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Yesterday we saw how to answer most important questions : impulse and forecasting
Invertibility is a very important feature. We now represent a class of model that represent 
these models. 

We introduce white noise: a process without memory and we build block with something 
bigger and we saw that the first object is the process we see is the average 1 MA(1). As 
we check the moment we where also able to verify feature. If we want to make forecast 
using MA(1) for the whole forecast matrix we only have to characterized teta. 
Instead of calculating hundred autocovariance, we just have to calculate the value of 
teta. The MA1 is a easy process and the last thing we saw is that for each MA1 two 
different value of teta will fit alpa in the same way. If teta is <1 we know we get a linear 
function. There is another way that is using the Lag operator. It can be written as a 
polynomial using proprieties. 

MA(q)

If I only have memory for today and yesterday is very poor. How can I estimate the value 
for 3 days ago and even back? We use Lag value of q. We have moving average of q. 
We can do the same action for MA(1) for MA(q) but it’s longer. We can get mean, 
autocovariances, gamma1, gamma2. Autocovariance for MA(1) drop to 0 after the 
second autocovariance (gamma j > = 2 = 0) Epsilon depend on what happen today and 
yesterday. With MA(q) the autocovariance will be non-zero up to the q lag. After the q 
LAG the autocovariance will be 0. We can stretch thing up to q. In MA(1) we saw how to 
get invertibility: just calculate the invert of teta. 

MA(1) = Yt = eps t + teta*eps t-1 

Let’s use the Lag operator 
(1 + teta L ) eps t à this will be the polynomial psi of L  [   Phi(L) ]
I want to invert it. 

If |teta| <1 so (1+ teta L) ^-1 EXIST 
(1+ tetaL) ^-1 Yt = eps t
This is another polynomial that is Pi of L.
In other particular case, Pi of L was  sum (-teta L) ^ j

How to invert these guys with q element? 
I will break q order polynomial in q polynomial of order 1. I will able to invert them with 
the properties that we used before. How do I break these in q polynomial? It’s a equation 
of q polynomial, we find the solution of the q order equation. We want the various 
lambda that will be less than 1. We will just look at the equation here where lambda is 
the inverse of the solution. If I can do these I can break in to more polynomial. Lambda 
we will the inverse of the solution. We want the solution (1 + teta1 z …) bigger than 1. 
Outside the unit circle, equation with grade q will have more then q solutions. Not all the 
solution have to be real and some can be complex. How can we find absolute value of 
complex number? We will look the unit circle. Drawing a circle and check if we are inside 
or outside the circle. 
We will see an example.

MA(q) works in the same way of MA(1) but everything became heavier in computational. 

Can we stretch q up to infinity?
Yes and NO. We know that we are interested in model of these kind u + sum j= 0 to 
infinite phi j eps t -j. 
We are interested in reducing the parameter that we want to estimate. We have an 
infinity of parameter here. It’s interesting to characterized the moment, mean and 
autocovariance using the same absolute rule of M(q). 
Instead doing that we will do something like AR(1) à autoregression 1. These was the 
first model used with success in time series. 
Y depend on its self the day before. If we compare it to the MA1. MA1 is not an auto 
regression? It’s not because epsilon is not observable! 
In the regression model Yt and Yt -1 are dependent over time. How can I discuss the 
propriety hat I like in this model (stationarity , ergodicity)?
If Phi <1  let’s do the following : (slide)
I will get (1 + phi + phi^2) c + phi … 
If I do this n times, I get sum of all to the power of j and the sum ..

If phi is less than 1 these value goes to 0. Y it’s a random variable and has a probability. 
Is these guy stationary? YES it is. We look at model of the 1° slide with additional 
condition where the sum of phi j ^ 2 is finite. 
Sum of phi j ^2 = sum ( phi ^j) ^2 = sum phi (^2J) = 1 / 1 – phi^2.
It’s also ergotic, using absolute value instead of squared. 
|Phi| < 1 what does mean? 0.5 0.3 … after few step it will not be 0 but closer to 0. 

We want to be cool and the cool way to proceed is to use the Lag operator. 
And the inversion is the exactly of what we study yesterday. 

