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Principal Component Analysis (PCA) 

- PCA projects the data along the directions where the data varies most.
- These directions are determined by the eigenvectors of the covariance matrix corresponding to the largest
eigenvalues.
- The magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector directions.
- Find the projection that best preserves the variance.
- PCA preserves as much information as possible by minimizing the “reconstruction” error:



Eigenvalues and Eigenvectors

• Eigenvalue problem (one of the most important problems in the linear algebra):

If A is an nn matrix, do there exist nonzero vectors x in R
n

such that Ax is a scalar multiple of x?

 Eigenvalue and Eigenvector:

A: an nn matrix

: a scalar (could be zero)

x: a nonzero vector in R
n

A x x

Eigenvalue

Eigenvector

Geometric Interpretation

(The term eigenvalue is from the German word Eigenwert, meaning 
“proper value”)

x

A x = x

x

y

Almost all vectors change direction, when they are multiplied by A. Certain exceptional vectors x are in the same

direction as Ax. Those are the “eigenvectors”. Multiply an eigenvector by A, and the vector Ax is a number 

times the original x.



Introduction to Eigenvalues and Eigenvectors

The eigenvalue tells whether the special vector x is stretched or shrunk or reversed or left unchanged—when it is multiplied 

by A. The eigenvalue could be zero! Then Ax = 0 x means that this eigenvector x is in the nullspace (the space of the vectors 

such that Ax=0). If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I.

All eigenvalues “lambda” are =1. This is unusual to say the least. Most 2 by 2 matrices have two eigenvector directions and 

two eigenvalues. We will show that det (A – I) = 0:

Ax =  x for x 0 and a scalar , so (A- I)x = 0 and we have a non trivial solution if and only if det (A – I)  0 

Example Let A =
.8 .3
.2 .7

,                                                                                   =0 then =1, and =1/2. 

For those numbers, the matrix  (A  - I) becomes singular (zero determinant). The eigenvectors V1 and V2 are in 

the nullspaces of (A - I) and (A -1/2 I).

(A - I) V1 = 0     𝐕𝟏= t 
1
2/3

for any  real value t

(A – ½ I)V2 =0   𝐕𝟐= t 
1
−1

for any  real value t



Theorem (The eigenspace of A corresponding to )

If A is an nn matrix with an eigenvalue , then the set of all eigenvectors of  together with the 

zero vector is a subspace of Rn. This subspace is called the eigenspace of  .

Remark Are eigenvectors are unique? If x is an eigenvector, then x is also an eigenvector and 
 is an eigenvalue

A(x) = (Ax) = (x) = (x)

Remark The eigenvalues (roots of a polynomial) could be complex numbers!



Calculating the Eigenvectors/values

• Expand the det(A - I) = 0 for a 2 x 2 matrix

• For a 2 x2 matrix, this is a simple quadratic equation with two solutions 
(maybe complex)

• This “characteristic equation” can be used to solve for x
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Eigenvalue example

• Consider,

• The corresponding eigenvectors can be computed as

• For  = 0, one possible solution is x = (2, -1)

• For  = 5, one possible solution is x = (1, 2)
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Warning: we compute eigenvalues using the determinant only for very low dimensional case 
as an exercise, in the applications we must  to consider efficient numerical methods and we
(usually) have   to  calculate only a  few eigenvalues / eigenvectors.



Theorem

Let  A be a square n x n matrix with n linearly independent eigenvectors (a “non-

defective” matrix)

Let P have the eigenvectors as columns:

P= [ V1 V2 … Vn]

Then, AP can be written

AP = 𝐴[𝐕1 𝐕2 … 𝐕n] = [1𝐕1 𝟐𝐕2 … 𝑛𝐕n] = 𝐕1 𝐕2 … 𝐕n

1 0 0
0 … 0
0 0 𝑛

= 

𝐕1 𝐕2 … 𝐕n 

Thus AP=P, or P–1AP= , or  A=PP-1 with  diagonal matrix with eigenvalues. 

A is called diagonalizable 



Example.   Let A = 
−1 −2
6 6

, then 𝐴 − 𝐼 = −1 − −2

6 6 −
= (-1-) (6-) +12 =0  

1=3, 2=2.

