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Instructor

 Prof. Sabrina Gaito

e sabrina.gaito@unimi.it

e Via Celoria 18

e« Zoom meeting by appointment via e-mail

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA


mailto:Sabrina.gaito@unimi.it

Objectives

The learning objective of the course is provide students with the
main concepts and methods of social network analysis.

Students will learn to manage data about network structure and
to analyze, model and visualize such data to get valuable
insights.

At the end of the course students will be able to design and carry
out large-scale social network analysis studies.
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Short Description

This course is an introduction to the concepts and methods of
social network analysis.

It provides the main theories, models and methods in social
network mining, as well as algorithms to handle large-scale
networks efficiently.

By completing the course the students will be able to understand
the basic concepts of social networks, to manage the
fundamental concepts in analysing the large-scale data that are
derived from social networks, to perform mining on large social
networks and to visualize and get conclusions from the results.
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Program

e Basic notions for networks from graph theory

* Networks models: Random model, scale-free networks, small-world networks
 Connected components

* Node centrality

* Link strength and reciprocity

e Transitivity, Triadic closure and Clustering coefficient
* Ego-networks

* Node similarity

* Node assortativity

* Dense subgraphs and Community detection

* Information diffusion

* Network visualization and basic analyses with Gephi
e Social network analysis with Python: the NetworkX library

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Schedule

It will be held on zoom and the link will be
posted before each lesson.

Please check any news on Ariel.

The recorded lesson will be made available after
the lesson.

Course timetable:
Monday: 14.45 - 16.30
Thursday: 13.00 - 14.30

DIPARTIMENTO DI INFORMATICA



Final Examination

Oral exam: questions about definitions, methods,
algorithms, concepts and calculations on the
topics covered in the course, as well as
discussions on real-data case studies.

A small project on the visualization and analysis of
a social network from publicly available datasets
(Gephi and/or Python)

UNIVERSITA DEGLI STUDI DI MILANO
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ANY QUESTIONS?



Social Network




The social side of the Web

Social Media Landscape 2019
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Statistics on social media

Vinco’s blog: vincos.it
World maps of the first and second ranked social
networks on https://vincos.it/world-map-of-
social-networks/

https://wearesocial.com
https://wearesocial.com/blog/2020/01/digital-
2020-3-8-billion-people-use-social-media
https://wearesocial.com/it/digital-2020-italia

https://blog.hootsuite.com/social-media-
statistics-for-social-media-managers/
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Sociological analysis

In 1974, Blau defined the field of sociology as follows:

... Social structures are defined by their parameters—
the criteria underlying the differentiation among people
and governing social interaction ...

The initial focus on the individual

UNIVERSITA DEGLI STUDI DI MILANO
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A network perspective

In the 1930s, a new perspective on human data was
developed: sociometry

instead of only looking at attributes of single persons or
aggregating measures of groups of persons

take into account who is connected to whom.

UNIVERSITA DEGLI STUDI DI MILANO
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Early social network analysis

In 1933 Moreno displays the first sociogram at a meeting of the
Medical Society of the state of New York

B article in NYT

B interests: effect of networks on e.g. disease propagation

MANY MISFITS REVEALED

ENOTIONS HAPPED T
DNBWGROGRAPRY| "B

ko A new science, named pzycholog-

Charts Seo.tk to Portray the. S B
PSYGhO‘OQIOal Currents of- the emotionsl currents, cross-cur-
i & rant= and under-currents of h';.mﬁh

Human Relationships. relationships in & community, was

Introduced here yesterday at tha

Preceded by studies of (pre)school children in the 1920’s

Source: The New York Times (April 3, 1933, page 17)
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Social network analysis

Wasserman-Faust:

«...Focus on relationships among social entities, and on the patterns and
implications of these relationships....

...The fundamental difference between a social network explanation and a
non-network explanation of a process is the inclusion of concepts and
information on relationships among units in a study...

...The network perspective differs in fundamental ways from standard social
and behavioral science ... Rather than focusing on attributes of autonomous
individual units, the social network perspective viewes characteristics of the
social units as arising out of structural or relational processes or focuses on
properties of the relational systems themselves...

...Relational ties among actors are primary and attributes of actors are
secondary...»

Beyond Google Insights, Facebook analytics, ...

UNIVERSITA DEGLI STUDI DI MILANO
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Social Network Analysis (SNA)

Social network Social network analysis is both an
analysis (SNA) is the approach to understanding social
process of investigating structure and a method of analysis
social structures through ~ Which can be applied to other

the use domains, such as web networks,
of networks and graph biological networks, economic,
theory [Wikipedia] networks, financial networks, ...

Complex networks theory

Network Science

UNIVERSITA DEGLI STUDI DI MILANO
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NETWORKS AT THE HEART OF COMPLEX SYSTEMS

~
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Network Science: Introduction
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Behind each complex system there is a
network, that defines the interactions
between the component.

We will never understand complex
system unless we map out and
understand the networks behind them.
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The network describing the interactions between genes, proteins, and
metabolites integrate the processes behind living streams.

The wiring diagram capturing the connections between neural cells hold the
key to our understanding of brain functions.

The sum of all professional, friendship, and family ties is the fabric of the
society.

