Eigenvalues and Eigenvectors

The eigenvalue tells whether the special vector X is stretched or shrunk or reversed or left unchanged—when it is multiplied
by A. The eigenvalue could be zero! Then Ax = 0 X means that this eigenvector X is in the nullspace (the space of the vectors
such that Ax=0). If A is the identity matrix, every vector has Ax = X. All vectors are eigenvectors of |.

All eigenvalues “lambda” are =1. This is unusual to say the least. Most 2 by 2 matrices have two eigenvector directions and
two eigenvalues. We will show that det (A—A |) = O:

Ax = A x for x# 0 and a scalar A, so (A- AI)x = 0 and we have a non trivial solution if and only if det (A—A 1) = 0

8—A 3 1

_ 1.8 3
Example Let A = [.2 .7], det[2 Y

}:Az_é;w :[}L—]](}L—%)=O then =1, and A=1/2.

t |

For those numbers, the matrix (A - Al) becomes singular (zero determinant). The eigenvectors V1 and V2 are in
the nullspaces of (A-1)and (A-1/21).

(A-hvli=0 = V1=t[2}3 for any real value t

(A-%I1)V2=0 = V,=t [_11 for any real value t



Summary To solve the eigenvalue problem for an n by n matrix. follow these steps:

1. Compute the determinant of A — AI. With A subtracted along the diagonal. this
determinant starts with A" or —A". It 1s a polynomial in A of degree n.

2. Find the roots of this polynomial. by solving det(4 — Al) = 0. The n roots are
the n eigenvalues of A. They make A — AJ singular.

3. For each eigenvalue A. solve (A — Al)x = 0 fo find an eigenvector x .

Theorem (The eigenspace of A corresponding to A)
If Ais an nxn matrix with an eigenvalue 4, then the set of all eigenvectors of A together with the
zero vector is a subspace of R". This subspace is called the eigenspace of 1.

Remark Are eigenvectors are unique? If x is an eigenvector, then px is also an eigenvector and

BA is an eigenvalue
A(Bx) = B(Ax) = B(Ax) = L(Bx)

Remark The eigenvalues (roots of a polynomial) could be complex numbers!



* BExpand the det(A - AI) = 0 for a 2 X 2 matrix

10
det(A—/U):detqa” alz}ﬂ{ D:o
a, d,, 0 1

de{an - 2 } =0= (all _ﬁ')(azz _i)_ a,,a, =0

dy ayy — A
X _ﬂ’(all + azz)"' (allazz — a12a21): 0

* For a 2 X2 matrix, this is a simple quadratic equation with two solutions

(maybe complex) \/

(all +da,, )2

A= +
(all ' azz) Ha, ay, — a12a21)

* This “characteristic equation” can be used to solve for x



Eigenvalue example

-

* Consider, ) /12_(all+a22)/1+(a11a22_a12a21):0
A:{ }:< P —1+HA+(1-4-2-2)=0

2 4 :
P=(+8HA=>A1=0,1=5

.

* The corresponding eigenvectors can be computed as

1 2 0 0 X 1 2| |x Ix+2y 0

A=0= — : =0= : = =

2 4 0 0 y 2 4|y 2x+4y 0

1 2 50 X -4 2 ||x —4x+2y 0
1 1=0= : = =

2 4] [0 5 y 2 —1fly 2x—1y 0

* For A = 0, one possible solution is x = (2, -1)
* For A = 5, one possible solution is x = (1, 2)

Warning: we compute eigenvalues using the determinant only for very low dimensional case
as an exercise, in the applications we must to consider efficient numerical methods and we

(usually) have to calculate only a few eigenvalues / eigenvectors.



Theorem

fvy,.... v, are eigenvectors that correspond to distinct eigenvalues A, .... A,
of an n x n matnx A, then the set {vy..... v} 15 linearly independent .

Let A be a square n x n matrix with 77 linearly independent eigenvectors (a “non-

defective” matrix)
Let P have the eigenvectors as columns:

P=[V, V, ...V,]
Then, AP can be written

M 00
AP = A[V; Vy ... Vi] = [MVy ApVy oo AV ] =V Vy . V][O .. o] =
0 0 X,

[V, V, .. V,] A

Thus AP=PA, or P-1AP= A, or A=PAP-1 with A diagonal matrix with eigenvalues.