Eigenvector V1 for 1=3, 
−4 −2
6 3

𝑥1
𝑥2

=
0
0

, so 𝐕1 = 𝑥2
−1/2
1

with  x2 real parameter

Eigenvector V2 for  2=2, 
−3 −2
6 4

𝑥1
𝑥2

=
0
0

, so 𝐕2 = 𝑥2
−2/3
1

with  x2 real parameter

The vectors V1 and V2 are linearly independent (for scalars c1 and c2 such that c1 V1 + c2 V2 = 0
implies c1 =0 c2=0). We fix an eigenvector for each eigenvalues, for example

P = 𝐕1 𝐕2 =
−1 −2
2 3

and  P−1 =
3 2
−2 −1

and

P−1A P = 
3 2
−2 −1

−1 −2
6 6

−1 −2
2 3

= 
3 0
0 2



Example (multiple eigenvalues)  Eigenvalue problems and diagonalization
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Characteristic equation:

1 2 3The eigenvalues : 4,  2,  2      
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p (one possible eigenvector)

𝐴 − 𝐼 =
1 −  3 0
3 1 −  0
0 0 −2 − 

= (-2-) ( (1-)2 -9) = 0 



(2) 2  the eigenvector    
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(two free variables in the corresponding
Homogeneous linear system)



Compute the power of A: a simple case.

Let A  a diagonalizable matrix: A=PP-1 for a suitable P. Then

Ak = (P P-1)(P  P-1)v… (P P-1 ) =  P k P-1

And the long range behavior is determined by the power of the eigenvaluesv(P  and P-1 does not  

change)

Example Let initial population 𝐱0 =
8000
2000

and a transition matrix 𝐴 =
0.7 0.2
0.3 0.8

xk+1 = A xk k=0,1,2,… 

Eigenvalues of A:  1 = 1 (easy from the entries of the matrix A… why?)  2 = 1/2  For the eigenvectors

we choose:

𝐕1 =
2
3

and 𝐕2 =
−1
1

and xk = Ak x0 = P k P-1 x0    where P=[𝐕1 𝐕2 ]  then (after some computation)

xk = 2000 V1 - 4000 
1

2

𝑘
V2 when k>>1 xk  2000 V1



Remark (Complex eigenvalues). When a real 2x2 matrix A has complex eigenvalues, A is not diagonalizable, but the dynamical 

system xk+1 = Axk is easy to describe. If the modulus of the eigenvalues is 1, the iterates of a point x0 spiraled around the 
origin along an elliptical trajectory.
If A has two complex eigenvalues whose absolute value is greater than 1, then 0 is a repeller and iterates of x0 will spiral 
outward around the origin. 
If the absolute values of the complex eigenvalues are less than 1, then the origin is an attractor and the iterates of x0 spiral 
inward toward the origin. 

Example. The  spotted owl population in the Willow Creek area of California was modeled by a dynamical system xk+1 = Axk with

and                                                                                  with modulus <1, then from 

the real sequence xk approaches the zero vector:   this
model predicts that the spotted owls will eventually all perish.



Principal component analysis

• Consider a covariance matrix, A, for some S (two variable, n subjects)

• Error ellipse with the major axis as the larger eigenvalue and the minor axis as the smaller eigenvalue

25.0,75.1
175.

75.1
21 








 A



Original Variable A

O
ri
g

in
a

l 
V

a
ri

a
b

le
 

B

PC 1
PC 2

• First principal component is the direction of  greatest variability 
(covariance) in the data

• Second is the next orthogonal (uncorrelated) direction of  greatest 
variability

• So first remove all the variability along the first component, and then find 
the next direction of  greatest variability

• And so on …

• Thus each eigenvectors provides the directions of  data variances 
in decreasing order of  eigenvalues



 Principal component analysis
 It is a way of identifying the underlying patterns in data

 It can extract information in a large data set with many variables and 
approximate this data set with fewer factors

 In other words, it can reduce the number of variables to a more manageable 
set

 Steps of the principal component analysis

 Step 1: Get some data

 Step 2: Subtract the mean

 Step 3: Calculate the covariance matrix

 Step 4: Calculate the eigenvectors and eigenvalues of the

covariance matrix

 Step 5: Deriving the transformed data set

 Step 6: Getting the original data back

Principal Component Analysis
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 Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix A

