Chapter 3 - Forecasting and Impulse Response for
Stationary processes

Often we are interested in time series because we want to answer
one of the two following questions:

Impulse response: What is the consequence on Y; of a shock that
took place t — jperiods ago?

Forecasting: What value do you expect for Y;;1 if you observed
Y1,... Ye?

We first address these questions in the case of stationary processes.
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Wold Decomposition
Any stationary process Y; may be represented in the form

Ye = K¢ + Z Yier—j
j=0

where

R
Po =1, Z;,)lpj < o0
J:

and &;, the error made in fo/[ecasting Y: on the basis of a linear
function of lagged Y (i.e., E (Yt|Yi-1,...))

&t = Yt - E(Yt| Yt_]_, )
is such that, for any t,

E(er) = 0, E(2) =02
E(erer) = 0ifT#t
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K¢ is the linearly deterministic component of Y;: it can be
predicted arbitrarily well as a linear function of past Y, i.e.

Ke = E (k6| Yeo1,...)

and it is such that
E (Ktst_j) - 0 VJ
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Impulse response

The plot of aaeyf, (against j) is called Impulse Response Function
t—j

(IRF): this is the effect on Y; of a shock that took place t — j
periods before.

For a process Y; that admits

Ye=pu+) e
=0

J

for €; such that, for any t,

E(e;) = 0, E(e2) =02
E(erer) = 0ifT#t
notice that
aYr .
ast—j - lPJ

and the IRF is a plot of ; against j.
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Linear filters

From the Wald decomposition, we understand that any stationary
process may be seen as at the application of the polynomial

(Yo, P1, ...) to the white noise process {e;}.

Using the Lag Operator, we can represent this with the notation

Y(L) = (Yo + 1l + ¢ol® +yp3L>..)

so that

T(L)St = Z l/)jSt,j
Jj=0

This is a filter, and it is linear because €;_; is always with power 1.
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Sometimes data are treated (by nature or by the researcher) by

summing / averaging / differencing ...

For Yi = p+ Y20 jer—j, a filter h(L) is applied as

where

then

where

and )

j=—oo

Xt - h(L) Yt

i hild

j=—co

Z [hj] < oo, Z|¢J|<°°

J——OO
=p Ayt (Le

pr=h@)u 7 (L) =h(L)p(L)
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Invertibility

Consider again Y; = u + ¥ (L)e¢: under regularity conditions
(known as Invertibility) the polynomial ¥ (L)~ ! exists.
We can then write

Y)Y, =Y(L) ute
and notice that ¥(L) "'y = ¥ (1) 'u. Denote
TI(L) = ¥(L)* where TI(L) = (7o — 1L — 1oL2...)

and notice that 719 = 1 because o = 1.
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Then, Y(L)"1Y; = ¥ (L) 'u + &, can be written as

e}
Ye=TI(u+ Y 1Y j+e
j=1

For example, in the MA(1) model, Y; = e + 0e;_1, if |6] < 1,

Y: = }:: J Y: —jté&r
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Forecasts based on a linear projection
Assume that

» Y, is stationary

» E(Y:) =0
(if E(Y:) = u # 0, then consider Y; — y instead)

(linear) forecast of Yiy1 using Y;:

~

1
Yiv1le = "‘g )Yt

(linear) forecast of Y:i1 using Y: and Y;_1:

~ 2)

Yiret-1= "‘g Ye+ “22) Vi1

(linear) forecast of Yii1 using Y, ..., Yeemt1:

Vt-i—l\t t—m+1 = «xg'") Ye+ rxgm) Yii+ ..+ IXEnm)

Yt-m+1
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Which values
!/
((xgm),ocgm), L m)>

characterise a linear projection?
Let

Xt — (Yt,..., Yt7m+l)/

then & must meet

E [(Yt-}—l - [X/Xt) Xt{] — O/

(i.e., the forecast error Y;11 — a’X; is not correlated with X;)
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Then,
E (YerrX!) — 'E (X;X!) = 0
E (Xtyt+l) - E (XtXt/) N = 0
a = [E(X:X)] " E (Xe Yern)

Yo T e Ym=2 Ym-1 ! T

T Yo o oo Ym-3 Tm-2 72

o=
Ym—2 TYm-3 - Y0 T Ym-1

Ym—1 Tm-2 . 4! Yo Tm

» Notice that « is exactly the parameter that we would use to
predict Y using X in a conditionally gaussian model
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« gives the best linear forecast in MSE sense

Proof: Consider another linear forecast g’ X;,

2
Yir1 — g/Xt) }

+2E [(Yt+1 — DC/Xt) (OC,Xt — g/Xt)]
+E |(@/X: — g'X:)’]
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and notice that E [(uc’Xt — g’Xt)ﬂ > 0, while

