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Model selection

How do we choose the lags p,qin an
ARMA(p, ) model?

by looking at the sample autocorrelations
and the sample partial autocorrelations,
and trying to recognize the pattern of a
model with given p, .

by using an automatic selection criterion
(information criterion).



Tests of "randomness”
If Yt isi.i.d. (and has finite variance) then
p1,...,pk are all 0.
Then, the sample autocorrelations (p;, py,
] # h,] > 1, h > 1) are asymptotically
independent and

ﬁﬁj -4 N(0,1) (j = 1)

We can use this property to design two tests to
check if the data are independently distributed.

"Test for randomness'.

This test is so simple that it can be
inspected visually, so the computers
usually plots two error bars at +1.96//T
with the sample autocorrelation function.

(Notice: although it is called "test for randomness"
by some computer softwares and some references,
a more appropriate name would be "test for
independent distribution").



Portmanteau test

We can also test a group of k
autocorrelations jointly: under the null,

K
~2
TZPJ' ~d Xk
-1

(this test may be of particular interest when
we suspect a seasonal structure in the data:
for example with quarterly data the first
three autocorrelations may be zero, and
then the fourth one may be non-zero). (The
test may be sensitive to the choice of k on
some occasions).

Y The test for randomness and the
Portmanteau test can also be executed
using the sample partial autocorrelations.



The tests for independent distribution and
the Portmanteau test may provide
preliminary information about the sample

AC/PAC.

Examples

T = 100, 1.96/4/T = 0.196

1 2 3 4 5 6 7 8 9 10 11 12
ij -0.041 0.005 0.150 0.116 -0.027 0.048 0.072 0.020 0.155 -0.052 -0.090 0.209
O’ZEJ) -0.041 0.003 0.150 0.132 -0.017 0.021 0.040 0.018 0.158 -0.064 -0.125 0.164

Portmanteau (12) = 12.47 (c.v. 21.02)

1 2 3 4 5 6 7 8 9 10 11 12
P 0631 0478 0448 0.365 0.257 0.251 0.240 0.223 0.229 0.133 0.103 0.194
O}J(i) 0631 0.133 0.173 0.004 -0.062 0.074 0.042 0.050 0.057 -0.143 -0.001 0.176

Portmanteau (12) = 131.53 (c.v. 21.02)



Model Selection - Information criteria
an automatic way to select g, p.
The idea: use "maximum likelihood" to choose p,q.

The problem: if you compare an ARMA(p, q) with
an ARMA(p + 1,q), the ARMA(p, ) has always less
likelihood.

This is because the estimate from the ARMA(p, Q)
model maximises the likelihood with the
constraint that $p+1 = 0, while the ARMA(p+ 1,0)

does not impose that constraint, so the
ARMA(p + 1,0) has higher maximum likelihood

unless ?ﬁpﬂ = 0 exactly (which is an event with

probability zero in finite sample even when the
true ¢po = O actually) (Notice analogy with
regression here: when you increase the number of
regressors, the R2 does not decrease, and in general
increases, even when the regressors are irrelevant).



The solution: add a penalty which increases with p

and q.
IC = —2£<B> + penalty

2(p+q) AkaikeIC

penalty :
(InT)(p+q) BayesIC

BIC: consistent estimation of p, Q.

AIC: inconsistent estimation of p, q (may select
larger than correct p, g in large samples).

Both BIC and AIC may select smaller then correct
P, qin finite samples (this however is not
necessarily a bad thing: it may result, in small
samples, in smaller forecast MSE).

An alternative approach: of course, we can also
compare an ARMA(p, ) with an ARMA(p + 1,0),
or with an ARMA(p, q + 1), using a likelihood ratio
test. The criterion is then adding lags as long as the
likelihood ratio test statistic is above a user-chosen
critical value (for example, 5% significance would

have c.v. 3.84).



Parsimonious modelling

Large econometrics models tend to do badly in
terms of forecasting, and are outperfomed by small

ARMA models (Box & Jenkins).

Even in ARMA models, increasing the number of
parameters reduces the precision of with which
each parameter is estimated: this may worsen the
MSE. This is because when the parameters are
estimated, their variance contributed to the
variance of the forecast. Adding extra parameters
may then help to reduce or eliminate the forecast
bias, but the gain in terms of reduction bias? is
outweighted by the loss in increased variance of the
forecast.

Should balance the number of estimated
parameters and the number of observations.

Sometimes, Information Criteria have been
advocated also to select more parsimonious
models.



