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We have an introduction of what is time series (it’s a special object made by one observation o 
dimension t). TO make inference we will need to make some restrictions for heterogeneity and 
in depend. Stationarity and ergodicity play a key in this task.  
I can use a time series, why I would use that? impulse response and forecasting. 
The response of today by what happened in the past. 

Impulse 1)
We saw that for impulse response the way to represent it is with two operator Yt / eps – j. 
When I have representation of these kinds we have this condition here and when we saw 
these representations we can define the whole composition. When we a stationary process we 
could obtain a linear representation for this and it’s very easy to handle. 

Forecasting2)
We began whit the assumption that we are in stationary data. We begin with assuming 
stationarity. Mu is actually 0 and I’ts necessary for the arguments that he’s giving. The 
computation is much easier. If the meaning are not 0 we considering Tt – mu. 

The forecast is describing of linear projection. No power and strange function linking y and x. 
We will use the same structure here and it’s easier because there is not interception. So mu is 
equal to 0. Mu in this case is the ‘a’ value of y = a+ bx. 
Linear function are easier to handle and that’s why I want a linear projection. Basically, I would 
want a function that x is the value of today and y is the forecast for tomorrow. In this notation Yt 
is the value of today and the forecast it denoted with a Y with cap and given t. Yt +1 given the 
information of Yt. What do I need? I need to find out the parameter alpha. Instead of having a 
Yt with a value of temperature of today we have today and yesterday. Typically, the forecast 
will take temperature of today and yesterday. To specify this forecast we use Yt+1 given t and 
t-1.
We will have another variable to find like  è y = a + bx + cz. 
Alpha1 refers to the first and alph2 refers to the second element. (1) mean only using one bit of 
information. (2) meaning that forecast is using 2 bit of information. The parameter refers to Yt 
will be different. We not solving the problem but he’s providing us the problem. If we consider 
m days:
Yt+1 | t … , t-m-1 = alpha1 (m) + …. + AlphaM (m) Yt -m +1

How do I choose these guys ( the alpha values) ?
Let me call Xt = ( Yt, .., Yt-m+1) ‘
And alpha all the varius way of alpha.  Alpha = (alpha1 (m) … , alphaM (m) )’

My forecast Yt+1 | t … , t-m-1 will be in matrix notation = alpha’ Xt. Where alpha and X are 
vectors. 

How do I going to get alpha’? 
If we remember regression it’s orthogonal to the variables. I will choose the alpha so the error 
that I will observe tomorrow will be (Yt+1 – alpha’ Xt). These errors is not correlated with the 
value of today that is X’t. These is a mathematical condition. We will show that these condition 
delivers the best linear forecast in MSE. Before I do these proofs let’s think why these 
conditions has sense: with the information that we have we expect to have 0 errors. If you have 
a error correlated with the information we could use these information to reduce the error.  This 
is a mathematical formula with a very precise logical significate. 

Regression is exactly this model : using X to explain Y like the linear model. How does alpha 
look like given these conditions? It’s look like a matrix. I’m going to derive these and then 
comment it. 
E = … 
Alpha goes out because it’s not random (??). This Is a row vector but I like col vectors so I 
translate all the matrix. 
Xt = (Yt , Yt-1 …) ‘
Xt’ = (Yt)    
        (Yt-1)

..
Here Xt Xt’ we have to multiplicate the values 
| (Yt)      (Yt, Y-1 …)   |       | Yt Yt  Yt Yt-1      
| (Yt-1)  *        |    = | Yt-1 Yt   Yt-1Tt-1
| …            |       |
Expectation of Yt is the covariance of Yt and Yt-1 that is gamma1 and so on. So our problem is 
a linear projection. 

These alpha really is the one that I want and that gives the best linear forecast in MSE. Given 
another sequence of weight that is g. 

This is a square and this is the expected value of  a square so will be a non-negative number 
(in fact >= 0). 
The middle term will be 0. So alpha and g will be  0. We will prefer alpha to any other g. 