1 1

0.67787
1.284028,   = 

0.73518


 
  

 
v 2 2

0.73518
0.049083,   = 

0.67787


 
  

 
v

1v

2v

1.  The two eigenvectors are  orthogonal to 
each other-

2.  v1 eigenvector (corresponding to the 

largest eigenvalue 𝜆1) is just like a best-

fit regression line

3.  v2 seems less important to explain the 

data since the projection of each node 

on the v2 axis is very close to zero

4.  The interpretation of v1 is the new axis 
which retains as much as possible the 
variance information that was 
contained in the original two 
dimensions



1v

2v

- If only the principal component is considered in the Principal Component Analysis (PCA), it is equivalent 

to project all points onto the v1 vector

- It can be observed in the above figure that the projection onto v1 vector can retains as much as possible 

the “interpoint” distance information (variance) that was contained in the original series of (x, y)



• Consider data without class labels

• Try to find a more compact representation of the data

The same for the n-dimensional case

- takes a data matrix of n objects by p variables, which may be correlated, and summarizes it by 

uncorrelated axes (principal components or principal axes) that are linear combinations of the 

original p variables

- the first k components display as much as possible of the variation among objects.





Geometric Rationale of PCA

degree to which the variables are linearly correlated 
isrepresented by their covariances.
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Value of 
variable j

in object m

Mean of
variable j

Value of 
variable i

in object m

Mean of
variable i

Covariance of
variables i and j



The covariance matrix is a symmetric matrix C=CT (for the entries C ij = C ji ) 



Projection on a Vector



Optimality Property of PCA

 
2

F
XX 

The matrix G consisting of the first p eigenvectors of the 
covariance matrix S solves the following min problem:

Main theoretical result:

p
F

T

G
IGXGGXpd 

T
2

G subject to )(min

reconstruction error

PCA projection minimizes the reconstruction error among all 
linear projections of size p.

Orthogonal matrix

Projection on the 
Subspace generates by the 
Columns of G
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Approximation error minimization

• A rank-k linear approximation model

• Fit the model with minimal reconstruction error

• Optimal condition

• Objective

• can be expressed as SVD of X,
TVUX 



Application to Faces (from slides of CS479/679 Pattern Recognition Dr. George Bebis)

• Computation of low-dimensional basis (i.e.,eigenfaces):



• Computation of the eigenfaces – cont.

1

M



• Computation of the eigenfaces – cont. 

T

i i iAA u u

i i i iu Av and   



• Computation of the eigenfaces – cont.

each face Φi can be represented as follows:

(i.e., using ATA)



Example

Normalized

face images



Example (cont’d)
Top eigenvectors: u1,…uk

Mean: μ
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• Representing faces onto this basis

Face reconstruction:

( || || 1)jwhere u 
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Case Study: Eigenfaces for Face Detection/Recognition

− M. Turk, A. Pentland, "Eigenfaces for Recognition", Journal of 

Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

• Face Recognition

− The simplest approach is 

to think of it as a template 

matching problem.

− Problems arise when performing 

recognition in a high-dimensional 

space.

− Use dimensionality reduction!



Eigenfaces
• Face Recognition Using Eigenfaces

( || || 1)iwhere u 

2

1

|| || ( )
K

l l

i i

i

w w


  where

The distance er is called distance in face space (difs)



Eigenfaces
• Face Detection Using Eigenfaces

( || || 1)iwhere u 
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Eigenfaces

Reconstructed image looks

like a face.

Reconstructed image looks
like a face.

Reconstructed image
looks like a face again!

Input             Reconstructed



Reconstruction using partial information

• Robust to partial face occlusion.

Input                   Reconstructed



Eigenfaces
• Face detection, tracking, and recognition

Visualize dffs:



Limitations
• Background changes cause problems

− De-emphasize the outside of the face  (e.g., by multiplying the input 

image by a 2D Gaussian window centered on the face).

• Light changes degrade performance

− Light normalization might help but  this is a challenging issue.

• Performance decreases quickly with changes to face size
− Scale input image to multiple sizes.

− Multi-scale eigenspaces.

• Performance decreases with changes to face orientation

(but not as fast as with scale changes)
− Out-of-plane rotations are more difficult to handle.

− Multi-orientation eigenspaces.
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Limitations (cont’d)
• Not robust to misalignment.



X = USVT

For non square matrix: Singular value decomposition (SVD)



X = USVT



• Create mean-centered data matrix X.

• Solve SVD: X = USVT.

• Columns of V are the eigenvectors of  sorted from 
largest to smallest eigenvalues.

• Select the first k columns as our k principal 
components.

SVD for PCA



Example in Data Mining:


