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Model selection

How do we choose the lags p, q in an
ARMA(p, q) model?

by looking at the sample autocorrelations
and the sample partial autocorrelations,
and trying to recognize the pattern of a
model with given p, q.

by using an automatic selection criterion
(information criterion).



Tests of "randomness"
If Y t is i.i.d. (and has finite variance) then
1,...,k are all 0.
Then, the sample autocorrelations (


 j,


h,

j  h, j  1, h  1) are asymptotically
independent and

T

 j d N0, 1 (j  1)

We can use this property to design two tests to
check if the data are independently distributed.

"Test for randomness".
This test is so simple that it can be
inspected visually, so the computers
usually plots two error bars at 1. 96/ T
with the sample autocorrelation function.

(Notice: although it is called "test for randomness"
by some computer softwares and some references,
a more appropriate name would be "test for
independent distribution").



Portmanteau test
We can also test a group of k
autocorrelations jointly: under the null,

T
j1

k

 j

2 d k
2

(this test may be of particular interest when
we suspect a seasonal structure in the data:
for example with quarterly data the first
three autocorrelations may be zero, and
then the fourth one may be non-zero). (The
test may be sensitive to the choice of k on
some occasions).

 The test for randomness and the
Portmanteau test can also be executed
using the sample partial autocorrelations.



The tests for independent distribution and
the Portmanteau test may provide
preliminary information about the sample
AC/PAC.

Examples

T  100, 1.96/ T  0.196

1 2 3 4 5 6 7 8 9 10 11 12

-0.041 0.005 0.150 0.116 -0.027 0.048 0.072 0.020 0.155 -0.052 -0.090 0.209

-0.041 0.003 0.150 0.132 -0.017 0.021 0.040 0.018 0.158 -0.064 -0.125 0.164

j̂
 j
j̂

Portmanteau (12)  12.47 (c.v. 21.02)

1 2 3 4 5 6 7 8 9 10 11 12

0.631 0.478 0.448 0.365 0.257 0.251 0.240 0.223 0.229 0.133 0.103 0.194

0.631 0.133 0.173 0.004 -0.062 0.074 0.042 0.050 0.057 -0.143 -0.001 0.176

j̂
 j
j̂

Portmanteau (12)  131.53 (c.v. 21.02)



Model Selection - Information criteria
an automatic way to select q, p.

The idea: use "maximum likelihood" to choose p,q.

The problem: if you compare an ARMA(p, q) with
an ARMA(p  1, q), the ARMA(p, q) has always less
likelihood.

This is because the estimate from the ARMA(p, q)
model maximises the likelihood with the

constraint that

p1  0, while the ARMA(p  1, q)

does not impose that constraint, so the
ARMA(p  1, q) has higher maximum likelihood

unless

p1  0 exactly (which is an event with

probability zero in finite sample even when the
true p;0  0 actually) (Notice analogy with
regression here: when you increase the number of
regressors, the R2 does not decrease, and in general
increases, even when the regressors are irrelevant).



The solution: add a penalty which increases with p
and q.

IC  2

  penalty

penalty :
2p  q Akaike IC

ln Tp  q Bayes IC

BIC: consistent estimation of p, q.

AIC: inconsistent estimation of p, q (may select
larger than correct p, q in large samples).

Both BIC and AIC may select smaller then correct
p, q in finite samples (this however is not
necessarily a bad thing: it may result, in small
samples, in smaller forecast MSE).

An alternative approach: of course, we can also
compare an ARMA(p, q) with an ARMA(p  1, q),
or with an ARMA(p, q  1), using a likelihood ratio
test. The criterion is then adding lags as long as the
likelihood ratio test statistic is above a user-chosen
critical value (for example, 5% significance would
have c.v. 3.84).



Parsimonious modelling
Large econometrics models tend to do badly in
terms of forecasting, and are outperfomed by small
ARMA models (Box & Jenkins).

