
 
  

  

Academic Year 2019-2020 

Time Series Econometics 

Fabrizio Iacone 
  

Chapter 6, Parametric Estimation,  

part 2  

Topics: Exact Maximum Likelihood 

estimation, Conditional Maximum  

Likelihood estimation, Optimisation of the  

(Pseudo) Maximum Likelihood  

    

  



Estimation :
maximum likelihood

Let

Y  Y1, . . . , YT


be a Normally distributed vector with

EY  , E Y  Y     .

The Gaussian density, computed at the point

y y1, . . , yT


in the support of Y is

fY1,..,YTy1, . . , yT

 2T/2||1/2 exp  1
2
y   1y  

Now assume that y y1, . . , yT
 is the realisation of

Y, and consider   and   , where  is a
set of parameters of interest. Then,

fY1,..,YT  2
T/2||1/2

 exp  1
2
y   1y  

is the likelihood function.

Maximising that function with respect to  gives

the (exact) maximum likelihood estimate,

ML, i.e.


ML  arg max


fY1,..,YT



Some comments about the notation

1. Hamilton uses  instead of . I put  to avoid
confusion with the parameter .

2. We are often interested in ARMA models: in this
case, the parameters of interest are
 c,1, . . . ,p,1, . . . ,q,2  .

3. Be careful to distinguish between the density
and the likelihood. The density fY1,..,YTy1, . . , yT is a
function of y1, . . , yT, and it is computed for given
(known) value of the parameters ; the likelihood
fY1,..,YT is a function of the parameters and it is
computed for the (given) value of the observations
y1, . . , yT. We indicate the likelihood as fY1,..,YT
(without reference to y1, . . , yT in the argument) but
Hamilton uses fY1,..,YTy1, . . , yT; instead.



4. Hamilton sometimes also uses fY1,..,YTy1, . . , yT;
for the density; the difference between density and
likelihood must be clear from the context.

5. Hamilton also uses the notation
fYT,..,Y1yT, . . , y1;, i.e. inverting the order of Y1, ...,
YT and y1, ..., yT in the notation: fYT,..,Y1yT, . . , y1;
and fY1,..,YTy1, . . , yT; are the same function.

6. We will often refer to the parameters that
generated the data (and the values of which we
want to estimate) by adding a subscript 0, i.e. 0.



Examples:

AR(1) (|0 |  1):

Y t  c0  0Y t1   t,  t  Nid0,0
2 

c,,2  , (||  1) and

  2

1  2



1  . . . T2 T1

 1 . . . T3 T2

. . . . . . . . . . . . . . .

T2 T3 . . . 1 

T1 T2 . . .  1



MA(1) (|0 |  1):

Y t  0   t  0 t1,  t  Nid0,0
2 

 ,,2   and

  21  2 



1 

12
... 0 0



12
1 ... 0 0

... ... ... ... ...

0 0 ... 1 

12

0 0 ... 

12
1



The likelihood function may be computed for
given set of observations and for any parameter
(within the range of the parameter space).

For example, assume that we know that 0  0 and
we observed

time y1 y2 y3 y4

observation 0.5 0.8 0.2 2

and suppose you want to estimate 0 in the MA(1)
model when 0  0 and 0

2  1 is also known (so
   in this case). Consider five potential values
for 0: 0.5, 0.25, 0, 0.25, 0.5. Then, we have to
compute  for each : for example, when
  0. 5,

0. 5  1  0.52 



1 0.5

10.52
0 0

0.5

10.52
1 0.5

10.52
0

0 0.5

10.52
1 0.5

10.52

0 0 0.5

10.52
1



and

y   1y   

 0.5 0.8 0.2 2 



1.25 0.5 0 0

0.5 1.25 0.5 0

0 0.5 1.25 0.5

0 0 0.5 1.25

1

0.5

0.8

0.2

2

 4.6903

so

2T/2||1/2

 exp  1
2
y   1y  

 24/2  1.3321/2  exp 1
2

4.6903

 2.1033  103

and, for the other values of ,

 0.5 0.25 0 0.25 0.5

1000  f 3.178 2.618 2.153 1.967 2.103



The function may be computed for all the , ||  1

(

  0.76)
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The computation of

||1/2 exp  1
2
y   1y  

is very heavy, because it requires the inversion of
the T  T matrix  for all the admissible values
.