Trade networks maintain our ability to exchange goods and services, being
responsible for the material prosperity. They also play a key role in the spread
of financial and economics crises.

Networks are at the heart of some of the most revolutionary technologies of
the 21st century, empowering everything from Google to Facebook, CISCO,
and Twitter.

At the end, networks permeate science, technology, and nature
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Despite amazing the diversity in form, size, nature, age,
and scope present in real networks, most networks
observed in nature, society, and technology are driven
by common organizing principles.

In other words once we disregard the nature of the
components and their interactions, the obtained
networks appear to be more similar than different from
each other.

NETWORK SCIENCE

UNIVERSITA DEGLI STUDI DI MILANO
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Introduction to network science

“Networks are everywhere” with Albert-LaszIl6é Barabasi
Introduction: first 4 minuted

An award-winning documentary, Connected, by Australian
flmmaker Annamaria Talas, has brought the field to our TV
screen, being broadcasted all over the world and winning
several prestigious prizes
https://www.youtube.com/watch?v=2rzxAyY7D7k

The documentary introduction on:
https.//www.youtube.com/watch?v=zK1Chb9qj3qQ

UNIVERSITA DEGLI STUDI DI MILANO
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https://www.youtube.com/watch?v=c867FlzxZ9Y
https://www.youtube.com/watch?v=zK1Cb9qj3qQ
https://www.youtube.com/watch?v=zK1Cb9qj3qQ

Why didn’t network science emerge
two hundred years ago?
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TWO FORCES HELPED THE
EMERGENCE OF NETWORK
SCIENCE




To describe the behavior of a system consisting of hundreds to
billions of interacting components, we first need a map of the
system’s wiring diagram.

In the past, we either lacked the tools to map these networks
out, or it was difficult to keep track of the huge amount of data
behind these maps.

The emergence of the Internet, offering effective and fast data
sharing methods, together with cheap digital storage,
fundamentally changed this, allows us to collect, assemble,
share, and analyze data pertaining to real networks.

UNIVERSITA DEGLI STUDI DI MILANO
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Movie Actor Network, 1998;

World Wide Web, 1999.

C elegans neural wiring diagram 1990
Citation Network, 1998

Metabolic Network, 2000;
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Network: definition

A network consists of a finite set of actors (nodes)

and the relations (links, ties, edges) defined on
them.

In network science relation ties among actors are
primary and attributes of actors are secondary..




From complex systems to networks

The choice of the proper network
representation determines our ability to use
network theory successfully.

In some cases there is a unique, unambiguous
representation.

In other cases, the representation is by no
means unique.

For example, the way we assign the links
between a group of individuals will determine
the nature of the question we can study. .
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Which network?

If you connect individuals based on their first name
(all Peters connected to each other), you will be
exploring what?

It IS a network, nevertheless.




Examples of networks

NETWORK NODES LINKS

Internet Routers Internet connections
WWW Webpages Links

Power Grid Power plants, transformers Cables

Mobile Phone Calls Subscribers Calls

Email Email addresses Emails

Science Collaboration Scientists Co-authorship
Actor Network Actors Co-acting

Citation Network Paper Citations

E. Coli Metabolism Metabolites “hemical reactions
Protein Interactions Proteins Binding interactions




Directed and undirected networks

The links of a network can be directed or undirected. Some systems have
directed links, like the WWW, whose uniform resource locators (URL) point
from one web document to the other, or phone calls, where one person calls
the other. Other systems have undirected links, like romantic ties: if I date
Janet, Janet also dates me, or like transmission lines on the power grid, on

which the electric current can flow in both directions.

NETWORK NODES LINKS )
Directed or
i ?
Internet Routers Internet connections undirected :
WWW Webpages Links

oA S - -~
LSV ES ! U

Mobile Phone Calls

Subscribers

Email Email addresses Ema

Science Collaboration Scientists Co-authorship
Actor Network Actors Co-acting

Citation Network Paper Citations

E. Coli Metabolism eta e e 5l rea
Protein Interactions Protein Binding interactions




NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

NODES

Routers

Webpages

Subscribers

Email address

Scientists
Actors
Paper
Metabolites

Proteins

=

Directed and undirected networks

LINKS

Internet connections

Links

Emails
Co-authorship
Co-acting
Citations

Binding interactions

DIRECTED
UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed

Undirected




NETWORKS AND GRAPHS




The mathematical representation of a
network is a graph

System Network  Graphs
Actors Nodes Vertices
Interactions Links Edges, Ties

The two terms are often used
iInterchangeably.

G(N,L) or G(V,E)




The mathematical representation of a network is a (graph).

A graph is an ordered pair G = (V, E') comprising a set V of vertices, with a set
E of edges, which are 2-element subsets of V (i.e., an edge is associated with a
pair of the vertices ).

A set of vertices V = {v1,v9,..., 05}

A set of edges F = {ey,e2,...,e1}

where an edge is a pair of vertices ex = (v;, v;),
called (end-points)




Networks and Graphs

We will use the following notation to denote both the network and the rela-
tive graph: G = (N, L) where N = {ny,ns,...,ny} is the set of N nodes of the
network and L = {ly,ls,...,l;} is the set of L link of the network.

Network size: cardinality of L, number of links of the network.
Network order: cardinality of V', number of nodes of the networks.