Even in ARMA models, increasing the number of
parameters reduces the precision of with which
each parameter is estimated: this may worsen the
MSE. This is because when the parameters are
estimated, their variance contributed to the
variance of the forecast. Adding extra parameters
may then help to reduce or eliminate the forecast
bias, but the gain in terms of reduction bias2 is
outweighted by the loss in increased variance of the
forecast.

Should balance the number of estimated
parameters and the number of observations.

Sometimes, Information Criteria have been
advocated also to select more parsimonious
models.



Model validation
We just estimated


 for an ARMA(p, q). We can

then compute the residuals

 t


  Y t 


c 


1Y t1 . . .


pY tp



 1 t1


 . . .


 q tq




(initialising the sequence setting
p  p1 . . . pq1  0 as usual): if the data are

really ARMA(p, q), the residuals  t


 should

approximate well the true  t.

Introduce for the residuals the abbreviation

 t   t




and consider the sample autocorrelation of the
residuals

r j 

1
T


tj1

T 
 t

 tj

1
T


t1

T 
 t

2
,

then the Portmanteau statistic for the sample
autocorrelation has limit distribution

T
j1

k

r j
2 d kpq

2 .
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Information Criteria example
Example: automatic lag selection for Z

pq l-lik1 AIC BIC LR

iid 0 -172.99 345.98 345.98

MA(1) 1 -146.17 294.35 301.56 53.63

AR(1) 1 -140.28 282.57 289.78 65.41

ARMA(1,1) 2 -136.15 276.31 290.73 20.042 , 8.263

MA(2) 2 -131.15 266.30 280.72 30.05

AR(2) 2 -135.40 274.79 289.21 9.77

MA(3) 3 -130.96 267.91 289.55 0.39

ARMA(1,2) 3 -130.64 267.29 288.92 11.024 , 1.015

ARMA(2,1) 3 -135.37 276.74 298.37 1.576 , 0.057

AR(3) 3 -134.39 274.78 296.41 2.01

Notes:

1: Log-likelihood adjusted for endpoints

2: vs MA(1), 3: vs AR(1)

4: vs ARMA(1,1), 5: vs MA(2)

6: vs ARMA(1,1), 7: vs AR(2)



Model validation
Correlograms of the residuals when we fitted
either a MA(1) or a MA(2) to Z.

For example, when k  3 lags are selected, we can
compute the Portmanteau statistics as

MA1 residuals: (asy. 2
2 under no autocorrelation)

100  0.2852  0.3212  0.1102   19.637

MA2 residuals: (asy. 1
2 under no autocorrelation)

100  0.0392  0.0272  0.0412   0.3931

Under the assumption of no residual
autocorrelation, the Portmanteau statistic is
asymptotically kpq

2 distributed.

In this example, this distribution is 2
2 when the

MA(1) is fitted, and 1
2 when the MA(2) is fitted.

The 5% critical values are 5.99 for the 2
2 and 3.84

for the 1
2.

Thus, the assumption that the residuals are not
autocorrelated when the MA(1) is fitted is rejected.
On the other hand, when the MA(2) is fitted, the
assumption is not rejected.





Parsimonious modelling
examples.

What does it mean to say that a model is
parsimonious?

1. Adding non-necessary parameters results
in larger variation of the estimates, ie the
estimates (and the forecasts) are not precise.

2. Sometimes, using a smaller model may
even give more precise forecasts than the
correct model.



1. Adding non-necessary parameters results
in larger variation of the estimates, i.e. the
estimates (and the forecasts) are not precise.

We can see this easily in the AR(1) example:

Y t1  1Y t   t1 (model)

Suppose that we fitted the AR(2),

Y t1|t,... 


1Y t 


2Y t1 (forecast)

then

Y t1 

Y t1|t,...  1 


1 Y t  


2 Y t1   t1

(forecast error)

Fitting the AR(2) instead of the AR(1) increases the

variance of 1 

1 and adds the variance of


2

to the forecast error. This means that the forecast
MSE is larger when the AR(2) instead of the AR(1)
is used.



2. Sometimes, using a smaller model may
even give more precise forecasts than the
correct model.

We can see this easily in the AR(2) example:

Y t1  1Y t  2Y t1   t1 (model)

where 2 is "little" but not zero.