Luckily, it is sometimes easy to rewrite the
likelihood function in a way that does not require
the inversion of ; otherwise, it is also possible
to modify the problem so that, again, we can avoid
the inversion of of .



AR(1)

Y t  c0  0Y t1   t, |0 |  1,  t  Nid0,0
2 

Then

Y t  N c0

1  0
,0

2 1
1  0

2

so the density of Y1, fY1y1 , is

21/2 0
2

1  0
2

1/2

exp  1
2

y1
c0

10

2

0
2

10
2

Of course, the same density may be expressed for
Y2, however in this case we can also exploit the fact
that we observed Y1 on the period before, and look
at the density of Y2 conditional on Y1,

Y2|Y1  Nc0  0Y1,0
2 ,

fY2|Y1y2|y1 

 21/2|0
2 |
1/2

exp  1
2
y2c0  0y1 

2

0
2

.

We can then express the joint density fY1,Y2y1, y2 
(ie, of fY2,Y1y2, y1 ) as

fY2,Y1y2, y1   fY2|Y1y2|y1 fY1y1 



and, by the same argument,

fY1,....,YTy1, . . . , yT


t2

T

fY t|Y t1,...,Y1y t|y t1, . . . , y1  fY1y1 

where

fY t|Y t1,...,Y1y t|y t1, . . . , y1 

 21/2|0
2 |
1/2

exp  1
2
y tc0  0y t1 

2

0
2

when t  2, . . . T.

Also notice that, for the AR(1),

fY t|Y t1,...,Y1y t|y t1, . . . , y1   fY t|Y t1y t|y t1 

so in what follows we simplify the notation in this
way.



So, setting  c,,2  , letting

fY1

 21/2 2

1  2

1/2

exp  1
2

y1 c
1

2

2

12

and

fY t|Y t1

 21/2|2 |
1/2 exp  1

2
y tc  y t1 

2

2

the likelihood is then

fY1,....,YT 
t2

T

fY t|Y t1,...,Y1 fY1

and the log-likelihood is

  lnfY1 
t2

T

lnfY t|Y t1

  1
2

ln 2 2

1  2
 1

2

y1 c
1

2

2

12

 T  1
2

ln22   1
2

t2

T
y tc  y t1 

2

2



We then succeded in rewriting the (log) likelihood
in a way that does not require the inversion of a
T  T matrix.

Maximising that function gives the "maximum
likelihood estimate" when  t is normally
distributed.



However, althought we eliminated the problem of

inverting , we still can’t express our estimate



as a closed form function of the observations, so
we still have to compute the likelihood function on
all the admissible parameters in order to find the
maximum.

Consider, on the other hand, estimating 0 by

maximising

 T  1
2

ln22   1
2

t2

T
y tc  y t1 

2

2

That estimate is known as "conditional maximum
likelihood estimate", because it is the maximum
likelihood estimate if Y1 is not random (so, the
log-likelihood above is called "conditional"
log-likelihood). In this case, a closed form solution
exists.



To find the closed form solution for the conditional
maximum likelihood estimate, first notice that 2

can be estimated and concentrated out:


2

 T  1
2

ln22   1
2

t2

T
y tc  y t1 

2

2

  T  1
2

1
2

 1
2

t2

T
y tc  y t1 

2 2

2

and, equating the derivative to 0,

2  1
T  1


t2

T

y tc  y t1 
2

so replacing this in the log likelihood, the
concentrated likelihood is

 T  1
2

ln2

 T  1
2

ln 1
T  1


t2

T

y tc  y t1 
2

 T  1
2

which is maximised if
t2

T
y tc  y t1 

2 is

minimised.



This is the standard OLS problem, so the solution
is


c  1

T  1

t2

T

y t  y t1   y . 

y .1


 


t2

T
y ty . y t1y .1 


t2

T
y t1y .1 

2

where

y . 
1

T  1

t2

T

y t, y .1 
1

T  1

t2

T

y t1

So for the "conditional maximum likelihood
estimate" a closed form solution exists, and it is the
OLS estimate in Y t  c0  0Y t1   t.

Notice that this is not the likelihood function of
our original stationary AR(1) process, but the
likelihood of the process

Y t  c0  0Y t1   t, |0 |  1,

 t  Nid0,0
2  when t  1;

Y1  y1

(hence the name, "conditional maximum
likelihood").



