
Chapter 2 - Inference for Stationarity and Ergodicity
processes

Sample Moments

Sample mean

Y =
1

T

T

∑
t=1

Yt

Sample autocovariance

γ̂j =
1

T

T

∑
t=j+1

(
Yt − Y

) (
Yt−j − Y

)
Sample autocorrelation

ρ̂j =
γ̂j

γ̂0
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LLN and CLT for stationary and ergodic
processes
Consider again model MA(1) Yt = µ + εt + θεt−1

where {εt}∞
t=−∞ is an independent, identically

distributed process, with E (εt) = 0, Var(εt) = σ2.
Then,

Yt + Yt−1 = 2µ + εt + (1+ θ)εt−1 + θεt−2

Yt + Yt−1 + Yt−2 =

3µ + εt + (1+ θ)εt−1 + (1+ θ)εt−2 + θεt−3

T

∑
t=1

Yt = Tµ + εT + (1+ θ)
T−1

∑
t=1

εt + θε0
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For the LLN,

∑T
t=1 Yt

T
= µ + (1 + θ)

∑T−1
t=1 εt
T

+
εT
T

+
θε0
T

and notice that {εt}∞
t=−∞ meets the conditions for the LLN,

therefore
∑T−1

t=1 εt
T

→p 0

Moreover, since εt is stochastically bounded, it also follows that

ε0
T
→p 0,

εT
T
→p 0

and therefore
∑T

t=1 Yt

T
→p µ
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Proceeding in the same way, for the CLT,

√
T

∑T
t=1(Yt − µ)

T
= (1 + θ)

√
T

∑T−1
t=1 εt
T

+
εT√
T

+
θε0√
T

and notice that {εt}∞
t=−∞ meets the conditions for the CLT,

therefore
√
T

∑T−1
t=1 εt
T

→d N(0, σ2)

Moreover, since εt is stochastically bounded, it also follows that

ε0√
T
→p 0,

εT√
T
→p 0

and therefore

√
T

∑T
t=1(Yt − µ)

T
→d N(0, σ2(1 + θ)2)
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Heuristically, the LLN and CLT still hold because we decomposed
our sum ∑T

t=1(Yt − µ) into the sum of an independent process

∑T−1
t=1 (1 + θ)εt , for which we know the LLN and CLT hold, and

residuals that are stochastically negligible in a large sample. This
technique is called Beveridge-Nelson decomposition.

Obviously, the same argument holds for the (MA(2)) model
Yt = µ + εt + θ1εt−1 + θ2εt−2.
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Heuristically, the same argument based on the Beveridge and
Nelson decomposition also holds for any

Yt = µ +
∞

∑
j=0

ψj εt−j

provided that ψj → 0 fast enough, as j gets large. Sufficient
condition for this is

∞

∑
j=0

j1/2|ψj | < ∞

yielding the LLN ∑T
t=1 Yt

T →p µ and the CLT

√
T

∑T
t=1(Yt − µ)

T
→d N(0, σ2(

∞

∑
j=0

ψj )
2)

I Conditon ∑∞
j=0 j

1/2|ψj | < ∞ imply that both |ψj | and |γj |
drop to zero very quickly as j gets large.
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Using again the Beveridge Nelson decomposition and similar
conditions we can also establish the LLN and CLT for the sample
autocovariance and the sample autocorrelation,

γ̂j →p γj

ρ̂j →p ρj

and √
T (ρ̂j − ρj )→d N (0,Wj )

for a known variance Wj .

I Notice that these results are for a fixed j . Clearly, these
results do not hold, for example, for j = T − 1, as this would
imply estimating estimating γj and ρj using only one
observation, and the estimate is not consistent; by the same
argument, it is clear that estimates for j proportional to T are
also inconsistent.
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Autocorrelation robust inference on the sample mean

Notice that

σ2(
∞

∑
j=0

ψj )
2 =

∞

∑
j=−∞

γj = γ0 + 2
∞

∑
j=1

γj

To test hypothesis on the sample mean, we need to know the
term σ2(∑∞

j=0 ψj )
2, which is known as ”long run variance”.

When we do not know the long run variance, we must
estimate it, in order to test hypotheses on µ.
Both parametric and nonparametric methods can be used.
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non-parametric estimation of the long run variance.

I As we noticed before, we only have T − 1 estimates of γj .
Fortunately, from stationarity and ergodicity and from the
regularity conditions given with the Beveridge-Nelson
decomposition, we know that ψj and γj decline to 0 very fast
as j gets large, so as a first approximation we set γ̂j = 0 as
estimates for j ≥ T . Hopefully, the mistake that we make
with this assumption is small when T is large, and negligible
as T → ∞.

I This, however, is not enough, as estimates γ̂j are inconsistent
for large j . To limit its potentially disruptive effect, we weight
these estimates with a small weight.
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These two arguments lead to estimates of the type

γ̂0 + 2
T−1
∑
j=1

kj γ̂j

where kj is a weight called kernel and it is such that kj → 0 as
j → T .

Two such estimates are

γ̂0 + 2
M

∑
j=1

γ̂j , M/T → 0, rectangular kernel estimate

γ̂0 + 2
M

∑
j=1

M − j

M
γ̂j , M/T → 0, triangular kernel estimate

The triangular kernel estimate is also known as Bartlett (kernel)
estimate, or as Newey-West estimate
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I One problem with these non-parametric estimates is that,
depending on the kernel, it is possible that the estimate is
negative: obviously, this is not desirable for an estimate of a
variance. As a matter of fact, the rectangular kernel estimate
may be negative, and it is therefore rarely used, whereas the
triangular kernel estimate is always non-negative.

I term M is known as bandwdith. As a rule of thumb,
M =

√
T is used, and theory for ”optimal” choice of M has

been developed.
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parametric estimation of the long run variance.

Using a parametric model we can characterize the long run variance
as a function of a small number of parameters only. For example,

I when Yt is defined by the MA(1) model,
σ2(∑∞

j=0 ψj )2 = σ2(1 + θ)2

I when Yt is defined by the AR(1) model,
σ2(∑∞

j=0 ψj )2 = σ2( 1
1−φ )

2
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parametric or non parametric estimation?

I Adantages of parametric estimation. When we do not know
the long run variance, it is sufficient to consistently estimate a
small number of parameters to estimate the long run variance.
Thus, the estimate of the long run variance may be more
precise (making inference more reliable).

I Adantages of non-parametric estimation. Parametric
estimation may be inconsistent (if we specify the wrong
parametric model). Non-parametric estimation is not subject
to this risk.

I Adantages of non-parametric estimation. Parametric
estimation may be more time consuming, both for the time to
select the correct model and for the effective estimation time
in the parametric context.

On balance, non-parametric estimation seems to be more
frequently used.
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