Note: network size is often used for the number of nodes, too.




Undirected graph

In an undirected graph, a link is an unordered pair of vertices (n;,n;).
Note that (n;,n;) and (n;,n;) are the same edge.

Two nodes n; e n; are adjacent if (n;,n;) exists in L.

Two links are consecutive if they share an end-point.




Directed graph or digraph

Edges can have directions. A directed edge is sometimes called an arc.

In a directed graph a relation from node n; to node n;, is an ordered pair of
nodes I = (n;,n;).

The two links (n;,n;) and (n;,n;) are different.

A directed graph is a graph whose link are directed.

n; is called origin, sender
n; 1s called terminus, receiver




Directed graph

In directed graph the arc direction has to be taken into account
n; is adjacent to n; if there is (n;,n,) € L.
n; adjacent from n; if there is (n;,n;) € L.

Consecutive links:

yes No




Graph drawing

Graphs are represented visually by drawing a dot or
circle for every vertex, and drawing an arc between
two vertices if they are connected by an edge. If the
graph is directed, the direction is indicated by drawing
an arrow.

A graph drawing should not be confused with the
graph itself (the abstract, non-visual structure) as
there are several ways to structure the graph
drawing.




A is friend of B, D and F,
B is friend of C,
C is friend of D e E is friend of F.
Network: G = (N, L)
where
N={AB,...,F}
L ={(A, B), (A, D),(A, F),(B,C),(C, D), (C, E), (E, F)}.




A invites B, D and F,
B invites C,
C invites D and E invites F.
Network: G = (N, L)
where
N={AB,...,F}
L={(A,B),(A,D), (A F),(B,C),(C,D),(C,E),(E, F)}.




Networks and graphs

(a)

(b)

()

(d)
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Figure 2.2
Different Networks, Same Graph

The figure shows a small subset of (a) the In-
ternet, where routers (specialized computers)
are connected to each other; (b) the Hollywood
actor network, where two actors are con-
nected if they played in the same movie; (c)
a protein-protein interaction network, where
two proteins are connected if there is exper-
imental evidence that they can bind to each
other in the cell. While the nature of the nodes
and the links differs, these networks have the

same graph representation, consisting of N =
4 nodes and L = 4 links, shown in (d).

N={1,2,3,4}
1={(1,2),(1,3),(2,3),(2,4)}




Simple graph

A loop is and edge between the same node (n;, n;).

A simple graph is an undirected graph containing no graph loops or multiple
edges

Multigraph

Simple graph




Weighted networks

* A weighted graph is one where edges are
associated with weights
— For example, a graph could represent a map

where nodes are cities and edges are routes
between them

* The weight associated with each edge could represent
the distance between these cities

G(V, E, W)

jw,we R
|0, Thereis no edge between iand j

J



Networks and graphs

Complex system

l

Network

l

Graph

l

Wiring diagram




GRAPH MATHEMATICAL
REPRESENTATION




Graph mathematical representations

* Edge List
* Adjacency List
* Adjacency Matrix

Note: we are not speaking about efficient data structure




Edge List

e List of nodes and links

DSOS (on2
ogo o




Adjacency list

* For each node, the list of nodes which is

connected to

Connected To

(%)

0U1,03,04
02,04
0U2,03,05,0s
U4

U4




Adjacency matrix

(

1, if there is a link between nodes v; and v,

_ 0, otherwise

Vi Vo V3 Vg Vs Vg

v,| 0[1[0]o o]0
v [1]0[1]1]0]o
v, | 0|1 [0 [1]0]0
vl o[1[1]0]1]1
vs| 0[O0 [0 |1]0]0
vs | 0|0 |0 1|00




Q (

* The adjacency matrix for directed graphs is
not symmetric (A = AT)

— (Aij # Aji)

 The adjacency matrix for undirected graphs is
symmetric (A = A")




Directed graph

_ O = O

.

_ o O

( 1, if there is a link from node v, to node v,

0, otherwise

0 1 0O 0 0 O
0 1 |1 0 0 1
0 1 Aij 0 0 0 1
1 0 1 0 0 O
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Simple networks
Weighted, (un)directed network

Affiliation networks
Bipartite networks



Networks

e We will consider networks which have:
— No loops
— No multiple edges

 \We will consider:
— Directed and undirected networks
— Weighted and unweighted networks

UNIVERSITA DEGLI STUDI DI MILANO
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A special case: Affiliation networks

They have two types of nodes:
* Actors
* Groups A B C D

Representation by bipartite
(two-mode) networks

Links connect actors to groups

* No links between actors
* No links between groups

Actors are connected via co-
membership of groups

The incidence matrix is a rectangular matrix gxn

B, =

{1 if node j belongs to group i}
0 otherwise

JNIVERSITA DEGLI STUDI DI MILANO
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One-mode projections

Projection onto groups A G B
Nodes are groups, two nodes are
connected by a link if they share an actor
D

A B C D a C

Nodes sharing a group

form a clique
1 2 3 4 5 6 7 \

Projection onto actors 1 ‘ 6
Nodes are actors, two actors are ‘
connected if they share a group ‘ ‘

UNIVERSITA DEGLI STUDI DI MILANO
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One-mode weighted projection
A B C D