A is called diagonalizable



. Let A=[_61 _62],then |A—7\,I| = ‘_1_}\/

2

= (-1-A) (6-A) +12 =0 =
R GRIGE
7\41=3, 7\~2=2.

for Aq1=3, [_64 _32] [2] [8] so Vi = x, [_11/2] with x, real parameter

or a2 [2 PLH o v

The vectors V, and V, are linearly independent (for scalars c; and c, such that ¢, V, +¢,V,=0
implies ¢; =0 ¢,=0). We fix an eigenvector for each eigenvalues, for example

I
N
|
(\O)
S~

{ ] with x, real parameter

P =V, [2 _,ﬂ and P71 = [EZ 31] and

e 3, 200 2 2 Y



Example (multiple eigenvalues) Eigenvalue problems and diagonalization B
A=|3
Characteristic equation:
1—-A 3 0
|A— I|=1| 3 1—A 0 |=(2-A)((1-A)?> -9)=0
0 0 —2—-A
The eigenvalues: A, =4, 4, =-2, A, =-2
1
(1) A =4 = the eigenvector p, =| 1 (one possible eigenvector)
0

—_— 9




(2) A =-2 = the eigenvector

11
P=[p, p, p;]=|1 -1
0 0

NOTE It P=[p, p, p;]
1 1 0]
=-1 1 O
0 0 1

p,=|-1[, p,=|0

— P AP =

,and P'AP=|0 -2 0

(P P, P5 are linear independent)



Let A a diagonalizable matrix: A=PAP- for a suitable P. Then
Ak = (P AP YP A PYv... (PAPT)= P Ak P-1

And the long range behavior is determined by the power of the eigenvaluesv(P and P-' does not
change)

0.7 0.2
0.3 0.8

Example Let initial population x, = 2888] and a transition matrix A = [

X1 =AX, k=0,1,2,...

Eigenvalues of A: A, = 1 (easy from the entries of the matrix A... why?) A ,= 1/2 For the eigenvectors
we choose:

-1

V; = [2] and 'V, = [1

3 ] and x, = Akx, =P AP x, where P=[V; V, ] then (after some computation)

k
X, = 2000 V; -4000 (5) V, when k>>1x,~2000 V,



Remark (Complex eigenvalues). When a real 2x2 matrix A has complex eigenvalues, A is not diagonalizable, but the dynamical
system X, = AX, is easy to describe. If the modulus of the eigenvalues is 1, the iterates of a point x,, spiraled around the
origin along an elliptical trajectory.

If A has two complex eigenvalues whose absolute value is greater than 1, then 0 is a repeller and iterates of x, will spiral
outward around the origin.

If the absolute values of the complex eigenvalues are less than 1, then the origin is an attractor and the iterates of x, spiral
inward toward the origin.

Hyp

Nl l

a L $x
X, 1 0

i

Example. The spotted owl population in the Willow Creek area of California was modeled by a dynamical system x,,,; = Ax, with
0 0 .33 : . \ . .

A= {15 0 u} and A; = .98, A, =—-.02+ 21i, and A; = —.02 — .21i. with modulus <1, then from
0 71 .94

B P U Sy S .
Xp = (A1) v 4 2(42)"va + €3(43)" V3 the real sequence xk approaches the zero vector: this
model predicts that the spotted owls will eventually all perish.



Principal component analysis

* Consider a covariance matrix, A, for some S (two variable, n subjects)

a=| | Plsa 21754 2025
= — =1. ) — V.
75 1 2

1.0

- 0.0

P 0.0 1.0

1.00 075

0.75 1.00

* Error ellipse with the major axis as the larger eigenvalue and the minor axis as the smaller eigenvalue



* First principal component is the direction of greatest variability
(covariance) in the data

* Second is the next orthogonal (uncorrelated) direction of greatest
variability

* So first remove all the variability along the first component, and then find
the next direction of greatest variability

e And so on ...

* Thus each eigenvectors provides the directions of data variances
in decreasing order of eigenvalues R

PC 2 PC 1

Original Variable
B

»

Original Variable A




= Principal component analysis

« Itis a way of identifying the underlying patterns in data

« It can extract information in a large data set with many variables and
approximate this data set with fewer factors

« In other words, it can reduce the number of variables to a more manageable
set

= Steps of the principal component analysis

Step 1: Get some data

Step 2: Subtract the mean

Step 3: Calculate the covariance matrix

Step 4: Calculate the eigenvectors and eigenvalues of the
covariance matrix

Step 5: Deriving the transformed data set

Step 6: Getting the original data back



Step 1: Step 2:

X y % y
2.5 2.4 0.69 0.49
0.5 0.7 -1.31 1.21
2.2 2.9 0.39 0.99
1.9 2.2 0.09 0.29
3.1 3.0 > 1.29 1.09
2.3 2.7 0.49 0.79 =
20 1.6 0.19 031
1.0 1.1 -0.81] 0.81]
15 1.6 -0.31 -0.31
1.1 0.9 -0.71 -1.01
| I
Step 3:
xT ) xTx xTy
Var(XT)—E[XXT]‘EH T} . y]}E{ o }
Y yx yy

