TASK 2 TRUMP TWEETS TEXT ANALYSIS

GROUP \#4

GOTTA CAMILLA - IERARDI ANDREA - LAZZARA FRANCESCO - LENI THOMAS LEPEK ALEKSANDRA

PROJECT GOAL

The objective of the project is to analyze Trump tweets in order to define the most used words and to classify them in categories thanks to SVD diagrams and
clustering methods

DATASET USED

The dataset is composed by 4212 tweets, with only one column for each one, containing the text of the tweets.

DATA CLEANING

$>$ Remove punctuation, numbers and isolate words;
$>$ Remove all the words without an utility for the project;
$>$ Cutoff all the words below an arbitrary thresholds, in this case study the threshold is 30;
$>$ Combine and insert some words particurarly relevant for the topic (e.g. "make America great again");

| Numero
 di termini | Numero
 di casi | Token per
 Token totali | Numero di
 maiuscola/minuscola | Suddividi non |
| ---: | ---: | ---: | ---: | ---: | ---: |
| casi non vuoti | | | | |
| vuoti per caso | | | | |

[^0]
MOST COMMON WORDS

In Figure 2 and Figure 3 there is a representation of the most used words in the tweets such as «great», «people» and «president».

Figure 2- Word Cloud

\triangle Elenchi di termini e frasi

Termine	Conteggio	
great	894	\wedge
people	454	
president	435	
democrats	420	
country	379	
china	266	
border	255	
good	248	
fake news	245	
media	241	
time	230	
trump	213	
united states	197	
job	175	
deal	166	
dems	161	
wall	160	
america	155	
history	154	
hunt	148	
state	143	
win	141	
collusion	137	
crime	135	
work	135	
economy	134	\checkmark

SVD PLOTS

> The words appearing close to each other appear together frequently in documents in the corpus;
$>$ In the Figure 4 the two plots have a similar shape, even if there is a difference
in the concentration deriving from the number of points in each plot;
$>$ In the first plot there are some outliers, the clearest is reported beside.

[^1]
TOP LOADINGS BY TOPIC

This fuction matches the words, according to the different topics. In particular they are divided in 10 groups:

1. Election campaign;
2. Immigration and Mexico;
3. Trump's opponents;
4. Import-export;
5. North Korea troubles;
6. Mass media;
7. Impeachment case;
8. Economy;
9. Domestic economy;
10. Middle east conlicts:

Pesi principali per argomento									
Argomento 1		Argomento 2		Argomento 3		Argomento 4		Argomento 5	
Termine	Caricamento in corso	Termine Car	Caricamento in corso T	Termine	Caricamento in corso	Termine Car	Caricamento in corso	Termine	Caricamento in corso
amendment	0,60192	border	0,65366 co	collusion	0,57636	dollars	0,63248 no	north korea	0,74222
governor	0,53740	southern	0,61894 cr	crooked	0,48231	china	0,62040 ki	kim	0,72570
vote	0,52517	immigration	0,48710 hil	hillary	0,42930	tariffs	0,60712 ch	chairman	0,57238
vets	0,49576	laws	0,46176 ob	obstruction	0,39702	billion	0,53970 ko	korea	0,53670
republican	0,47895	mexico	0,41224 re	report	0,36354	billions	0,46402 so	south	0,49246
louisiana	0,46703	drugs	0,40894 ca	campaign	0,29530	deal	0,34515 m	meeting	0,37920
taxes	0,35827	wall	0,40089 d	democrats	0,28750	trade	0,31270 ec	economic	0,29958
military	0,35721	fix	0,31663 hi	hillary clinton	0,28144	farmers	0,29195 po	potential	0,29531
protect	0,34195	illegal	0,30007 rus	russian	0,27721	usa	0,28774 ja	japan	0,22036
north	0,33836	crisis	0,29303 tr	trump	0,26168	paid	0,26484		
carolina	0,33579	democrats	0,28214 ru	russia	0,25702	companies	0,26457		
crime	0,31811	stop	0,27975 an	angry	0,25188				
rally	0,29108	built	0,27909 fb	fbi	0,24775				
		change	0,27908 in	intelligence	0,24682				
				hunt	0,24670				
Argomento 6		Argomento 7		Argomento 8		Argomento 9		Argomento 10	
Termine	Caricamento in corso	to Termine	Caricamento in corso						
fake news	0,52877	ukrainian	0,5154	154 interest	0,70297	market	0,6117	17 kurds	0,76609
media	0,48130	conversation	n 0,4542	42 rates	0,65723	stock	0,6012	12 turkey	0,71581
post	0,45755	ukraine	0,4431	inflation	0,56335	unemployment	nt 0,4078	78 syria	0,61736
washington	0,41521	phone	0,4296	federal	0,54365	history	0,3965	65 isis	0,49777
new york times	es 0,37590	whistleblower	er 0,4202	fed	0,49691	economy	0,3507	07 fight	0,37003
story	0,37563	transcript	0,4017	17 dollar	0,42718	lowest	0,2805	05 fighting	0,27629
fake	0,36678	president	0,3997	rate	0,34122	impeach	0,2727	727 protect	0,19499
corrupt	0,35700	scam	0,3334	34 countries	0,31436	country	0,2124		
failing	0,33712	democrat	0,2553			record	0,2117		
stories	0,29421	impeachment	nt 0,2443			enforcement	-0,2047		
cnn	0,29065	great	-0,2253			law	-0,2045		
reporting	0,29049					biggest	0,2025		
Figure 6-Top Loading Topic									

CLUSTERING

The dataset is divided in 4 cluster, in this way is possible to delete non significant groups. It's evident that the biggest group is the red one, since the most common terms belong to this group.

[^0]: Figure 1- Number of terms after data cleaning

[^1]: Figure 4 - SVD plots