Information loss:
how many groups two nodes share
Projection weighted:give each link a
weight equal to the number of
common groups
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Human disease network

Human Disease Network

DISEASOME

disease phenome

Ataxia-telangiectasia

disease genome

Disease Gene Network
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Spastic ax‘:araplegia
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BRIP1

Barabasi’s book: 2.7
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Tripartite networks

(a) RECIPES INGREDIENTS COMPOUNDS
FLOUR PHENETHYL ALCOHOL
. L-ASPARTIC ACID
BUTYRALDEHYDE
CHICKEN CHICKEN ¢-DECANOIC ACID
MASALA v M-CRESOL
WINE HYDROGEN SULFIDE

DELTA-TETRACALACTONE
= ACETOIN

0-CRESOL

3-METHYL-2-BUTANOL

DECANOIC ACID

GLAZED PYRROLIDINE
CARROTS STYRENE
o PROPENYL
PROPYL DISULFIDE
GERANIOL

CHIVE

Barabasi’s book: 2.7
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Tripartite networks
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Degree and Density

Consider a network G(N,L) where we know only:
N: number of nodes
L: number of links

[No information on where the links are]

What can we measure?
Local property

Global property
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Undirected Networks



Degree

Node degree: Number of links connected to it

We will denote the degree of node i by d, or k;
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Degree
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For an undirected network of N
nodes the degree can be written
in terms of the adjacency matrix
as:

0O 1 0 1)
|1 0 0 1
A=lo 0 0 1
1 1 1 0




Degree

Node degree: Number of links of a node

Do we know anything about node degree from N and L?

Average degree
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Average Degree

Average degree: average number of links per node
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Average Degree

Each link in an undirected network has two nodes as end-points.
If there are L links then there are 2L end-points of links.
But the number of end-points is also equal to the sum of the
degrees of all nodes. N
N > di
- _i=1

Combining the two :

_ 2L
<d>= 5

Is it a local or a global property?

UNIVERSITA DEGLI STUDI DI MILANO
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Average degree

N
> d; N
_ 1=1 dZIQL
<d>= N q,;
2L
<d>= %

A local property mediated on the
global network.
A function of N and L only.
No need to know where the links
are in the networks.

UNIVERSITA DEGLI STUDI DI MILANO
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Density (connectance)

Average degree:
a local property mediated on the global network

What about a global property?

Does the network have few/many links given the number of

nodes? The density is related to the total number of links built
by the nodes

How to define the density of the network?

UNIVERSITA DEGLI STUDI DI MILANO
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Density: definition

The density of a network is the fraction of all
possible links that are actually present.

The density of a network is the ratio of the
number of links L to the number of possible
links in a network with N nodes

and is given by

?

HINT: compute the number of links in a
complete graph of N nodes. Start by
thinking node per node
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Density

Numerator: L

Denominator:
the maximum possible number number of links
In a network of N nodes is:

(N) _ N(N-1)
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Density

The density of a network is the ratio of the number of links L to
the number of possible links in a network with N nodes
given by

L 2L
A = N(N—1)/2 — N(N-1)

UNIVERSITA DEGLI STUDI DI MILANO
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Density and Average Degree

A — L _ 2L
N(N—-1)/2 N(N-1)
< d>—= 2L
N
The average degree Is The density is inversely
inversely proportional proportional to the
to the number of nodes square of the number

of nodes
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Density and Average Degree

The degree is related to the number of links of a single
node (local)

The density is related to the number of links of the whole
network (global)

Which is the relation between
the density and the average degree?
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Density and Average Degree
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Directed Networks



21

Degree, in-degree and out-degree

In-degree: number of in-going links of a node (J,i)

Out-degree: number of out-going links of a node (i,))

Out-degree: expansiveness 5 /]
In-degree: popularity

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



24

3 1, if there is an edge from jto |

5

n
. Outdegrzclee = Z Aij
=1

A=

The outdegree of node 3 is 2, sum of the
elements of the third coloumn n

2 A
i-1
Indegree = Zn: A
j=1

The indegree of node 3 is 1, sum of the
elements of the third row n

UNIVERSITA DEGLI STUDI DI MILANO
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_ 0O, otherwise

From5to 1l
|
0 0 0.0 @
0 O 51:0 1
0 1 io:o 0
0O 1 11'0 1
_0 0 0,1 0
"0 0 0 0 1)
O 0 1 0 1
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Indegree and outdegree

Write the definition of average in- and out- degree

Are they related?

UNIVERSITA DEGLI STUDI DI MILANO
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Indegree and outdegree

Jz\f: .
dim
< d’bn >: =1 ’
N
g’: ¢
do™
< dout > — =1
N

Are they related?

The average in-degree Is equal to the average
out-degree

UNIVERSITA DEGLI STUDI DI MILANO
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Directed Networks

Compute the average in-degree and out-degree
as a function of the number of nodes N and the
number of links L

5 N N
: L= dn =y d
5 < dM >=< do >= £

UNIVERSITA DEGLI STUDI DI MILANO
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Density: definition

The density of a network is the fraction of all
possible links that are actually present.