AR(p)

Y t  c0  0;1Y t1 . . .0;pY tp   t,

where  t  Nid0,0
2 

and the roots of 1  0;1z . . .0;pzp  0 are outside
the unit circle. Using conditioning, we rewrite the
density as

fY1,....,YTy1, . . . , yT

 
tp1

T

fY t|Y t1,...,Y tpy t|y t1, . . . , y tp 

 fY1,...,Ypy1, . . . , yp 

Introduce

Yp  Y1, . . . , Yp 
, p  EYp , yp  y1, . . . , yp 



and Vp  0
2 
1

E Yp  p Yp  p



and take again the Gaussian density,

fY1,...,Ypy1, . . . , yp   2
p/2|0

2Vp |
1/2

 exp  1
22

yp  p


Vp
1 yp  p

fY t|Y t1,...,Y tpy t|y t1, . . . , y tp   2
1/2|0

2 |
1/2

 exp  1
2
y tc0  0;1y t1 . . .0;py tp 

2

0
2

when t  p  1, . . . T.



Taking logarithms, the log-likelihood is

  lnfY1,...,Yp 
tp1

T

lnfY t|Y t1,...,Y tp

 
p
2

ln2  ln|2Vp|
1/2

 1
22

yp  p

Vp

1 yp  p


T  p

2
ln22 

 1
2

tp1

T
y tc  1y t1 . . .py tp 

2

2

where the problem of inverting the T  T matrix
 is reduced to inverting a p  p matrix Vp.

Maximising the log likelihood yields then the
"maximum likelihood estimate".



Again, a "conditional maximum likelihood
estimate" can be considered instead: this is
obtained by treating Y1, . . . , Yp as given, and

maximising
tp1

T

fY t|Y t1,...,Y tp instead. The value of

 that maximised the (log) likelihood is called
"conditional maximum likelihood estimate". This
turns out to be the OLS estimate of c0, 0;1, ..., 0;p

in the corresponding regression model.



MA(1)

Y t  0   t  0 t1, |0 |  1,  t  Nid0,0
2 

Under the additional assumption that

0  0

we can also derive a "conditional maximum
likelihood estimate" of  in a MA(1).

In general, since  t  Nid0,0
2 , then

Y t| t1  N0  0 t1,0
2 

i.e. the density of Y t| t1 is

fY t|t1y t| t1  

 1

20
2

exp  1
2
y t  0  0 t1 

2

0
2

 1

20
2

exp  1
2
 t

2

0
2



Unfortunately  t1 is not observable.

However, suppose that we know 0, then
Y1  0  1  00, and, given 0 and 0 we can
also compute

1  y1  0  00

Having computed 1 we can also compute
2  y2  0  01, and, iterating the procedure,

 t  y t  0  0 t1.

Then,

fY t|t1y t| t1   fY t|Y t1,...,Y1,0y t|y t1, . . . , y1,0 

and

fY1,...,YT1,YT|0y1, . . . , yT1, yT|0 

 fY1|0y1|0 


t2

T

fY t|Y t1,...,Y1,0y t|y t1, . . . , y1,0 

 2T/20
2 
T/2

t1

T

exp 
 t

2

20
2

.



Notice that this is not the density of

Y1, . . . , YT1,YT
 when each Y t has MA(1)

representation, but that density (i.e., the density of

Y1, . . . , YT1, YT
 when each Y t has MA(1)

representation) conditional on 0.

Morevoer, we cannot compute a likelihood,
because we can’t observe 0.

However, consider the process

Y t  0   t  0 t1,

with  t  Nid0,0
2  when t  0;

0  0.

This process is very similar to the stationary
MA(1), and it has the density above (setting
0  0).

Given that we know 0, we can compute 1 for a
given point  in the parameter space: this is of
course a function of , so

1  y1  

and then

2  y1    1

and in general

 t  y t     t1.



We can then compute the likelihood (which is,
then, a "conditional likelihood") as a function of a
set of observations y1, . . . , yT

, and of a generic
vector of unknown parameters ,

fY1,...,YT|00

 fY1|00
t2

T

fY t|Y t1,...,Y1,00

 2T/2|2 |
T/2

t1

T

exp  1
2
 t

2

2
.

Taking logs, the (conditional) log-likelihood is

   T
2

ln2  T
2

ln2   1
22 

t1

T

 t
2

The value of  that maximises the (conditional)
(log) likelihood is called "conditional maximum
likelihood estimate".