_{ var(x)  cov(x,y) ] £0.616556 O.615444j

cov(x,y) var(y) | (0.615444 0.716556



« Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix A

—0.73518
0.67787

. The two eigenvectors are orthogonal to

each other-

. v, eigenvector (corresponding to the

largest eigenvalue A;) is just like a best-
fit regression line

. V,seems less important to explain the

data since the projection of each node
on the v, axis is very close to zero

. The interpretation of v, is the new axis

which retains as much as possible the
variance information that was
contained in the original two
dimensions

—0.67787
=1. , V, = =0. , V, =
ﬁl 1.284028 . 12 0.049083 5
—0.73518%
| € Vv,
//7.' : * *
VZ/ 0.5 .—.
L ‘ l




- It can be observed in the above figure that the projection onto v, vector can retains as much as possible
the “interpoint” distance information (variance) that was contained in the original series of (x, y)
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B New Series after PCA

If only the principal component 1s considered in the Principal Component Analysis (PCA), it is equivalent

to project all points onto the v, vector




The same for the n-dimensional case

* Consider data without class labels
* Try to find a more compact representation of the data

« Assume that the high dimensional
data actually resides in a inherent
low-dimensional space

« Additional dimensions are just
random noise

« (Goal is to recover these inherent
dimensions and discard noise
dimensions

- takes a data matrix of n objects by p variables, which may be correlated, and summarizes it by
uncorrelated axes (principal components or principal axes) that are linear combinations of the
original p variables

- the first k components display as much as possible of the variation among objects.



First Principal Component

variable3

[ First pincipal ais |

Overall mean of the datase! & 0

Second par-inr::pal axis | ®

A

l

__——__-—.———-F———I

Second Principal Component

variable3




Geometric Rationale of PCA

degree to which the variables are linearly correlated
isrepresented by their covariances.

Covariance of / \
Value of  poon of  Value of Mean of

- ; : , : : variable j
Sum over all .varlgble I variable i .var'lc.(ble J J
in object m in object m



The covariance matrix is a symmetric matrix C=C" (for the entries C;=C;)

The Spectral Theorem for Symmetric Matrices
An n x n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue A equals the multiplicity
of A as a root of the characteristic equation.

¢. The eigenspaces are mutually orthogonal. in the sense that eigenvectors cor-
responding to different eigenvalues are orthogonal.

d. A 1s orthogonally diagonalizable.



Projection on a Vector .

6
\ . >
Proj,,(x) u

Orthogonal projection of z on u
v (wx)

ull? ~ (u,u)

Proj, (z) = ||z cos 6 = ||ull ]| cos 8

o u = (u,z)u if ||ul| =1

=uulz if ||ul| =1

Projection on a Subspace

Let W be a subspace of R”. Let U = [u1, u2,...,ux] be an n x k
matrix, whose columns form an orthonormal basis of W. Then, the
projection of a vector x € R" is given by

Projy, (x) = UU T x




Optimality Property of PCA
Orthogonal matrix
Main theoretical result:

The matrix G consisting of the first p eigenvectors of the
covariance matrix S solves the following min problem:

X — G(GTX)H subject to GTG I,

min

GeRér

Projection on the X E( 2 .
Subspace generates by the o P reconstruction error
Columns of G

PCA projection minimizes the reconstruction error among all
linear projections of size p.




A rank-k linear approximation model

Fit the mode‘ Wlt! m|n|ma| reconstruction error

Optimal condition

* Jlkan be expressed as SVD of X, xX=uxr'



Application to Faces (from slides of CS479/679 Pattern Recognition Dr. George Bebis)

« Computation of low-dimensional basis (i.e.,eigenfaces):

Step 1= obtain face images {|. [5, ... [y (tramning faces)

(very important: the face images must be centered and of the same size)

Step 2: represent every image /; as a vector [

N x N image

2
N x 1 vector



Computation of the eigenfaces — cont.

Step 3: compute the average face vector V-

| M
VW=—Y%T,

Step 40 subtract the mean face:
_ J

Step 3 compute the covariance matnx C

C 1 Ecb tbr——il T NN matr
— — Ak [ YT XY atrix
= nPn =37 | X matri

where A =) b, .- D] ( N?x M matrix)



Computation of the eigenfaces — cont.

T
. . 4T ) = Au,
Step O compulte the ergenvectors 1; of A4 AA U, ﬂ’zuz

|1r

- : T . :
[he matrix AA° 1s very large --= not practica

Step 6. 1: consider the matrix AT A (MxM matrix)
Qten 7 o » the eisenvectors v “!Tl'
Slep IS compute the eigenvectors vy ol A -
T g — s
AT Avy = pvy

What is the relationship between sy and vy 7

_-IT_-h'I; = [V == .-::!T_-h'f = pt; Av;

CAvy = py Avy or Cu; = gty where iy = Avy

u =Av, and A =y

1



Computation of the eigenfaces — cont.