The density of a network is the ratio of the
number of links L to the number of possible
links in a network with N nodes
and is given by

?
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3
Undirected network

<d>=Z

Ly = N(]\;—l)

A= N(Nli1)/2 — N(]2VL—1)
A= 5%

UNIVERSITA DEGLI STUDI DI MILANO

4

3
Directed network

<" >=< @ >= £
Lpar = N(N —1)

. L
A_N(N—l)

B <d7,'n,> B <dout>
A= N-1 — N-1
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Real networks are sparse
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Real networks are sparse

L<< Lmax
or
<d> <<N-1.

Compute the average degree and the density

Undirected network

Internet

Mobile phone calls

e-mail

Actor network

protein network

Facebook2011

Twitter2009

Youtube
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1.92E+05

3.66E+04

5.72E+04

7.02E+05

2018

7.21E+08

4.16E+07

1.10E+06

6.09E+05

9.18E+04

1.04E+05

2.94E+07

2930

6.90E+09

1.4E+09

2.90E+06



Metcalfe’s law: the Internet boom of 2000

| Two fundamental
/.~ Cost=N problems with Metcalfe's
/ \ law:
Critical Mass Crossover - VWhile all links are
possible, in real networks
Value=N’ not all links are present.
Devices Indeed, most real
networks are sparse,
which means that only a
very small fraction of the
links are present.

$

Dollars

Value: proportional to the
sqguare of the number of its

consumers .
. - Not all links are of equal
Costs would grow only linearly. value

== N
2 2
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Graph densification

«...Most of real networks densify over time, with the
number of edges growing super-linearly in the
number of nodes...»

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph
evolution: Densification and shrinking diameters. ACM Trans. Knowl.
Discov. Data 1, 1, Article 2 (March 2007).

DOI: https://doi.org/10.1145/1217299.1217301
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Social Network
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Network Models
Random networks

Degree distribution in random
networks



Generative network models

When we analyse or mine a network we measure the
structure of the network with mathematical, statistical
and computational methods for making sense of the
data we get from our measurements.

This is a data-driven approach.

Why do we need network models?
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1.

Network models

If we know a network has some particular property,

what effects will that have on the overall behavior
of the system?

To get a feel for these effects we build
mathematical models; i.e. mathematical models
of networks. The properties of these networks can
be calculated analytically, or at least numerically.
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Network models

2. Alarge part of understanding what properties
measured in a network are interesting depends on
having an appropriate reference-point by which to
distinguish interesting from:non-interesting.

Random network models-represent the
conventional reference point (null model).

Compare the network with the observed property
to networks without it by create artificial
networks with and without that property and
compare them.
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Network Models

3. Network models allow us to identifyingthe
mechanism of the system that produces an
empirically observed pattern.

That allows us to better understand and predict
networks and to immediately understand the
nature of a new network when we see that pattern
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Network Models

A network (or grap
model of networ
parameters are fixec

n) model is a mathematical
ks in which some specific

, but the network is random

in all the other respects.

The aim is to build models that reproduce some

or all properties

UNIVERSITA DEGLI STUDI DI MILANO

of real-world networks.
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Random networks

The Erdos-Renyi network model



Assumption

From a modeling perspective a network is a relatively simple object,

consisting of only nodes and links.
The real challenge, however, is to decide where to place the links

between the nodes so that we reproduce a system.

In this respect the philosophy behind-a completely random network
is simple: we assume that this.goal is best achieved by placing

the links randomly between the nodes.

Links are created randomly

UNIVERSITA DEGLI STUDI DI MILANO
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Random networks: models

Two definitions of a random network:

G(N, L) Model
N labeled nodes are connected with L randomly placed links.
G(N, p) Model
Each pair of N labeled nodes is connected with probability p.

G(N, L) model fixes the total number of links L

G(N, p) model fixes the probability p that two nodes are
connected

Which one?
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Random networks: models

G(N, L) Model
N labeled nodes are connected with L randomly placed links.
G(N, p) Model
Each pair of N labeled nodes is connected with probability p.

Compute.the average degree

G(N, L) model
the average degree of a node is simply <d> = 2L/N
G(N,p) model?
Seems to be more complicated but ...

UNIVERSITA DEGLI STUDI DI MILANO
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Random networks: models

While in the G(N, L) model the average degree of a node is
simply <d> = 2L/N, other network characteristics are easier to
calculate in the G(N, p)

Asymptotically the two models are equivalent

Random network, Erdos-Renyi model: G(N,p)

UNIVERSITA DEGLI STUDI DI MILANO
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Random networks

A random network consists of N nodes where each node pair is
connected with probability p.

To construct a random network we follow these steps:

1) Start with N isolated nodes.

2) Select a node pair amongthe N(N-1)/2 for undirected networks
or N(N-1) directed networks and generate a random number r
between 0 and 1.

If r<=p, connect the selected node pair with a link, otherwise leave
them disconnected.

3) Repeat step (2) for each of the node pairs.
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Erdos - Renyi model

N=12

O K O
°© o o A o
o O o O
L=8 =10 L=7
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Erdos - Renyi model

p=0.03
N=100
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Erdos-Renyi model: L

P(L): the probability to have exactly L links in a network.of N nodes and

probability p:

P(L)

2

L)

The maximum number of links
in a network of N nodes.

pr(L=p) 2

robability that L of the attempts to
connect all potential pairs have resulted
in a link

N(N-D)_,

Number-of different ways we can choose
L links among all potential links.