In some case we will use non-linear forecast. Linear model is easy to solve, just invert the 
matrix and we got the answer. We saw before that a stationary process, we can invert these 
composition I can always get a linear projection even if the starting process wasn’t linear. 

Example.
Yt as a stationary process and I’m interested in the best forecast when we obtain gamma1. 

Example2. 
Is the same but I pretend to know a bit more: temperature of today and yesterday. So, the 
value in these forecast changes because we got more information. The second one is better 
because we take more information. If we want to compare the two forecasts putting a way of 0 
here and we know that the optimal weight is not 0 but is 0.09375. So, these is better forecast. 
Example3. 
If we have 3 bit of information I use the same algorithm but apart from that we obtain a better 
forecast. The weight of the very far past doesn’t matter for today so I give for these 3rd
observation a less weight. 

NO I DON’T NEED TO KNOW HOW TO INVERT THE MATRIX. 

These technic works and we know understood more things. If I have 100 observation and we 
try to use that formula I can use a hundred point, right? NO! in real life there is another 
problem. We pretend that we know the value of gamma matrix!. In reality, the data don’t with 
the tags of please use these autocovariance. We need to estimate it. 
We have to estimate with the value of rad of T. That is like choosing a bandwidth for a kernel. If 
only use the 10th autocovariances will be a mass? The answer is probably not!. If you have a 
stationary process the value of autocovariances go down very close to 0. Not a big mistake. 
Rad of T as maximal dimension we have to use.

Parametric model with AR(1). We will able to get gamma for any j as long as we know the 
value of phi. We will proof these but these is not just the fact that these value depends only on 
phi. 

What works best? The advantage of using parametric model is that you use all the 
autocovariances that we could possible want to use. This Is a very small advantage. What 
matter’s more is when we use Parametrics the further away we go the better is the estimation. 
In the parametric we need just the value of phi. All the autocovariance will be so estimated with 
more precision ( so estimates will be more precise). Because we are using more information 
and phi it’s easy to compute. If I get the model wrong then all my forecast model is wrong 
because of the autocovariances that we specified to be wrong. 
Which one I choose? Nonparametric for the prof but for the majority they give more importance 
for the parametric. 

Additional definition for stationary process: partial autocorrelation function.
Autocorrelation is the function of autocorrelation of how Yt is correlated with Yj happened in the 
past. How Is Yt correlated with Yt -j. What is the new correlation with Yt-j?. We consider these 
values using the autocorrelation will be alpha1 (1), aplha2 (2) ecc. In examples 2 will be the 
secondo element, in the third will be 0.014778. So, this Is the new value. 

Capitolo 4, ARMA Models

White noise, MA(1) model, MA(q) model, MA( infinite) model, AR(1) model, AR(2) model, 
AR(p) model, ARMA(1,1) model, ARMA(p,q) model. 
Sum of ARMA processes. 

Required that we know all the gamma, so when make estimations we need to know the 
constrain of the time series. Non parametric à use gamma. Instead of gamma I will 
estimated the parameter that characterized this model and then obtain gamma. So required 
that I estimated extra things. I will reduce the large of estimation of autocovariance to low 
range of numbers. The goal for today and next 5 weeks will be to come up with models that will 
have a small number of parameter I will manage to characterized all the gamma to get the 
forecasting. 
What kind of model works for this? The ARMA model (autoregression moving average). It 
doesn’t use many parameter and making estimations is very simple. We could use a self-
contain space to characterized the values of gamma. 

White noise, this proprieties hold for the error in the whole composition. We can transform 
correlation with density…
If I have a series that is white noise ( no correlation with the past) follows the definition that we 
used before. The gamma will be 0 and the correlation will be 0 again and the dependence of 
the past will be 0 because it doesn’t depend of something in the past. 
If the process is white noise is maybe independent but needs not be. Y is covariance 
stationary. W.n(0, o^2) è white noise. We will think a model of this kind will be stationary for 
two condition:

MA(1)

Aggregating μ at different time. Coming average of μ’s today .. with μ’s yesterday. All I need to 
do is to check the two condition of white noise. The sum of all the psi squared will be 1^2 + 
teta^2 ecc. This is finite so this guarantee that the process is stationary.