MA(1) has memory of the past up to one period before ( before we cannot, we have 
autocorrelation of 0). MA(q) Event that occur q time before are not correlated. In these 
case what happened 1000 days ago change the today (in a really small amount). These 
is cool model it’s basically have correlation with large days before. 
Large number .. of the CLT still hold on these guys

What are the moment of these guys?
Expected value is the formula Yt with c.  and then we can get the gammas value. 
Partial autocorrelation? If I tell you Yt-1 what we have to know about the past? Nothing 
because the other will be 0. So alpha1 (1) = phi, alpha j>=2 (j) = 0.

Impulse response
Phi j = ∅ ^ j

He give us a simpler method:
If I know that’s stationary I can use these guys. How we do it? C is not random and so I 
have c + phi and E ( Yt ) = mu, E( Yt-1) = mu because it’s stationary and E( eps t ) = 0 
and we get  mu = c + phi mean which is mean = c / 1 – phi

Because is stationary if I’m speaking with Yt or Yt-1 it’s the same. Eps is only correlated 
with thing that happened on today and so not correlated with Yt-1 so these final 
correlations will be 0 and at the end I have the equation phi ^2 sigma .. 
And then I can get gamma0. 

If I use the formula for 
Gamma1 = Phi * gamma0 = Phi * sigma^2 / 1- Phi^2
Gamma2 = Phi * gamma1 = Phi * Phi * sigma^2 / 1 – Phi ^2

Every time  I farther away I multiplicate for PHI. 

This model is a sort of innovational we can remember even farther away. But the farther 
away is very, very small.
MA(q) so I can AR( p). I can push the dependence of past of Y more. 
We know the AR(1) is stationary when I can write:
Yt = phi Yt-1 + eps t 
(1 – Phi L )   Yt = eps t. 
If |Phi| < 1 then (1 – phi L )^-1 EXIST and I can derive a finite PSIj 
Yt = Sum PSI j eps j with sum of PSI j ^2 < infinite 
Each individual lambda will be less than 1. I will need the solution of the equation (1 –
phi1 z - …) and I want these more than 1. The solution for z is the inverse for Lambda.
I will ha ve to find out the factor of lambda first checking the solution of the equation with 
z. 

When I have stationarity I can compute the moment à I can compute mean, 
autocovariances. 
These is interesting and establish a very nice properties. Epsilon t and Yt give me sigma 
square.  
And these is like the previous one, solving for gamma0.  When we know sigma^2 and 
Phi^2 we can calculate everything. All we need to know it’s Phi. And here is the same 
thing and instead of 1 previous autocovariance this depends on p autocovariance. We 
will have a SYSTEM of p equation..
We can get also autocorrelation and partial correlation. After point p partial 
autocorrelation goes to 0 because there is no more correlation on epsilon t and Yt. 

Example. 

AR(2). Now it’s a system not only for gamma0 and gamma1 but also for gamma2. I need 
to know phi1, phi2 and sigma^2. 
Gamma -1 is the autocovariance one lag behind, but the moments depend only on the 
distant in time so doesn’t matter if we go backward or straight ward ( davanti ) .  

Numerical exercise 

AR(2) is interesting. We have Cyclical dynamics of autocorrelation if square root of z. We 
have to period before we are under average and higher of average. This is a cycle and 
that will be interesting in Economics!  

ARMA examples à excel file. 
We got example of MA(1), AR(1) ecc. 

Put -0.5  in the parameters and we get autocorrelation function. If we do  - 2  the 
autocorrelation function doesn’t change because as we know invertibility. 

There are things that are negatively correlated and then I can put in AR1 example a 
negative value. If we want more smother dynamic we can have AR2. If I want more 
dependence I can put 0.4 and 0.3 in the PSI value. As long we change parameter it 
adapt to various different situation.

Derive impulse refer function IRF.
I want the invert of the polynomial Phi of L. Phi of L ^-1 must be equal to PSI of L. 
Moltiplicate on the other side and then we will obtain (slide). I we multiply them together 
we get 1 + Psi1 L + Psi2 L^2 and a regression of these guy. 
I only have power of L so I can derive values. I can derive these to this polynomial and 
using these algorithm. The model is generating a cycle. 

ARMA will combine AR and MA models. 
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