UNIVERSITA DEGLI STUDI DI MILANO
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Binomial distribution...



Erdos-Renyi model: L

P(L): the probability to have a network of exactly L links

[N] N(N-D) |
P(L)=]{2)|p"(-p) 2
L

*The average number of links <L> in a.random graph

N(N-)
<L>z é LP(L):pN(N'l) (k) = zf? p(N —1).
L=0
*The variance
N(N -1
s =plL-p) (2 )

UNIVERSITA DEGLI STUDI DI MILANO
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How to choose N and p
for comparison with the network
under study

Real network: N,L

Random network: N,p
N as the real network




How to choose N and p
for comparison with a real network

Real network: N,L
Random network: N,p
N as the real network

0 such that
<L . niom> IN the random network is equal to the
number of links in‘the real network
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How to choose N and p
for comparison with a real network

Hint:

A = N(Nlil)/z - N(J2VL—1) -

L=BNEN - 1)/2

<L>

N(N=1)




How to choose N and p
for comparison with a real network

Real network: N,L
Random network: N,p
N as the real network

0 such that
<L . niom> IN the random network is equal to the
number of links. in‘'the random network

UNIVERSITA DEGLI STUDI DI MILANO
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An ensemble of networks

The random network model is not defined in terms of a single

randomly generated network, but as an enesemble of
networks.

When one talks about the properties of random networks, one
tipically means the average properties of the ensemble.

Some properties can be calculated analitically (as the average
number of links), others generating an ensemble of networks
with the same parameters and computing the average of the
property.on them.
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Random networks

Random networks are a very useful model to
compare with the real-world-networks behavior.

When we study a phenomenon at the real network,
we can use a random model to realize if the
phenomenon carries information or if it is random.
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DEGREE DISTRIBUTION



Random networks: degree distribution

Probability that a randomly
selected node has degree k

P(k) = N 1
k
probability of
<k> Select k / missing N-1-k

nodes from N-1 probability of links
K having k links

(N -1)-k

P(k)

<k>= p(N-1) st = p(L- PN -1

s, {1—p 1 }"ZN 1
<k> | p (N-D] (N-2"

As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.

JNIVERSITA DEGLI STUDI DI MILANO
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Poisson distribution

P(k) =£ ) ]pk(l— p)" <k>=p(N-1)

For large N and small k,
the degree distribution can be approximated by the Poisson distribution:

< k >K

- - —<k>
P(k)=¢e "

That’siwhy it is also called Poisson random model
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Random networks: degree distribution

(1/\ —
<k>=50 0.1 p k =

« r 4

Poisson =-

Binomial -
| ol N=10% A

N=10° 0
N=10'0O
N=10°V

0.025

UNIVERSITA DEGLI STUDI DI MILANO
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k!

~<k>

e
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Random networks: degree distribution

Exact Result Large N limit
-binomial distribution- -Poisson distribution-
I I 1 || 1 I ||
0.14 ¢ -
Binomial distribution Poisson distribution
E 012F  _ (N ;1>p"(1—- p)N-1-k w=c® 1 It does not
E 01l i depend on N
S m Peak at: /—\ " Peak at:
o ) 0-08 - I\, _ k . \r S .
1 = (k) =p(N -1 k= (k)
0o
z 0.06  Width: Width (dispersion): =
8 ok = p(L<p)(N - 1) >\ o= (k)
S 0.04
o
0.02 F
0
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Random networks: degree distribution

How big the differences are between the node degrees.in a random
networks?

Can high-degree nodes coexist with.small-degree nodes?

L ) 1 1 1 L 1
0.14 f
Binomial distribution Poisson distribution
i -~ N—l iy ;1 A -
L m=(", (1 -pN* Pk:C(k)(_.z
k k!
01}
0.08 Peak at: /-\ : ~ Peak‘at;
: k=(k)=p(N-1) k= (k)
0.06 = Width: Width (dispersion): =
ok =p(1-p)(N - 1) ok = (k)2
0.04 |
0.02
0 1
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Random networks: degree distribution

How big the differences are between the node degrees.in a random

networks?

Can high-degree nodes coexist with.small-degree nodes?

0.14

0.12

01p

0.08

0.06

0.04

0.02

Example:

Binomial distribution Poisson distribution

= (Y e w—c0® % 1-Sociologists estimate that a typical

Kl

Peak at: /-\ K pedkat; ,per.sc?n knOWS ab9Ut 1000 .
SR =) & 1 individuals on a first-name basis:
Width:

Width (dispersion): = _
akl(k)ls;g ° <k>—1000
| Human society: N=10°

ok =p(1-p)(N -1)

Which is the number of friend

of a typical individual?
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Random networks: degree distribution

How big the differences are between the node degrees in\a random
networks?
Can high-degree nodes coexist with small-degree nodes?

Sociologists estimate that a typical person knows about 1000 individuals

on a first-name basis: <k>=1000

Human society: N=10°

0.14

012 |

01p

0.08

0.06

0.04

Binomial distribution Poisson distribution
N -1 _o (W

Pk = ( k )Pk(l -p) N1k pe=eR (L")

Peak at: /\ “\Peak at:

k= (k) =p(N -1) k= (k)
Width:
ok =p(1-p)(N —4)

Width (dispersion): =
ax = (k)2

UNIVERSITA DEGLI STUDI DI MILANO
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<k>t0, 0, = <k>"?
0, =31.62.