Tr r3 . :
Note 11 A4 can have up to N° eigenvalues and eigenvectors.

T . .
Note 2: A4 A can have up to M eigenvalues and eigenvectors.

N . ., T . . .
Note 3: The M eigenvalues of 4" A (along with their corresponding

: : . T
cigenvectors) correspond to the M largest cigenvalues of 44" (along
with their corresponding elgenvectors).

Step 6.3: compute the M best eigenvectors of 44T ;= Av;

(important: normalize i; such that ””.‘" =1}

Step 7t keep onlv K cigenvectors (corresponding to the K largest eigenvalues)

— -

W

) K W3

o , T Q=
D —mean = 2w, (wp=u;dy) »

=

| WK



Example
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Example (cont’d)

Top eigenvectors: uy,...u,




« Representing faces onto this basis

- Fach face {minus the mean) @; in the training set can be represented as a linear
combination of the best K eigenvectors:

. K
b, — mean= 3 w

& (w; = H}Fd:-?.} (where||u, [|=1)
_|r=

(we call the u;’s eigenfaces)

Face reconstruction:



Case Study: Eigenfaces for Face Detection/Recognition

— M. Turk, A. Pentland, "Eigenfaces for Recognition", Journal of
Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

Face Recognition

— The simplest approach is
to think of it as a template
matching problem.

— Problems arise when performing .
recognition in a high-dimensional NxNimage | — N x 1 vector
space.

— Use dimensionality reduction!

34



Eigenfaces
« Face Recognition Using Eigenfaces

- Given an unknown face image [ (centered and of the same size like the training

faces) Tollow these steps:

Step 1: normalize [ - =1 -*¥

Step 2t project on the elgenspace
. K .
P = El Will; Wy ZEFI;(:]:}:' (Where”ul ||: 1)
i=

— -

W
. W
Step 3: represent P as: L} =
[ WK

K
Step 4: find e, = mun |2 — {_--_},r” where [ Q-Q'[= Z(Wi - Wf)z
i=1

Step 5:if e, < T, then [ is recognized as face [ from the training set.

The distance e, is called in



Eigenfaces

« Face Detection Using Eigenfaces

- Given an unknown image [

Step 1: compute =1 -4
. K T
Step 2: compute © = 3w, (v = uw; D) (where|| U, ||: 1)
i=

Step 3: compute ¢4 = ||'E]J — ([J“
Step 4: if ey = Ty then [ s a face.

- The distance e 415 called distance from face space (dffs)




Eigenfaces

Input Reconstructed

Reconstructed image looks
like a face. '

Reconstructed image looks
like a face.

Reconstructed image
looks like a face again!




Reconstruction using partial information

* Robust to partial face occlusion.

Input Reconstructed




Eigenfaces

* Face detection, tracking, and recognition

Visualize dffs:




Limitations
. changes cause problems

— De-emphasize the outside of the face (e.g., by multiplying the input
image by a 2D Gaussian window centered on the face).

. degrade performance
— Light normalization might help but this is a challenging issue.

« Performance decreases quickly with changes to
— Scale input image to multiple sizes.

— Multi-scale eigenspaces.
« Performance decreases with changes to

(but not as fast as with scale changes)
— Out-of-plane rotations are more difficult to handle.
— Multi-orientation eigenspaces.



Limitations (cont’d)

* Not robust to misalignment.

41



For non square matrix: Singular value decomposition (SVD)

mxn

X:ourmx n data
matrix, one row
per data point

X =U-S-VT
U S vT
— X X
nxn nxn
Singular matrix: Cols of V are
a diagonal eigenvectors of
matrix, S? is X's r=X"X

mxn

i-th eigenvalue

Each row of US
gives coordinates of
a data point in the

projected space

/

XTXv, =VSUTUSVTv, = siv,




mixn

X:.ourmx n data
matrix, one row
per data point

X=US-VT

1|
x

mxn

S VT
X
nxn nxn
Singular matrix: Cols of V are
a diagonal eigenvectors of
matrix, S? is X's L=X"X

i-th eigenvalue

Each row of US
gives coordinates of
a data point in the
projected space

/

If X is centered, then cols of V
are the principal components




SVD for PCA

 Create mean-centered data matrix X.
e Solve SVD: X=U-S-VT.

* Columns of V are the eigenvectors of X sorted from
largest to smallest eigenvalues.

* Select the first k columns as our k principal
components.



Example in Data Mining:

Dimensionality Reduction:
SVD & CUR

Mining of Massive Datasets

Stanford University
http://www.mmds.org