Suppose that we fitted the AR(1),

Y t1|t,... 


1Y t (forecast)

Then

Y t1 

Y t1|t,...  1 


1 Y t  2Y t1   t1

(forecast error)

here the forecast is affected by the bias in the
estimation of 1 and by the omission of 2Y t1, but
if 2 is little then this bias is little; on the other

hand, the variance of 1 

1 is smaller than it

would be if an AR(2) was fitted (because 2 is
little): these two effects may compensate each
other, and if the variance reduction prevails, this
may reduce the forecast MSE.



Adding non-necessary parameters results
in larger variation of the estimates, ie the
estimates (and the forecasts) are not precise.

 Example 1. AR(1).

The series

-4

-3

-2
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1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Series1

was generated as AR(1) with   0.75.

 If we pretend not to know the true model, and
that we are uncertain between an AR(1) and an
AR(2), we estimate  with both models.

Call

1AR1 the estimate of  when the AR(1) is

assumed, and

1AR2,


2AR2 the estimates of 1 and

2 when the AR(2) is assumed. We found

1AR1  0.747,


1AR2  0. 729

so in this particular example

1AR1 got closer to ,

so the AR(1) worked better.



 If we forecast YT1,

AR(1)

YT1|T,... 


1AR1YT

AR(2)

YT1|T,... 


1AR2YT 


2AR2YT1

In our example,

YT1  0.34

AR(1)

YT1|T,...  0.93

AR(2)

YT1|T,...  0.94

so in this particular example the AR(1) gave the
best forecast.

 Example 2. 1000s AR(1), an experiment.

Take 1000 different (random) similar series:

 the estimate

1AR1 results to be closer to 0.75

than

1AR2 in 58.7% of the cases;

 the standard error of the estimated values

1AR1 is 0.072, the standard error of the estimated

values

1AR2 is 0.101.

 the forecast

YT1|T,...from AR(1) results closer to

YT1 than from AR(2) in 54% of the cases;

 the standard error of the forecast error

YT1 

YT1|T,...from AR(1) is 0.968, the standard

error of the forecast error from AR(2) is 0.977.



Sometimes, using a smaller model may
even give more precise forecasts than the
correct model.

 Example 3. AR(2), an experiment.

Suppose now that we have 1000 series from

Y t  1Y t1  2Y t2   t, t  1, . . . T, T  1

with 1  0.65, 2  0. 1 and we consider again:

using t  1, . . . T to estimate 1,2, in AR(2) and
then forecast YT1;

using t  1, . . . T to estimate 1 in AR(1) and then
forecast YT1.

 when T  100, the forecast

YT1|T,...from AR(1)

results closer to YT1 than from AR(2) in 50% of the
cases;

 the standard error of the forecast error

YT1 

YT1|T,... from AR(1) is 0.996, the standard

error of the forecast error from AR(2) is 0.997.

Of course, this depends on the fact that T is small
and 2 is small: both things make estimating 1

and 2 in the AR(2) not precise, and therefore the
forecast is better with an AR(1). With larger T and
larger 2 the result would be better for the AR(2)
model.



 Example 4. ARMA(1,1), an experiment.

Suppose now that we have 1000 series from

Y t  Y t1   t   t1, t  1, . . . T, T  1

with   0.55,   0.45 and we consider:

using t  1, . . . T to estimate , , in ARMA(1,1) and
then forecast YT1;

using t  1, . . . T forecast YT1 assumung that Y t is
an independent process (the rationale for this is
that   0.55,   0. 45 is very close to   0.5,
  0. 5, in which case we would have a common
factor so actually Y t would be an independent
process).

 when T  100, the forecast

YT1|T,...from iid

results closer to YT1 than from ARMA(1,1) in
51.3% of the cases;

 the standard error of the forecast error

YT1 

YT1|T,... from iid is 1.010, the standard error

of the forecast error from ARMA(1,1) is 1.028.

Of course, this depends on the fact that T is small
and  and  are close to each other. With larger T
the estimates would be more precise and the result
would be better for the ARMA(1,1) model.