MA(q)

Y t  0   t  0;1 t1 . . .0;q tq,  t  Nid0,0
2 

and the roots of 1  0;1z . . .0;qzq  0 are all
outside the unit circle.

Introduce 0  0, . . . ,q1 
.

Again, if 0  0, we compute, for
  ,1, . . . ,q,2  ,

 t  y t    1 t1 . . .q tq

iteratively, and we can formulate a "conditional
maximum likelihood":

fY1,...,YT|00

 fY1|00
t2

T

fY t|Y t1,...,Y1,00

 2T/2|2 |
T/2

t1

T

exp  1
2
 t

2

2

Taking logarithms, the log-likelihood is

   T
2

ln2  T
2

ln2   1
22 

t1

T

 t
2

The value of  that maximises the conditional (log)
likelihood is the "conditional maximum likelihood
estimate".



ARMA(p,q)

Y t  c0  0;1Y t1 . . .0;pY tp

  t  0;1 t1 . . .0;q tq,

 t  Nid0,0
2 

the roots of 1  0;1z . . .0;pzp  0 and of
1  0;1z . . .0;qzq  0 are all outside the unit
circle, and there is no common factor.

Again, assume that Y1, . . . , Yp are given and
p  p1 . . . pq1  0.

Then we can compute, for
  c,1, . . . ,p,1, . . . ,q,2  

 t  y t  c  1y t1 . . .py tp

 1 t1 . . .q tq

for t  p.

The conditional likelihood is then

fYp1,...,YT|Yp,...,Y1,p0,...,pq10

 2Tp/2|2 |
Tp/2

tp1

T

exp  1
2
 t

2

2



The conditional log-likelihood is

  
T  p

2
ln2


T  p

2
ln2   1

22 
tp1

T

 t
2

The value of  that maximises the conditional (log)
likelihood is called "conditional maximum
likelihood estimate".



Concentrated likelihood
Consider again

  
T  p

2
ln2


T  p

2
ln2   1

22 
tp1

T

 t
2

Clearly, this is maximised as long as
tp1

T
 t

2 is

minimised with respect to c,1, . . . ,p,1, . . . ,q :
although we wrote  t, the parameter 2 does
not actually enter the recursions to compute  t.

If we are not interested in 0
2, we can estimate

c0,0;1, . . . ,0;p,0;1, . . . ,0;q  by minimising the
(conditional) Residual Sum of Squares (RSS)


tp1

T
 t

2, i.e.


c,

1, . . . ,


p,


 1, . . . ,


 q 

c,1,...,p,1,...,q

arg min 
tp1

T

 t
2

To estimate 0
2 notice that



2
 

T  p
2

1
2

 1
22 2 

tp1

T

 t
2

so, from the first order condition


2
 0,

2  1
T  p 

tp1

T

 t
2 

c,

1, . . . ,


p,


 1, . . . ,


 q .



Pseudo Maximum Likelihood
(PML)
When  t is not normally distributed, the density is
different and then the maximum likelihood
estimate is different as well.

If we use the gaussian density even if  t is not
normally distributed, then, our estimate is no
longer the maximum likelihood one. In this case it
usually known as Pseudo (or Quasi) maximum
likelihood instead.

We already saw that there many variants of the
maximum likelihood estimates; in the same way,
there are many variants of the PML ones. In what
follows, we will discuss the asymptotic properties
of a minRSS type of PML estimate, i.e.


c,

1, . . . ,


p,


 1, . . . ,


 q

PML


c,1,...,p,1,...,q

arg min 
tp1

T

 t
2

2
PML  1

T  p 
tp1

T

 t
2 

c,

1, . . . ,


p,


 1, . . . ,


 q

PML
.

Notice here that this estimate "generalises" the ML
one in the same way as the OLS regression
estimate generalises the ML estimate in a
regression model.



Optimisation of the objective
function

In general, it is not always possible to obtain a
closed form formula for the estimate, and it may be
extremely time consuming to compute the
log-likelihood function (even the conditional
log-likelihood) for all the potential .

The optimisation of the log-likelihood may be
carried using a numerical algorithm, such as the
Newton-Raphson one.

Introduce

g0  

 0

(gradient)

H0   
2

  0

(Hessian)

for a generic 0, and consider an approximate
second order Taylor expansion of ,

  0   g0 

  0 

 1
2
  0 


H0   0 



Recall that  is maximised at

 if


 




 0.