Model validation

We just estimated B for an ARMA(p,q). We can
then compute the residuals

3t<B> =Y;{—C-— $1Yt—1 — '_a;th—p

— /9\18'[_1 (ﬁ) —.. .—@qgt_q (ﬁ)

(initialising the sequence setting
Ep = Ep-1 =...= Ep-q+1 = 0as usual): if the data are
really ARMA(p, g), the residuals ¢t (ﬁ) should

approximate well the true ¢.

Introduce for the residuals the abbreviation

b= e (B)

and consider the sample autocorrelation of the
residuals

_ T Z'[ =j+1 Eter]
1 &t
then the Portmanteau statistic for the sample

autocorrelation has limit distribution
K

2 2
TZ 7 =d Xi(p+a)-
i-1




Appendix

e Examples of time series with correlograms
e Information Criteria example
e Model Validation

e Parsimonious modelling
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Correlogram of U

70

80

Date: 12/11/10 Time: 1717
Sample: 1 99
Inciuded observations: 99

Autocorrelation Partial Correlation AC PAC

Q-Stat

Prob

0.714 0.714
0.177 -0.680
-0.271 0.010
-0.434 0.032
0.327 -0.009
-0.074 0.072
0.162 0.029
0.309 0.171
0.333 0.080
10 0.250 0.057
11 0.108 0.051
12 -0.037 -0.006

OO WN
|

52,062
55.281
62.922
82.741
94.092
24,678
87.637
108.03
120.38
127.39
128.71
128.87

0.000
0.000
0.600
0.000
0.000
0.00C
0.000
0.000
6.000
0.G00
0.000
0.000

90
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Correlogram of W
Date: 12/11/10 Time: 17:23
Sample: 199
Included observations: 89
Autocorrelation Partial Corretation AC PAC Q-Stat Prob
1 0.768 0.768 60.257 0.000
2 0414 -0.431 77.929 0.000
3 0.219 0.284 82.809 0.000
4 0,098 -0.255 83.948 0.00C
5 0.023 0.168 84.002 0.000
& 0.012 -0.046 84.017 0.000
7 0.034 0087 84.144 0.000
8 0.042 -0.051 84.334 0.000
9 0.057 0,116 84.692 0.000
10 0.050 -0.162 B84.978 0.000
11 -0.016 -0.010 85.007 0.000
12 -0.067 0.015 85.621 0.000
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20 30 40 50 60

Correlogram of Y

70

80

Date: 12/11/10 Time: 17:27
Sample: 199
Inciuded ohservations: 89

Autocorrelation Partial Correlation AC FAC

Q-Stat

Prob

0.628 0.528
0.074 -0.284
0.065 0.234
0.066 -0.106
0.688 0.175
0.106 -0.055
0.075 0.077
0124 0.091
0.157 0.043
10 0.158 (0.094
11 0.094 -0.071
12 0.007 €.006

OO0~ 5O Wk

28.409
28.966
29.283
20.738
30.790
32.006
32.623
34.307
37.051
39.841
40.837
40.843

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

90
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Date: 12/11/10 Time: 17:26
Sample: 1 99
included observations: 99

Autocorrelation Partial Corretation

AC

PAC

Q-Stat

Prob

i 0.007
2 0182
3 -0.010
4 0.020
5 0.024
6 -0.076
7 0162
8 -0.158
9 -0.186
10 0127
11 0.060
12 -0.041

0.007
-0.182
-0.008
0.013

0.021
-0.078

0.179
-0.205
-0.134

0.082
-0.003
-0.035

0.0053
3.4262
3.4375
3.4817
3.5434
4.1644
7.0302
9.7581
14,037
15.863
16.272
16.461

0.942
0.180
0.329
0.481
0.617
0.654
0.426
0.282
0.121
0.104
0.131
0.171

90




Correlogram of Z

70

80

Date: 12/11/10 Time: 17:29
Sample: 1 99
Included observations: 98

Autocorrelation Partial Correlation AC PAC

Q-Stat

Prob

0.690 0.690
0.315 -0.308
0.090 0.039
0.115 0.239
0.131 -0.130
0.138 0.102
0.119 0.040
¢.152 0.084
0.166 0.018
10 0.170 0.047
11 0.112 -0.048
12 0.015 -0.108

O~ & WA -

48.105
58.217
59.056
60.429
62.236
64.274
65.799
68.323
71.342
74.561
75,984
76.010

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

90




Information Criteria example

Example: automatic lag selection for Z

p+q l-lik® AIC BIC LR
iid 0  -17299 34598 34598
MA(1) 1 -14617 29435 301.56 53.63
AR(1) 1 -140.28 28257 289.78 65.41

ARMA(1,1) 2 13615 27631 290.73 20.04(),826()

MA(2) 2 -131.15 26630 280.72 30.05
AR(2) 2 -13540 274.79 289.21 9.77
MA(3) 3 -130.96 267.91 289.55 0.39

ARMA(1,2) 3  -13064 26729 28892 11.02,1.010)

ARMAR,1) 3 13537 27674 29837 157, 0.05("

AR(3) 3 13439 274.78 296.41 2.01
Notes:
(1): Log-likelihood adjusted for endpoints
(2): vs MA(1), (3): vs AR(1)
(4): vs ARMA(1,1), (5): vs MA(2)

(6): vs ARMA(L,1), (7): vs AR(2)



Model validation

Correlograms of the residuals when we fitted
either a MA(1) or a MA(2) to Z

For example, when k = 3 lags are selected, we can
compute the Portmanteau statistics as

MA(1) residuals: (asy. y% under no autocorrelation)
100 x (0.285% + 0.321° + 0.110%) = 19.637

MA(2) residuals: (asy. y% under no autocorrelation)
100 x (0.0392 + 0.0272 + 0.0412%) = 0.3931

Under the assumption of no residual
autocorrelation, the Portmanteau statistic is
asymptotically yi ., distributed.

In this example, this distribution is y5 when the
MA(1) is fitted, and y% when the MA(2) is fitted.

The 5% critical values are 5.99 for the y% and 3.84
for the y%.

Thus, the assumption that the residuals are not
autocorrelated when the MA(1) is fitted is rejected.

On the other hand, when the MA(2) is fitted, the
assumption is not rejected.



Z: Correlogram of Residuals  (Macy)

Date: 22/11/10 Time: 12:27

Sample: 2 99

Included observations: 98

Q-stafistic probabilities adjusted for 1 ARMA term({s)

Autocorreiation Partial Correlation AC PAC Q-Stat Prob

1 0.285 0.285 8.1830

2 0321 0.261 18.694 0.000
3 -0.110 -0.294 19.940 0.000
4 0.184 0251 23.487 0.000
5 0.006 0.017 23.491 0.000
6 0.156 -0.022 26.076 0.000
7 0.005 0080 26.079 0.000
8 0.148 0.07¢ 28496 0.000
9 0.071 0.041 29.049 0.000
10 0,142 0.029 31.205 0.000
11 0.076 0.060 31.944 0.000
12 -0.008 -0.144 31.852 0.001

Zi Correlogram of Residuals (HPA%}

Daie: 22/11/10 Time: 12:23

Sample: 2 99

included observations: 88

Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorreiation Partial Correlation AC PAC Q-Stat Prob

0.039 0.032 0.156%

0.027 0.025 0.2284

0.041 0.039 0.4603 0.527
0.024 0.020 0.4598 0.785
0.062 0.059 0.8668 0.833
0.077 0.071 15015 0.828
-0.045 -0.056 1.7160 0.887
0.1290 0.126 3.5185 0.741
-0.005 -0.022 3.5219 0.833
10 0.103 0.089 4.6826 0.790
11 0.089 0.079 5.8073 0.759
12 0115 -0.134 7.3150 0.695
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Parsimonious modelling

examples.

What does it mean to say that a model is
parsimonious?

1. Adding non-necessary parameters results
in larger variation of the estimates, ie the
estimates (and the forecasts) are not precise.

2. Sometimes, using a smaller model may
even give more precise forecasts than the
correct model.



1. Adding non-necessary parameters results
in larger variation of the estimates, i.e. the
estimates (and the forecasts) are not precise.

We can see this easily in the AR(1) example:
Yt+1 = ¢1Yt + €111 (model)

Suppose that we fitted the AR(2),
\A(t+1|t,,__ = $1Yt + $2Yt_1 (forecast)
then

Y1 — Yoap,. = <¢1 - $1>Yt + <_$2>Yt—1 + €1

(forecast error)

Fitting the AR(2) instead of the AR(1) increases the
variance of ((/51 — 9 1) and adds the variance of fﬁz

to the forecast error. This means that the forecast
MSE is larger when the AR(2) instead of the AR(1)
is used.



