DSE - GTDMO - (sketch of the solutions) 18" Oct 2019

(1) For the matrix A,

2—-X -1

|A— M| =
-1 2-=A

=(2-)7-1

then
2-N)?-1=0= (2-N?=1<=A1=24+1.

The matrix A has two distinct eigenvalues: Ay = 3, and A\ = 1.

Eigenvector Vi = (z1,22)” corresponding to Ap:
-1 -1 0
(A-3I)V,; =0 = S .
-1 -1 xT9 0
So x1 = —x9 and (we have chosen x9 as a free variable),
—1
Vi=ux9 [ 1 ] zo € R.

Eigenvector Vo = (z1,22)7 corresponding to Ao:

1 -1 0
(A-I)V,=0= S .
—1 1 To 0
So 21 = x5 and (we have chosen x2 as a free variable),
1
V1:$2[1] zo € R.

Remark. The vectors Vi and V5 are orthogonal: this derives from the fact
that the matrix A is symmetrical and A1 # As.

we observe that
AV = \V = A2V = MV — A’V = )2V

and the eigenvalues of A2 are (\1)? =9, and ()\2)? = 1, with eigenvectors as
A.
For the inverse of A (the matrix A is invertible, so A # 0),

1
AV =)V = A 1AV =) 4"V = XV =A"'V,

and the eigenvalues of A~! are (1/A\1) = 1/3, and (1/A2) = 1, with eigen-
vectors as A.

Moreover, for tthe matrix A 4+ 41 we have,

(A+ 4DV = AV 4 4IV = \V + 4V = (A + 4)V = (A +4)V,



and the eigenvalues of (A + 4I) are (A1 +4) = 7, and (A2 +4) = 5, with

eigenvectors as A.

Finally,
2 -1
-1 2
(2) For the eigenvalues,
3—X 1
A—-X|= =B-N2-XN)—-2
A=) R EICEPYCERY

Then
B=AN2-XN)—-2=0= X1 =4, \y=1.

Eigenvector Vi = (21, 22)7

(A_ﬂ)vl:():»[—l 1”]:[0]
2 -2 X9 0

So 21 = x5 and (we have chosen x2 as a free variable),

corresponding to Ap:

1
Vi =129 1] zo € R.

Eigenvector Vo = (z1,22)” corresponding to Ag:

B (2 1| [a ] Jo
aema-o—[21][2]-[2]

So z1 = —x2/2 and (we have chosen x2 as a free variable),
~1/2
Vi=ux9 1 ro € R.

The matrix V' with vectors V1, Vg as columns

V:<1 —1/2)
11

has determinant equal to 3/2 # 0, then rank(V') = 2, and the two eigenvec-

tors are linearly independent.

(3) We have to solve the following homogeneous system,

3—5 1 | |0
2 4-5 T 0’
then z7 = x9/2 and the eigenvector V is

1/2
V=212 1 zo € R.



For example for 5 = 2, V = (1,2)T.

Also for the other matrix we have consider a homogeneous system

X1 B 0
i) 0 ’
then 1 = —3x2/2 and the eigenvector V is

~3/2
1

3+1 3
4 5+1

V:xgl rs € R.

For example for zo = —2, V = (3, -2)7.

(4) The eigenvectors V are obtained by the following homogeneous linear

system
3—2 4 1 4 2
1 6—-2 2 V=0<+= |1 4 2 |V=0
1 4 4—2 1 4 2

Now we have the following equivalent coefficient matrix (after echelon form

reduction),
1 4 2 1 4 2
1 42| ~100 0/,
1 4 2 000
and two free variables x2, x3 and one basic variable z1. Then (first row)
1 = —4x9 — 223 and
—4 -2
V =2x 1 + x3 0 To, x3 € R.
0 1

The vectors (—4,1,0)T, (—=2,0,1) are linearly independent and provide a
basis, the dimension of the eigenspace is equal to 2.

(5) For the eigenvalues,

3—A 2

|A— M| =
26—\

:(3—)\)(6—)\)—4:0:> )\1:7, )\2:2.

Eigenvector Vi = (21, 22)7

(A—I)V1=0:>[_4 2”]:[0]
2 -1 T2 0

So z1 = x2/2 and (we have chosen z3 as a free variable),

1/2
Vi=ux9 1 To € R.

corresponding to A;:



Eigenvector Vy = (21, 22)7

RN
2 4 o 0

So x1 = —2x5 and (we have chosen x5 as a free variable),

corresponding to Aa:

-2
ngl‘gl 1 ] zs € R.

As a columns of U we choose (for simplicity, any other choice of z9 # 0 was
possible), Vi = (1,2)7, Vo = (=2, 1)T, then

LU i P FH B o P

The last computation shows that we do not get the matrix M but a scalar
multiple. The Theorem requires that U be orthogonal while in the current

U matrix the columns are orthogonal but not normalized,
1 -2
= V5, = V5.
2 1

Then we consider the following orthogonal matrix (rescaling of the previous

matrix U),
1/V5 —2/V5
9= [ 2/v5 1/V5 ] ’
now QQT = QTQ = I. Moreover
70
o 1 4 ]ar -
and the hypotheses of the Theorem are satisfied with

D:7O
0 2

If A is a real symmetric matrix, then there is an orthogonal matrix

Q) that diagonalizes A, that is, QTAQ = D, where D is diagonal.