Now, consider the approximation of the derivative
around 0:




 g0   H0   0 .

If the approximation was perfect, we could have

just computed

 solving for 

g0   H0   0   0,

i.e.,

  0  H0 
1
g0 .

However, this may be a rather poor estimate,
because the approximation is not exact (there is a
remainder, in this case of the third order, in the
Taylor expansion of ). Let’s call this possibly
poor estimate 1, then, where

1  0  H0 
1
g0  :

clearly, this is (in a certain probabilistic sense)
better than a generic 0.



Next, we can improve, by considering a second
order approximation of  in 1, and compute

2  1  H1 
1
g1 .

The procedure can then be iterated until

convergence (which gives

).

Example
ARMA(1,1) (assuming 0  0, 0

2  1 known),
  , . Recall

 t  y t  y t1   t1

so for t  2,

 t


  t1  
 t1


 t


 y t1  
 t1


2 t

2
 2

 t1


 
2 t1

2

2 t

2
 

2 t1

2

2 t


 
 t1


 
2 t1




These iterations may be initialised setting 1  0,

0  0 (which also implies
1


 0,

1


 0),

and taking Y1  y1 as given. So,

   T  1
2

ln2  1
2

t2

T

 t
2

g 



 
t2

T  t
t



 t
t



H0   
2

 
 

t2

T
H11 H12

H12 H22

where

H11 
t



2
  t

2t

2

H12 
t



t


  t

2t



H22 
t



2
  t

2t

2



In many cases, you may start the
optimisation with any set of starting values,
but this may result in a rather slow
optimisation, or even in an "incorrect"
solution (you may end up picking a local
maximum, rather than the maximum).
It is then advisable to start from a "good"
point, that is, from a consistent estimate of 
(tipically, an estimate that you may
compute easily, even if it is less efficient
than maximum likelihood): the correlogram
based estimate is a good starting point
(given certain regularity conditions,
properties as in the pseudo-maximum
likelihood estimate may be obtained after
just one step).
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Maximum likelihoood
estimation for independent

bernoulli trials
Consider an experiment that may result in two
outcomes, success or failure, with probability of
success p, and suppose that we repeat the
experiment n times. Then, letting X the number of
successes, X is binomially distributed with
parameters n and p,

PX  x  n!
n  x!x!

px1  pnx

Suppose that we run the experiment 7 times. What
is the probability of observing 5 successes? Setting

n  7, X  5,

we can compute PX  5 for various values of p:

PX  5;p  0.4  7!
2!5!

0.450.62  0.077

PX  5;p  0.6  7!
2!5!

0.650.42  0.261

PX  5;p  0.8  7!
2!5!

0.850.22  0.275

and, for the generic value p  ,

PX  5;p    7!
7  5!5!

51  75



Suppose now that p is unknown, and that we did
run the experiment (n  7) and we observed X  5.
Then, n and X are fixed, and

l  7!
7  5!5!

51  75

is a function of  only, and it is called likelihood
function.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

theta

l(theta)

As we have seen before, PX  5;p  0.8  0.275
while PX  5;p  0.4  0.077, so the probability
that X  5 occurrs when p  0.8 is higher than the
probability that X  5 occurrs when p  0.4. As we
do not know p but we observed X  5, the idea
behind maximum likelihood is that, therefore, I
should rather think that p  0.8 generated this
result of X  5, and not p  0.4.

As p may actually be any value in 0,1, by the

same argument the estimate is

  5/7  0.714.



Maximum likelihood estimation
in the linear model with iid

gaussian innovations
We are interested in estimating 0 and 0 in

Y t  0  0X t  u t

assuming that

1) X t is deterministic

2) u t is normally, independently distributed with
Eu t   0, Varu t   0

2, i.e. u t is Nid0,0
2 .

(notice: X t is deterministic means for example that
X t may be some known function of time, such as
X t  t, or X t  t2 or X t  cost; X t  c constant is
also a deterministic function, but the constant is
already in 0).

Then,

Y t  N0  0x t,0
2 

with density

fY ty t   1

20
2

exp  1
2

y t  0  0x t

0

2

 1

20
2

exp  1
2

u t
0

2



Morever, the density of Y1, . . . , YT is

fY1,...,YTy1, . . . , yT 
t1

T

fY ty t 

because u t is independently distributed.