The number of friends a typical
individual has is between 968 and
1032, a narrow window




Random networks: degree distribution

We define k., such that in a network of N nodes we have at most

one node with degree higher than k__,

N[I—P(kmax)] ~1.

k k.t
_l_e® &0 =0 (k)™
- max Z k' Z + |)| !

k=k 4 ! (max

.-aﬁkgn aki" <k>=1000, N=10°
P(k”"”):ekaW / K =816
k=0 ™+ P / min—

k. =1185

UNIVERSITA DEGLI STUDI DI MILANO
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Random networks: degree distribution

P == <K

—>The most connected individual has degree k.. ~1,185
—>The least connected individual has degree k... ~ 816
—>The number of friends a typical individual has.is between 968 and 1032

The probability to find an individual with degree k>2,000 is 10-?’. Hence the
chance of finding an individual with 2,000 acquaintances is so tiny that such
nodes are virtually inexistent in‘asrandom society.

—a random society would consist of mainly average individuals, with
everyone with roughly the same number of friends.

-1t would lackoutliers, individuals that are either highly popular or recluse,
no hubs

UNIVERSITA DEGLI STUDI DI MILANO
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WORLD WIDE WEB

Nodes: WWW documents
Links: URL links 1998

Hawoong Jeong (Barabasi lab) maps out

N: around 10712 the largest
J nd.edu:

network, even larger than

human brain (N*11)
300000.documents

crawler: collects all URL’s 1.5'milion links
found in a document and
follows them recursively

http://barabasi.com/networksciencebook/resources/chapter4.html

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).






WORLD WIDE WEB

<k,>= <k,,>=4.60
o(k)=2.14

P(k>10)~ 103
P(k>20)~ 108

Ptk)

pajoadxy

P(k=100)~ 10%

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).



WORLD WIDE WEB

pajoadx3

-~
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kin - kout - 4.60 - 4
I 1
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B =N R
N you)
102 | “ 4 102 | i .
e ] e
| @
4 | P - -4 | PN A
1o b\ - = .
8 I R s - i 2 /
= i i /n 1 __j 3 i Yout 1
Y Q,
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kin kout

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).



FACING REALITY: Degree distribution of real networks
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80 percent of money is earned by only 20
percent of the population

Low
Performers
High 20 Percent
Performers
80 Percent

Vilfredo Federico Damaso Pareto (1848 — 1923), Italian economist, political scientist and

philosopher, who had important contributions to our understanding of income distribution and to the analysis of
individuals choices. A number of fundamental principles are named after him, like Pareto efficiency, Pareto
distribution (another name for a power-law distribution), the Pareto principle (or 80/20 law).




Vilfredo Pareto, a 19th century economist, noticed that in Italy a few wealthy
individuals earned most of the money, while the majority of the population
earned rather small amounts. He connected this disparity to the observation
that incomes follow a power law, representing the first known report of a power
law distribution [3]. His finding entered the popular-literature as the 80/20 rule:
roughly 80 percent of money is earned by only*20 percent of the population.
The 80/20 emerges in many areas, like management, stating that 80 percent
of profits are produced by only 20 percentiof the employees or that 80 percent
of decisions are made during 20 percent of meeting time. They are present in
networks as well: 80 percent of links on the Web point to only 15 percent of
webpages; 80 percent of citations go to only 38 percent of scientists; 80
percent of links in Haollywood are connected to 30 percent of actors [4].
Typically all quantities obeying the 80/20 rule follow a power law distribution.
During the 2009 economic crisis power laws have gained a new meaning: the
Occupy Wall Street Movement highlighted the fact that in the US 1% of the
population-earns a disproportionate 15% of the total US income. This 1%
effect, a signature of a profound income disparity, is again a natural
consequence of the power law nature of the income distribution.



Discrete vs. Continuum formalism

Discrete Formalism Continuum Formalism
As node degrees are always positive  In analytical calculationsit isoften convenient to
integers, the discrete formalism captures the = assume that the degrees can take up any
probability that a node has exactly k links:  positive real value:

= Ck7. (k) =Ck™""
2=l Jp(k)dk=1
k=1
kmin
00 1 1 C = 1 =(y - l)ky—l
CZk_y=1 C = = = R BCS) = min
= Y W [ k-rdk
k=1 >
k—]/ min 1
Pr= k)= — Dk k7.
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ky
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The difference between a power law and an exponential distribution
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Scale-free networks

A scale-free network
IS a network
whose degree distribution
follows a power law.



The difference between a power law and an exponential distribution: hubs

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k~100 is

*About  p;p0 =~ 107° in a Poisson distribution
«About P10 = 107 p, follows a power law.
«Consequently, if the WWW (10712 nodes) were to be a random network,
according to the Poisson prediction we would expect 1018 k>100 degree

nodes, or none.

