
DSE - GTDMO - (sketch of the solutions) 18th Oct 2019

(1) For the matrix A,

|A− λI| =

∣∣∣∣∣ 2− λ −1

−1 2− λ

∣∣∣∣∣ = (2− λ)2 − 1

then

(2− λ)2 − 1 = 0⇐⇒ (2− λ)2 = 1⇐⇒ λ = 2± 1.

The matrix A has two distinct eigenvalues: λ1 = 3, and λ1 = 1.

Eigenvector V1 = (x1, x2)T corresponding to λ1:

(A− 3I) V1 = 0 =⇒

[
−1 −1

−1 −1

][
x1

x2

]
=

[
0

0

]
.

So x1 = −x2 and (we have chosen x2 as a free variable),

V1 = x2

[
−1

1

]
x2 ∈ R.

Eigenvector V2 = (x1, x2)T corresponding to λ2:

(A− I) V1 = 0 =⇒

[
1 −1

−1 1

][
x1

x2

]
=

[
0

0

]
.

So x1 = x2 and (we have chosen x2 as a free variable),

V1 = x2

[
1

1

]
x2 ∈ R.

Remark. The vectors V1 and V2 are orthogonal: this derives from the fact

that the matrix A is symmetrical and λ1 6= λ2.

we observe that

AV = λV =⇒ A2V = λAV =⇒ A2V = λ2V

and the eigenvalues of A2 are (λ1)2 = 9, and (λ2)2 = 1, with eigenvectors as

A.

For the inverse of A (the matrix A is invertible, so λ 6= 0),

AV = λV =⇒ A−1AV = λA−1V =⇒ 1
λ
V = A−1V,

and the eigenvalues of A−1 are (1/λ1) = 1/3, and (1/λ2) = 1, with eigen-

vectors as A.

Moreover, for tthe matrix A+ 4I we have,

(A+ 4I)V = AV + 4IV =⇒ λV + 4V =⇒ (A+ 4I)V = (λ+ 4)V,



and the eigenvalues of (A + 4I) are (λ1 + 4) = 7, and (λ2 + 4) = 5, with

eigenvectors as A.

Finally,

A =

∣∣∣∣∣ 2 −1

−1 2

∣∣∣∣∣ = 4− 1 = 3 = λ1λ2 = 3 · 1 = 3.

(2) For the eigenvalues,

|A− λI| =

∣∣∣∣∣ 3− λ 1

2 2− λ

∣∣∣∣∣ = (3− λ)(2− λ)− 2

Then

(3− λ)(2− λ)− 2 = 0 =⇒ λ1 = 4, λ2 = 1.

Eigenvector V1 = (x1, x2)T corresponding to λ1:

(A− 4I) V1 = 0 =⇒

[
−1 1

2 −2

][
x1

x2

]
=

[
0

0

]
.

So x1 = x2 and (we have chosen x2 as a free variable),

V1 = x2

[
1

1

]
x2 ∈ R.

Eigenvector V2 = (x1, x2)T corresponding to λ2:

(A− I) V1 = 0 =⇒

[
2 1

2 1

][
x1

x2

]
=

[
0

0

]
.

So x1 = −x2/2 and (we have chosen x2 as a free variable),

V1 = x2

[
−1/2

1

]
x2 ∈ R.

The matrix V with vectors V1, V2 as columns

V =

(
1 −1/2

1 1

)
has determinant equal to 3/2 6= 0, then rank(V ) = 2, and the two eigenvec-

tors are linearly independent.

(3) We have to solve the following homogeneous system,[
3− 5 1

2 4− 5

][
x1

x2

]
=

[
0

0

]
,

then x1 = x2/2 and the eigenvector V is

V = x2

[
1/2

1

]
x2 ∈ R.



For example for x2 = 2, V = (1, 2)T .

Also for the other matrix we have consider a homogeneous system[
3 + 1 3

4 5 + 1

][
x1

x2

]
=

[
0

0

]
,

then x1 = −3x2/2 and the eigenvector V is

V = x2

[
−3/2

1

]
x2 ∈ R.

For example for x2 = −2, V = (3,−2)T .

(4) The eigenvectors V are obtained by the following homogeneous linear

system  3− 2 4 2

1 6− 2 2

1 4 4− 2

V = 0 ⇐⇒

 1 4 2

1 4 2

1 4 2

V = 0.

Now we have the following equivalent coefficient matrix (after echelon form

reduction),  1 4 2

1 4 2

1 4 2

 ∼
 1 4 2

0 0 0

0 0 0

 ,
and two free variables x2, x3 and one basic variable x1. Then (first row)

x1 = −4x2 − 2x3 and

V = x2

 −4

1

0

+ x3

 −2

0

1

 x2, x3 ∈ R.

The vectors (−4, 1, 0)T , (−2, 0, 1) are linearly independent and provide a

basis, the dimension of the eigenspace is equal to 2.

(5) For the eigenvalues,

|A− λI| =

∣∣∣∣∣ 3− λ 2

2 6− λ

∣∣∣∣∣ = (3− λ)(6− λ)− 4 = 0 =⇒ λ1 = 7, λ2 = 2.

Eigenvector V1 = (x1, x2)T corresponding to λ1:

(A− I) V1 = 0 =⇒

[
−4 2

2 −1

][
x1

x2

]
=

[
0

0

]
.

So x1 = x2/2 and (we have chosen x2 as a free variable),

V1 = x2

[
1/2

1

]
x2 ∈ R.



Eigenvector V2 = (x1, x2)T corresponding to λ2:

(A− I) V2 = 0 =⇒

[
1 2

2 4

][
x1

x2

]
=

[
0

0

]
.

So x1 = −2x2 and (we have chosen x2 as a free variable),

V2 = x2

[
−2

1

]
x2 ∈ R.

As a columns of U we choose (for simplicity, any other choice of x2 6= 0 was

possible), V1 = (1, 2)T , V2 = (−2, 1)T , then

U

[
λ1 0

0 λ2

]
UT =

[
1 −2

2 1

][
7 0

0 2

][
1 2

−2 1

]
= 5

[
3 2

2 6

]
.

The last computation shows that we do not get the matrix M but a scalar

multiple. The Theorem requires that U be orthogonal while in the current

U matrix the columns are orthogonal but not normalized,∥∥∥∥∥
[

1

2

]∥∥∥∥∥ =
√

5,

∥∥∥∥∥
[
−2

1

]∥∥∥∥∥ =
√

5.

Then we consider the following orthogonal matrix (rescaling of the previous

matrix U),

Q =

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

]
,

now QQT = QTQ = I. Moreover

Q

[
7 0

0 2

]
QT = M

and the hypotheses of the Theorem are satisfied with

D =

[
7 0

0 2

]
If A is a real symmetric matrix, then there is an orthogonal matrix

Q that diagonalizes A, that is, QTAQ = D, where D is diagonal.