Note: the density fY ty t  is a function of y t  , and
it is computed for given (known) value of the
parameters 0,0,0

2; fY1,..,YTy1, . . , yT is a function
of y1, . . , yT, and it is computed for the same given
(known) value of the parameters 0,0,0

2.

We cannot observe u t but, using observations

y1, . . . , yT
 (and recall that X t is deternisitic, so x t it

is known) we can compute

u t,  y t    x t

for each admissible value of  and , so we
compute

fY t,,2   1

22
exp  1

2
u t,



2

and the likelihood

fY1,...,YT,,2  
t1

T

fY t,,2 



Note: u t, is a function of  and ; it is not a
function of y t or x t because these are known at the
moment we compute u t,. The likelihood
fY1,..,YT,,2  is a function of the parameters

,,2  and it is computed for the (given) value of
the observations y1, . . , yT (and using the fact that
x1, . . . , xT are known). We indicate the likelihood as
fY1,..,YT,,2  (without reference to y1, . . , yT in the
argument).



The logarithm of the likelihood is

,,2    T
2

ln22  1
22 

t1

T

u t,2.

The maximum likelihood estimates of 0,0,0
2 are

the values of ,,2 that maximised the likelihood
(and therefore, the log-likelihood), i.e.


,

,

2


,,2

arg max ,,2 



For the maximum likelihood estimation of , ,

first order conditions are
,,2


 0 and

,,2


 0, so

u t,


 1,
u t,


 x t

u t
2,


 2u t,,
u t

2,


 2x tu t,,

,,2 


 1

22
2

t1

T

u t,

,,2 


 1

22
2

t1

T

x tu t,.

Equating these two derivatives to 0, and
substituting u t,, we have


t1

T

y t 

 


x t  0


t1

T

x t y t 

 


x t  0.



Solving the first equation for

, we have

T

 

t1

T

y t 

x t

and finally, letting y  1
T


t1

T
y t, x  1

T


t1

T
x t


  y 


x.

Replacing this in the second equation,


t1

T

x t y t  y 

x 


x t  0


t1

T

x ty t  y 



t1

T

x tx t  x


 


t1

T
x ty t  y


t1

T
x tx t  x

Notice that
t1

T
y t  y  0, so

t1

T
xy t  y  0.

In the same way,
t1

T
xx t  x  0, so


 


t1

T
x t  xy t  y


t1

T
x t  x2



Notes:

 if 0  0 and we know it, i.e. we want to
estimate 0 in

Y t  0X t  u t

then


 


t1

T
x ty t


t1

T
x t

2
.

 if we have many types of x t (for example, p) i.e.
we have x1,t, x2,t, ..., xp,t and we want to estimate 0

and 0;1 0;2, ..., 0;p in

Y t  0  0;1X1;t  0;2X2;t . . .0;pXp;t  u t

then, stacking

0  0,0;1,0;2, . . . ,0;p 


(this is a (p  1  1) vector), and

y  y1, . . . , yT
 T  1

x t  1, x1;t, . . . , xp;t 
 p  1  1

x  x1, . . . , xT
 T  p  1

then

  x x1x y





  x x1x y is a function of the observations.

As we change our observations, we also change the

value of

. As the observations are realizations of

the random variables, we can also consider the
function


  X X1X Y.

This is a random variable and it has a proper
distribution. In particular, it is possible to prove
that, if there is M such that 1

T
X X  M, then


 p 

T

   d N0, M12 

Moreover, in this particular case (X t deterministic

and u t Nid0,2 )

 is the "best" estimator in a

certain class
(the class of linear and unbiased estimators; "best" here means

"minimum variance" if only one variable is used in X t ; in general, it

means that the difference between M12 and the

variance-covariance matrix of any other linear unbiased estimator,

is negative semidefinite).



 The estimator

  X X1X Y is also known as

the Ordinary Least Squares estimator, because it is
obtained minimising the sum of squares of the

residuals
t1

T
u t,2. It is also used in many

other contexts, in which X t may be not
deterministic and u t is not normally distributed, or
indeed not even independently distributed. In all
these cases of course the properties are not as
stated above, and they must be studied case by
case.



Step-by-step derivation of the
variance-covariance matrix for

a stationary time series
Let Y t t

 be a process and each Y t is identically

distributed and

Y  Y1, . . . , YT


with

EY  , E Y  Y     

How are Y,  and  done?