2. Sometimes, using a smaller model may
even give more precise forecasts than the
correct model.

We can see this easily in the AR(2) example:
Y1 = ¢1Yt + ¢2Ye1 + £na (model)
where ¢> is "little" but not zero.
Suppose that we fitted the AR(1),
Yoar.. = $1Yt (forecast)

Then
Y1 — /Y\t+1|t,... = <¢1 - $1>Yt + ¢2Yr1 + Eu

(forecast error)

here the forecast is affected by the bias in the
estimation of ¢1 and by the omission of ¢-Y_1, but
if ¢, is little then this bias is little; on the other
hand, the variance of ((/51 — $1> is smaller than it
would be if an AR(2) was fitted (because ¢ is
little): these two effects may compensate each
other, and if the variance reduction prevails, this
may reduce the forecast MSE.



Adding non-necessary parameters results
in larger variation of the estimates, ie the
estimates (and the forecasts) are not precise.
% Example 1. AR(1).

The series

w—Seriesl

i
g

1 5 9 1317212529333741454953576165697377818589 93097

A L N B O B N W A
L

was generated as AR(1) with ¢ = 0.75.

% If we pretend not to know the true model, and
that we are uncertain between an AR(1) and an
AR(2), we estimate ¢ with both models.

Call ¢ 1ar(1) the estimate of ¢ when the AR(1) is

assumed, and ¢ 1AR2)” $2AR(2) the estimates of ¢; and
¢2 when the AR(2) is assumed. We found

$1AR(1) — 0.747, %R@ — 0.729

so in this particular example ¢ 1ar(1) 8Ot closer to ¢,
so the AR(1) worked better.



% If we forecast Y11,
AR(L) Yrar... = §1ara) YT
AR(2) /Y\T+1|T,... = $ 1AR2) YT+ azAR(z) Y11

In our example,
Yr.1 = -0.34
AR(1) Y17 = -0.93
AR(2) Y17, = —0.94

so in this particular example the AR(1) gave the
best forecast.

% Example 2. 1000s AR(1), an experiment.
Take 1000 different (random) similar series:

% the estimate $1AR(1) results to be closer to 0.75
than @MR(Z) in 58.7% of the cases;

Y the standard error of the estimated values
D 1R 18 0.072, the standard error of the estimated

values $1AR(2) is 0.101.

% the forecast Yr,17..from AR(1) results closer to
Yt1i1 than from AR(2) in 54% of the cases;

 the standard error of the forecast error
Yr.1 — Y1, from AR(1) is 0.968, the standard
error of the forecast error from AR(2) is 0.977.



Sometimes, using a smaller model may
even give more precise forecasts than the
correct model.

% Example 3. AR(2), an experiment.

Suppose now that we have 1000 series from
Yt = ¢1Yt_1 + ¢2Yt_2 + &4, t = 1, .. .T,T-I— 1
with ¢1 = 0.65, ¢2 = 0.1 and we consider again:

using t = 1,...T to estimate ¢1,¢0>, in AR(2) and
then forecast Yt.1;

using t = 1,...T to estimate ¢; in AR(1) and then
forecast Y1i1.

% when T = 100, the forecast Y1,y from AR(1)
results closer to Y1,1 than from AR(2) in 50% of the
cases;

Y the standard error of the forecast error
Yri1 — Y1, from AR(1) is 0.996, the standard
error of the forecast error from AR(2) is 0.997.

Of course, this depends on the fact that T is small
and ¢ is small: both things make estimating ¢1
and ¢, in the AR(2) not precise, and therefore the
forecast is better with an AR(1). With larger T and
larger ¢ the result would be better for the AR(2)
model.



% Example 4. ARMA(1,1), an experiment.

Suppose now that we have 1000 series from
Yi = @Y1 +et+0eiq,t=1,... T, T+1

with ¢ = —0.55, 6 = 0.45 and we consider:

using t = 1,...T to estimate ¢, 6, in ARMA(1,1) and
then forecast Yt1,1;

using t = 1,...T forecast Yr,1 assumung that Y; is
an independent process (the rationale for this is
that ¢ = —0.55, 0 = 0.451is very close to ¢ = —0.5,
0 = 0.5, in which case we would have a common
factor so actually Y: would be an independent
process).

% when T = 100, the forecast Y.y, from iid
results closer to Y11 than from ARMA(1,1) in
51.3% of the cases;

v the standard error of the forecast error

Yti1 — Y1, from iid is 1.010, the standard error
of the forecast error from ARMA(1,1) is 1.028.

Of course, this depends on the fact that T is small
and —¢ and 0 are close to each other. With larger T

the estimates would be more precise and the result
would be better for the ARMA(1,1) model.