E [(Yt+1 — DC/Xt) (DC/Xt - g/Xt)] =0

because
E[(Yepr —a'Xe) (/X — g'Xe)]
= E[(Yer1—a'Xe) (a—g)' Xi]
= E[(Yer1—a'Xe) X[ (a — g)]
E[(Yerr —a'Xe) X{] (« — g)
Thus,
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Of course, in some cases a non-linear forecast may be better.
However, a linear model is usually easier to use, so it is important
that, under regularity conditions (invertibility), a stationary process
may be given a representation linear in Y;.
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Additional definitions for stationary processes: Partial
Autocorrelation Function

For a stationary Y; with E (Y;) = 0, consider the linear projection

~

Yerilt,t—mi1 = “;([m) Y+ txé’") Yic1+ .o+ alm) Yt-m+1
For different values of m,
1) (2 (m)

0y, 0y, e, A

are the first m partial autocorrelations.

The plot of o) (against j) is called Partial Autocorrelation

f]
Function.
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Forecasting with stationary processes: examples.

Let {Y:}5- ., be a stationary process with
E(Ye) = p
Cov (Ye, Yeuj) = j

Example 1.
Compute the best linear forecast, Y;,; ., assuming that

=10, 70 =2 1 =12; Y, = 11.
O 1
Verre =+ o (Ye—p)
where )
-1
Y = [yo]
SO
V= (27t12=06
Voo = p+al) (Vi —p) = 10406 x (11 - 10) = 106
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Example 2.
Compute the best linear forecast, Y;, ), ., assuming that

u = 10, v0=2, 71 =12, 72 = 0.6;
Yt— = 11, Yt—l - 9
(2)

Verrjeeos = p a2 (Yo — ) + ol (Yeor — )

where
(2) -1
a;” ) ( T M ) ( 7 >
< (2) ) Y1 Yo T2

&3
SO
P\ /2 12\ '/12\ [ 065625
2 )71 2 06 )~ \ —0.00375
2
?t+1|t,t—1

10 4 0.656 25 x (11 — 10) — 0.09375 x (9 — 10)
= 10.75.
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Example 3. R

Compute the best linear forecast Y; |, . assuming
pu = 10,70 =2, v1=12, 92=20.6, y3=0.3;
Yt - 11, Yt—_]_ - 9, Yt—2 - 95

Vet ve o = prar) (Ye—p) +as? (Yeor — ) +a5? (Yoo — 1)

where
(3) -1

oy Yo Y1 Y2 71
=11 o mn T2
a?) Y2 Y1 Yo E

Since

2 12 06\ * /12 0.657 64

12 2 12 06 | = | —0.10345

06 12 2 0.3 0.014778
then

Yertjee-1,6-2 = 10+ 0.65764 x (11 — 10)
—0.10345 x (9 —10) +0.014778 x (9.5 — 10) = 10. 754.
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Forecasting with stationary processes,
further comments

In practice, we do not know the autocovariances ;, so to use this
formula we must replace them with estimates.

Nonparametric: Proceeding as we did for the inference on the
mean, we could use a non-parametric method.

Noticing that in stationary and ergodic procesess the contribution
of observations that are very far in the past to the forecast is very
small, and the autocovariances |7y;| and the weights ‘txj(-T)) drop
towards 0 as j — oo, we may for example replace 7y; by its sample
moment when j < M and by 0 when j > M, for example for
M=+T (quite like when we used the rectangular kernel to

estimate the long run matrix).
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Parametric: When we have a parametric model, we may use it to
compute all the autocovariances.

For example, if we know that Y; is generated by the AR(1) model
Y: = ¢Yt—1+ g, for independent, identically distributed e,
with E (e;) = 0, Var (¢;) = 02, and |¢| < 1 then we can compute
all the au2tocovariances, a2nd find .

0= Gogy M= ¢asey o V= ¥ty (forj = 0),

and therefore p; = ¢/ (for j > 0).

Thus, if we have an estimate ¢, we can estimate p; = ¢/

20/21



» advantage: we use all the autocovariances, not only a fraction
of them. So, we do not incurr in the bias due to setting to 0
an autocovariance that is close to 0 but not exactly equal to it.

> advantage: we estimate just a small number of parameters (in
the example above only one, that is, ¢), as opposed to many
autocovariances. The variance of the estimate of all the
autocovariances may be much smaller.

» disadvantage: we may have inconsistent estimates of the
autocovariances if we specified the wrong model for Y;

The parametric approach seems to be more frequent in practice.
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