Y 

Y1

Y2

. . .

. . .

YT1

YT

 





. . .

. . .





Y   

Y1  

Y2  

. . .

. . .

YT1  

YT  

So, Y,  and Y   are T  1 vectors.



Y  Y   



Y1  

Y2  

. . .

YT  

Y1   Y2   . . . YT  

Y  Y    is a T  1  1  T  T  T
matrix.

To ease the notation, assume that

  0

Then we are interested in

Y Y  

Y1

Y2

Y3

. . .

YT

Y1 Y2 Y3 . . . YT



Y1 Y1 Y1 Y2 Y1 Y3 . . . Y1 YT

Y2 Y1 Y2 Y2 Y2 Y3 . . . Y2 YT

Y3 Y1 Y3 Y2 Y3 Y3 . . . Y3 YT

. . . . . . . . . . . . . . .

YT Y1 YT Y2 YT Y3 . . . YT YT



Recall that   0, then
E Y1 Y1  0,

E Y1 Y2  1, ...,

E Y1 YT  T1;

in the same way, E Y2 Y1  1,

E Y2 Y2  0, ...,

E Y2 YT  T2, ... so

E Y Y 

 E

Y1 Y1 Y1 Y2 Y1 Y3 . . . Y1 YT

Y2 Y1 Y2 Y2 Y2 Y3 . . . Y2 YT

Y3 Y1 Y3 Y2 Y3 Y3 . . . Y3 YT

. . . . . . . . . . . . . . .

YT Y1 YT Y2 YT Y3 . . . YT YT



0 1 2 . . . T1

1 0 1 . . . T2

2 1 0 . . . T3

. . . . . . . . . . . . . . .

T1 T2 T3 . . . 0



Assume for example that Y t t
 is a MA(1),

Y t     t   t1 with  t iid0,2 

Then,  is the T  T matrix

2

1  2   0 . . . 0

 1  2   . . . 0

0  1  2  . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1  2 

21  2 

1 

12
0 . . . 0



12
1 

12
. . . 0

0 

12
1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1



Conditional ML for MA(1)

a numerical example

We observed

y1 = −0.4, y2 = 0.8, y3 = 0.6, y4 = −0.2

and we want to compute the Conditional RSS

for three values of θ: −0.5, 0, 0.5.

Using ε0 = 0 for any θ, εt (θ) = yt − εt−1 (θ)

εt (θ) t = 1 t = 2
θ = 1/2 −0.4− 1/2 ∗ 0 = −0.4 0.8− 1/2 ∗ (−0.4) = 1.0
θ = 0 −0.4− 0 ∗ 0 = −0.4 0.8− 0 ∗ (−0.4) = 0.8

θ = −1/2 −0.4+ 1/2 ∗ 0 = −0.4 0.8+ 1/2 ∗ (−0.4) = 0.6

εt (θ) t = 3 t = 4
θ = 1/2 0.6− 1/2 ∗ 1 = 0.1 −0.2− 1/2 ∗ 0.1 = −0.25
θ = 0 0.6− 0 ∗ 0.8 = 0.6 −0.2− 0 ∗ 0.6 = −0.2

θ = −1/2 0.6+ 1/2 ∗ 0.6 = 0.9 −0.2+ 1/2 ∗ 0.9 = 0.25

ε2t (θ) t = 1 t = 2 t = 3 t = 4
θ = 1/2 (−0.4)2 = 0.16 12 = 1 0.12 = 0.01 (−0.25)2 = 0.0625
θ = 0 (−0.4)2 = 0.16 0.82 = 0.64 0.62 = 0.36 (−0.2)2 = 0.04

θ = −1/2 (−0.4)2 = 0.16 0.62 = 0.36 0.92 = 0.81 0.252 = 0.0625

∑T

t=1
ε2t (θ)

θ = 1/2 0.16+ 1+ 0.01+ 0.0625 = 1.2325
θ = 0 0.16+ 0.64+ 0.36+ 0.04 = 1.2

θ = −1/2 0.16+ 0.36+ 0.81+ 0.0625 = 1.3925



This means that if we were to pick a condi-

tional maximum likelihood estimate θ̂ between

the three candidates 1/2,0,−1/2, we would

pick θ̂ = 0.

If we used the whole [−0.98,0.98] the estimate

θ̂ would be 0.14. The function
∑T
t=1 ε

2
t (θ) is


