Università degli Studi di Milano

Decision methods and models (Prof. Roberto Cordone) 17th July 2019 Available time: 2 hours and 30 minutes

Note: the answers can be given in Italian or English at will; to avoid penalisations, clarify all assumptions and motivate all computational steps.

Exercise 1 - Briefly define the concepts of *scenario* and *scenario* element in a decision problem, explaining their role in the decision process.

Briefly define the order relations most commonly assumed in a decision problem.

Briefly define the concept of *stakeholder* in a decision problem.

What is the difference (if any) between a *decision-maker* and a *stakeholder* in a decision problem?

Exercise 2 - Given the following mathematical programming problem:

$$\min f(x) = x_2$$

$$x_1^2 + (x_2 - 1)^2 \le 1$$

$$x_1 - x_2 \le -2$$

- a) represent it graphically;
- b) determine the nonregular points (if any exist);
- c) determine the candidate points according to Karush-Kuhn-Tucker's conditions, and in particular the global minimum point(s).

Exercise 3 - Briefly explain the relation between *additivity of the utility function* and *mutual preferential independence*.

Given the following biobjective problem:

- a) represent it graphically both in the decision-variable space $x_1 x_2$ and in the objective space $f_1 f_2$;
- b) determine the Paretian region with the ϵ -constraint method, replacing the second objective with a constraint.

Exercise 4 - Briefly define the *outranking relation* used by the *ELECTRE methods* and explain how it differs from a classical preference relation.

Given the following evaluation matrix, whose values represent **benefits**

$$\begin{array}{c} \mathbf{E} ? (\mathbf{w}) \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{r} \\$$

build the outranking relation based on the thresholds $\epsilon_1 = \epsilon_2 = 0.03$ and the corresponding *kernel*.

Refine the relation with the *concordance* criterium $w_{ff'}^+ + w_{ff'}^= \ge \alpha_c = 0.5$ with weight vector $w = [0.4 \ 0.6]'$.

Exercise 5 - Given the following evaluation matrix, whose values represent benefits

$u_{\omega a}$	a_1	a_2	a_3	a_4
ω_1	70	50	100	60
ω_2	30	40	10	20

- a) indicate the dominated alternatives and (if any exist) which alternatives dominate them;
- b) choose an alternative with the *worst-case criterium*;
- c) show the alternatives chosen with the Hurwicz criterium as the pessimism coefficient α varies.

Exercise 6 - The following tables provide the benefits $f(x, \omega)$ associated to all possible configurations of a decision problem in conditions of risk, and the conjoint probabilities $\pi(y, \omega)$ of the outcomes y of a random experiment and the scenarios ω .

$f\left(x,\omega\right)$	ω_1	ω_2	ω_3	$\pi\left(y,\omega ight)$	ω_1	ω_2	ω_3
x_1						0.05	
x_2	65	15	5	y_2	0.06	0.40	0.04

Solve the problem with a decision tree adopting the *expected value criterium* without performing the random experiment.

Solve it again performing the random experiment and determine the value of the information it provides.

Exercise 7 - Given the following *payoff matrix* for a two-player game:

	a	b	c
a	3,8	6,9	$2,\!10$
b	4,5	9,2	8,6
c	1,7	5,0	10,2

determinine the dominated strategies and the Nash equilibria (if any exist).

Briefly describe the concept of *extended form* of a game.

Briefly define the concept of prisoner's dilemma game.

Exercise 8 - Briefly describe the *plurality system* to aggregate preferences and its disadvantages.

Briefly define the concept of *dictator* according to Arrow's theory.

Briefly define the concept of *dependence from irrelevant alternatives* and explain why it is considered a problem for group decisions.

Briefly describe the *sovereignty axiom* in Arrow's theory.