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The Determinant of a Matrix

With each n × n matrix A it is possible to associate a scalar, det(A), whose value 

will tell us whether the matrix is nonsingular (i.e. invertible).

Geometrically, this scalar is related to the volume of the “rectangular region” with 

the rows of the matrix as sides. 

Case 1: 1 × 1 Matrices If A = (a) is a 1 × 1 matrix, then A will have a multiplicative

inverse if and only if a  0. Thus, if we define det(A) = a, then A will be nonsingular if 

and only if det(A)  0.

Case 2: 2 × 2 Matrices Let

𝐴 =
𝑎11 𝑎12
𝑎21 𝑎22

We will check if A is nonsingular using equivalent form. Then, if a11 = 0, we perform the following

operations:



Since a11  0, the resulting matrix has rank equal to 2 if and only if

a11a22 − a21a12  0

If a11 = 0, we can switch the two rows of A. The resulting matrix

Is non singular if and only if a21a12  0. This requirement is equivalent to the previous condition (when a11  0). 

Thus, if A is any 2 × 2 matrix and we define

det(A) = a11a22 − a12a21

then A is nonsingular if and only if det(A)  0.

𝐴 =
𝑎21 𝑎22
0 𝑎12

Remark The value | a11a22 − a21a12 |   is equal to the area of the parallelogram determined by the vectors 

(a11,a12) and (a21,a22).

Notation

We can refer to the determinant of a specific matrix by enclosing the array between vertical lines. For example, if

𝐴 =
1 2
3 4

Then
1 2
3 4

represents the determinant of A.



Case 3: 3 × 3 Matrices We can test whether a 3 × 3 matrix is nonsingular by performing row operations. to see if 

To carry out the elimination in the first column of an arbitrary 3 × 3 matrix A, let us first assume that a11  0. The 

elimination can then be performed by subtracting a21/a11 times the first row from the second and a31/a11 times the 

first row from the third:

The matrix on the right will be nonsingular if and only if

this condition can be simplified to (the algebra is somewhat messy….),

det(A)=a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22  0

What if a11 = 0? Consider the following possibilities:

(i) a11 = 0, a21  0

(ii) a11 = a21 = 0, a31  0

(iii) a11 = a21 = a31 = 0

which however lead to a similar condition



We would now like to define the determinant of an n × n matrix. To see how to do this, note that the determinant of 

a 2 × 2 matrix, can be defined in terms of the two 1 × 1 matrices:

M11 = (a22) and M12 = (a21)
The matrix M11 is formed from A by deleting its first row and first column, and M12 is formed from A by deleting its 

first row and second column. The determinant of A can be expressed in the form

det(A) = a11a22 − a12a21 = a11 det(M11) − a12 det(M12)

For a 3 × 3 matrix A, we can rewrite det(A) in the form

det(A) = a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22)
For j = 1, 2, 3, let M1j denote the 2 × 2 matrix formed from A by deleting its first row and jth column. The determinant 

of A can then be represented in the form

det(A) = a11 det(M11) − a12 det(M12) + a13 det(M13)
where



Definition

Example. In view of this definition, for a 2 × 2 matrix A, we have det(A) = a11A11 + a12A12     (n = 2)

Remark. Note that we could also write  det(A) = a21(−a12) + a22a11 = a21A21 + a22A22 which expresses det(A) in 

terms of the entries of the second row of A and their cofactors. Actually, there is no reason that we must expand 

along a row of the matrix; the determinant could just as well be represented by the cofactor expansion along one

of the columns.

Example. For a 3 × 3 matrix A, we have det(A) = a11A11 + a12A12 + a13A13

2 5 4
3 1 2
5 4 6





Matrix Determinant

• The determinant is the “volume” of a matrix

• Actually the volume of a parallelepiped formed from its 
row vectors

• Also the volume of the parallelepiped formed from its column 
vectors

(r1)

(r2)
(r1+r2)

(r1)

(r2)



Matrix Determinant: Another Perspective

• The determinant is the ratio of N-volumes

• If V1 is the volume of an N-dimensional sphere “O” in N-dimensional 
space

• O is the complete set of points or vertices that specify the object

• If V2 is the volume of the N-dimensional ellipsoid specified by A*O,  
where A is a matrix that transforms the space

• |A| = V2 / V1

Volume = V1 Volume = V2
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Matrix Inversion

• A matrix transforms an 
N-dimensional object to a 
different N-dimensional object

• What transforms the new 
object back to the original?

• The inverse transformation

• The inverse transformation is 
called the matrix inverse
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The quantity ad-bc is the determinant of A det A

Example.



Dynamical Systems and Spotted Owls

A first step in studying the population dynamics of the spotted owls is to model the population at yearly intervals, at 

times denoted by k=0, 1, 2, … Usually, one assumes that there is a 1:1 ratio of males to females in each life stage 

and counts only the females. The population at year k can be described by a vector 

xk =  (jk , sk ,ak), 

where jk, sk, and ak are the numbers of females in the juvenile, subadult, and adult stages, respectively.

Using actual field data from demographic studies, R. Lamberson and co-workers considered the following

stage-matrix model:



The stage-matrix model is a difference equation of the form xk+1 = Axk. Such an equation is often called 

a dynamical system (or a discrete linear dynamical system) because it describes the changes in a 

system as time passes.  

We have

xk+1 = Axk = A(Axk-1)=A(A(Axk-2))= …. = A A A … A A x0       =Ak+1x0

Then, the evolution is determined by the behavior of the powers of A. 



A subject of interest to demographers is the movement of populations or groups of people from one region to 

another. The simple model here considers the changes in the population of a certain city and its surrounding 

suburbs over a period of years.

Fix an initial year—say, 2014—and denote the populations of the city and suburbs that year by r0 and s0, 

respectively. Let x0 be the population vector

For 2015 and subsequent years, denote the populations of the city and suburbs by the vectors

Mathematical model

x1 = Mx0 where M is the migration matrix determined 

by the following table:

Then xk = Mkx0 



Principal Component Analysis (PCA) 

- PCA projects the data along the directions where the data varies most.
- These directions are determined by the eigenvectors of the covariance matrix corresponding to the largest
eigenvalues.
- The magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector directions.
- Find the projection that best preserves the variance.
- PCA preserves as much information as possible by minimizing the “reconstruction” error:



Data Compression Example: Reduce data from 3D to 2D

Andrew Ng



Eigenvalues and Eigenvectors

• Eigenvalue problem (one of the most important problems in the linear algebra):

If A is an nn matrix, do there exist nonzero vectors x in R
n

such that Ax is a scalar multiple of x?

 Eigenvalue and Eigenvector:

A: an nn matrix

: a scalar (could be zero)

x: a nonzero vector in R
n

A x x

Eigenvalue

Eigenvector

Geometric Interpretation

(The term eigenvalue is from the German word Eigenwert, meaning 
“proper value”)

x

A x = x

x

y

Almost all vectors change direction, when they are multiplied by A. Certain exceptional vectors x are in the same

direction as Ax. Those are the “eigenvectors”. Multiply an eigenvector by A, and the vector Ax is a number 

times the original x.



Introduction to Eigenvalues and Eigenvectors

The eigenvalue tells whether the special vector x is stretched or shrunk or reversed or left unchanged—when it is multiplied 

by A. The eigenvalue could be zero! Then Ax = 0 x means that this eigenvector x is in the nullspace (the space of the vectors 

such that Ax=0). If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I.

All eigenvalues “lambda” are =1. This is unusual to say the least. Most 2 by 2 matrices have two eigenvector directions and 

two eigenvalues. We will show that det (A – I) = 0:

Ax =  x for x 0 and a scalar , so (A- I)x = 0 and we have a non trivial solution if and only if det (A – I)  0 

Example Let A =
.8 .3
.2 .7

,                                                                                   =0 then =1, and =1/2. 

For those numbers, the matrix  (A  - I) becomes singular (zero determinant). The eigenvectors V1 and V2 are in 

the nullspaces of (A - I) and (A -1/2 I).

(A - I) V1 = 0     𝐕𝟏= t 
1
2/3

for any  real value t

(A – ½ I)V2 =0   𝐕𝟐= t 
1
−1

for any  real value t



Example Verifying eigenvalues and eigenvectors
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In fact, for each eigenvalue, it 

has infinitely many eigenvectors. 

For example, for  = 2, [3 0]T or 

[5 0]T are both corresponding 

eigenvectors. Moreover, ([3 0] + 

[5 0])T is still an eigenvector. 



Theorem (The eigenspace of A corresponding to )

If A is an nn matrix with an eigenvalue , then the set of all eigenvectors of  together with the 

zero vector is a subspace of Rn. This subspace is called the eigenspace of  .

Remark Are eigenvectors are unique? If x is an eigenvector, then x is also an eigenvector and 
 is an eigenvalue

A(x) = (Ax) = (x) = (x)

Remark The eigenvalues (roots of a polynomial) could be complex numbers!



Calculating the Eigenvectors/values

• Expand the det(A - I) = 0 for a 2 x 2 matrix

• For a 2 x2 matrix, this is a simple quadratic equation with two solutions 
(maybe complex)

• This “characteristic equation” can be used to solve for x
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Eigenvalue example

• Consider,

• The corresponding eigenvectors can be computed as

• For  = 0, one possible solution is x = (2, -1)

• For  = 5, one possible solution is x = (1, 2)
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Warning: we compute eigenvalues using the determinant only for very low dimensional case 
as an exercise, in the applications we must  to consider efficient numerical methods and we
(usually) have   to  calculate only a  few eigenvalues / eigenvectors.



Theorem

Let  A be a square n x n matrix with n linearly independent eigenvectors (a “non-defective” matrix)

Let P have the eigenvectors as columns:

P= [ V1 V2 … Vn]

Then, AP can be written

AP = 𝐴[𝐕1 𝐕2 … 𝐕n] = [1𝐕1 𝟐𝐕2 … 𝑛𝐕n] = 𝐕1 𝐕2 … 𝐕n

1 0 0
0 … 0
0 0 𝑛

= 𝐕1 𝐕2 … 𝐕n 

Thus AP=P, or P–1AP= , And A=PP-1 with  diagonal matrix with eigenvalues. 

A is called diagonalizable 



Example Eigenvalue problems and diagonalization
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Compute the power of A: a simple case.

Let A  a diagonalizable matrix: A=PP-1 for a suitable P. Then

Ak = P P-1P  P-1 … P P-1 =  P k P-1

And the long range behavior is determined by the power of the eigenvalues.

Example Let initial population 𝐱0 =
8000
2000

and a transition matrix 𝐴 =
0.7 0.2
0.3 0.8

xk+1 = A xk k=0,1,2,… 

Eigenvalues of A:  1 = 1 (easy from the entries of the matrix A… why?)  2 = 1/2  For the eigenvectors we choose:

𝐕1 =
2
3

and 𝐕2 =
−1
1

and xk = Ak x0 = P k P-1 x0    where P=[𝐕1 𝐕2 ]  then (after some computation)

xk = 2000 V1 - 4000 
1

2

𝑘
V2 when k>>1 xk  2000 V1



Physical interpretation

• Consider a covariance matrix, A, i.e., A = 1/n S ST for some S (two variable, n subjects)

• Error ellipse with the major axis as the larger eigenvalue and the minor axis as the 
smaller eigenvalue
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Physical interpretation

• First principal component is the direction of  greatest 
variability (covariance) in the data

• Second is the next orthogonal (uncorrelated) direction 
of  greatest variability

• So first remove all the variability along the first component, 
and then find the next direction of  greatest variability

• And so on …

• Thus each eigenvectors provides the directions of  data 
variances in decreasing order of  eigenvalues



 Principal component analysis
 It is a way of identifying the underlying patterns in data

 It can extract information in a large data set with many variables and 
approximate this data set with fewer factors

 In other words, it can reduce the number of variables to a more manageable 
set

 Steps of the principal component analysis

 Step 1: Get some data

 Step 2: Subtract the mean

 Step 3: Calculate the covariance matrix

 Step 4: Calculate the eigenvectors and eigenvalues of the

covariance matrix

 Step 5: Deriving the transformed data set

 Step 6: Getting the original data back

Principal Component Analysis
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 Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix A

1 1

0.67787
1.284028,   = 

0.73518


 
  

 
v 2 2

0.73518
0.049083,   = 

0.67787


 
  

 
v

1v

2v

1.  The two eigenvectors are  orthogonal to 
each other-

2.  v1 eigenvector (corresponding to the 

largest eigenvalue 𝜆1) is just like a best-

fit regression line

3.  v2 seems less important to explain the 

data since the projection of each node 

on the v2 axis is very close to zero

4.  The interpretation of v1 is the new axis 
which retains as much as possible the 
variance information that was 
contained in the original two 
dimensions



1v

2v

- If only the principal component x’ is considered in the Principal Component Analysis 

(PCA), it is equivalent to project all points onto the v1 vector

- It can be observed in the above figure that the projection onto v1 vector can retains as 

much as possible the “interpoint” distance information (variance) that was contained in 

the original series of (x, y)