The E of Yt is the E of μ (that is constant), epsilon is the new shock and teta will be 0 so μ +0 +
0 = mu. So mean it doesn’t not depend on time. 
Gamma0 is  (1 + teta^2 ) o^2
Gamma1 is  teta o^2

E( eps and eps t-1 ) is 0 because they are not correlated. If we push for longer 
autocovariances we will have 0 (if j >= 2  à if we push autocovariance more than y1).
They depend on how distant in time this point are. So this is stationary. In particular y0 is this 
quantity (slide) and gamma j with j >= 2 is 0. 

Sum for j = -inf to + inf yj = sum j = -inf to -2 y1+ y-1+ y0 +y1 + sum J= 2 inf yj. The second one 
will be 0 so teta sigma square + (1 + teta) sigma^2, so this Is like teta sigma square (like the 
other) and we have  (teta + 1 + teta^2 + teta) sigma^2 = (1+ teta) ^2 sigma^2.
So this quantity is the sum of (phi j) ^2
[FOTO]

Autocorrelation

Given autocovariances we can compute autocorrelation if correlation j>= 2 will be equal to 0. 
It’s interesting to look at the function and tell that declines to 0 to the power of j. 

The same autocorrelation structure is generate by two values of teta. Why is interesting this 
result? When we look at the data we will not know what is the data generating process. We 
don’t know the value of teta. If we have a moving average with teta
+-* = 2 we will not be ablet to distingue this model to another one just looking at the data 
because the data will be exactly the same way. Two different value of data will generate data 
exactly the same way so the same autocorrelation. If teta = teta1 nd we got teta = that is the 
invert of teta1. 
The order of teta1 is the function on the slide ecc.
Pretend that teta2 is the invert of teta1. We substitute values and then this is the 
autocorrelation that we started with. So, the autocorrelation cannot be distinguishing by one 
from each other. They give us the same number. 

Invertibility is the follow up. We can describe Yt  = phi (L) eps t.
There is phi (L ) ^-1 so I can write phi (L)^-1 Yt = epst 
So I can have (Yt-  pi1 Yt2  = eps t
Yt = pi1 Yt1+ pi2 Yt2+ .. + eps t.
This will be a linear model in wise. So, if I want to make a forecast in Yt and this model is 
invertible, I can use a linear model and also my model works as a linear model! That great, we 
can make the best estimates! 
I can give it the linear representation. This is the best way to obtain forecast. But how do I 
show it? Start with the model here and put tet to the other side so we highlight epsilon t and we 
do the same and highlight epsilon t-1. 
In n time I get eps t = sum J = 0 to n (- teta) ^j Yt -j + (- teta) ^n+1 eps t-(n+1).
Teta of power of n this quantity is equal to 0.  If n going to infinity I can write the next formula 
and I can write the model as a linear model! These guys will be the benchmark we use to do 
the benchmark. This will be a good model to make forecast and I will be able to get an easy 
formula. The catches I need teta to be < 1 in absolute value because I need that – teta ^ n+1 to 
go to 0. Because esp will explode otherwise. 
If teta is bigger that 1 the model will be observationally equivalent if I get the invert of teta. SO I 
can use the propriety to make the forecast. 

The lag operator will be more elegant way yto obtain the value. (1 + phi L) is the polimonial of 
Phi of L.

Phi(L) could be (1+ tetaL ) eps t . And the inverse will be 1 / (1+tetaL Yt). The inverse is the 
limit of geometric sum. So, apply this straight away here and we get the formula. This show 
how I derive Phi(L) and invert it. Using this polynomial will be easier when we became familiar.
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