*For a power law degree distribution, we expect about 1078
k>100 degree nodes



The size of the biggest hub

All real networks are finite = let us explore its consequences.
- We have an expected maximum degree, K.,

Estimating k

maX

¥ 1 Why: the probability to have a node larger than k.., should not
0 P(k)dk» N exceed the prob. to have one node, i.e. 1/N fraction of all
Kmax nodes

o o]

— -1 T - — (g _1) -1 —g+17|* kmgi_nl
P(k)dk= (g -Dk? | k¥dk=—2—=-k% | k™? = ~
kn_[lx ( ) (g ) mkr;[x (_g +1) Inl: :Ikmax kg—l

1

kmax = kminl\lg_1



The size of the largest hub

To illustrate the difference in the maximum
degree of an exponential and a scale-free

network let us return to the WWW sample 10" -

of Image 4.1, consisting of N = 3 X 107 L
10° nodes. 10% ¢

As K.i» = 1, if the degree distribution were 107 :
to follow an exponential, (4.17) predicts k__ :

X I

that the maximum degree should be k., =105 -

13 10% F
In a scale-free network of similar size 100 L
and y = 2.1, (4.18) predicts k., = 95,000, o
a remarkable difference. 100k
Note that the largest in-degree of the 100 ©

WWW map of Image 4.1 is 10,721, which
IS comparable to k.., predicted by a scale-
free network.

This reinfarces our conclusion that in a
random network hubs are effectivelly
forbidden, while in scale-free networks
they are naturally present.

SCALE-FREE
(N-1) k ax~N(:)

m

RANDOM NETWORK
k_~InN
max


http://networksciencebook.com/#figure-4-1
http://networksciencebook.com/#figure-4-1
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The meaning of scale-free



Scale-free networks: Definition

Definition:

Networks with a power law tail in their degree\distribution are called
‘scale-free networks’

Where does the name come from?

Slides after Dante R. Chialvo



CRITICAL PHENOMENA

« Correlation length diverges at the critical point: the
whole system is correlated!

« Scale invariance: there iIsno-characteristic scale for
the fluctuation (scale-free behavior).

« Universality;exponents are independent of the
system’s details.



DIVERGENCE OF THE HIGHER MOMENTS
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The meaning of scale-free

k

Random Network s
Randomly chosen node: k= (k) * (k)
Scale: <k)

Scale-Free Network
Randomly chosen node: k = (k) + oo
Scale:none



The meaning of scale-free
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INTERNET BACKBONE

Nodes: computers, routers
Links: physical lines

10000 >, T ‘E

‘routes.out® e«
exp(8.52124) " x ** ( -2.48626) ]

Domain 3
1000

100

Host

Domain 1

& Router 10
| | | | LAN ﬁ:} Domain

(Faloutsos, Faloutsos and Faloutsos, 1999)



Network Science: Scale-Free Property



SCIENCE CITATION INDEX

Nodes: papers A\
Links: citations \? 25
N YA
H.E. Stanley
1736 PRL papers (1988) |~ ' [ 444444144 AARARY
SRS R
i 1234 - - - - .578
"‘wlﬂﬂ—
3 P(K) k1
: 0F (y=3)
h 1 B C R (O U . S0 ¢
X

(S. Redner, 1998)



SCIENCE COAUTHORSHIP

Nodes: scientist (authors)
Links: joint publication
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(Newman, 2000, Barabasi et al 2001)
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ONLINE COMMUNITIES

N.odes: Onllr_le user Pussokram.com online. community;
Links: email contact 512 days, 25,000 users.
h L I I oegreel- 1 h ¢ %y I degr'eel {frierms]ln 1
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o 1 ==
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Ebel, Mielsch, Bornholdtz, PRE 2002. Holme, Edling, Liljeros, 2002.



ONLINE COMMUNITIES

Twitter: Facebook
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Brian Karrer, Lars Backstrom, Cameron Marlowm 2011



METABOLIC NETWORK
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Organisms from all three Pi.(k) =k
domains of life are scale-free! P (k)~k™>?

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)



TOPOLOGY OF THE PROTEIN NETWORK

Nodes: proteins _ o
Links: physical interactions-binding

0 : —
B 10T el (a) 7
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P(K) = (K-+Ky) 7 exp(—-)
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H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)



HUMAN INGTERACTION NETWORK

- . 2,800 Y2H interactions
: [ 4.100 binary LC interactions
(HPRD, MINT, BIND,\DIP, MIPS)

HQ-Y2H

Rual et al. Nature 2005; Stelze et al. Cell 2005



ACTOR NETWORK

Nodes: actors
Links: cast jointly

Days of Thunder (1990)
Far and Away (1992)
Eyes Wide Shut (1999)

107

N = 212,250 actors
(k) = 28.78 o
P(K) ~k-y o
v=2.3 10°
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TIMELINE: SCALE-FREE NETW ORES
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Not all networks are scale-free

*Networks appearing in material
science, like the network describing the
bonds between the atoms in crystalline
or amorphous materials, where each
node has exactly the same degree.

*The neural network of the C.elegans
worm.

*The power grid, consisting of
generators and switches connected by
transmission lines




ADVANCED TOPICS 4.B

PLOTTING POWER LAWS



LINEAR SCALE
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Random network model

First drawback:

The random network model is characterized by a Poisson degree
distribution, in contrast to power-law distribution as seen in real
networks.

In a random networks all vertices are alike, while real networks are
characterized by a.small number of vertices with very large degree
while most vertices maintain a very low degree.



Credits

Albert-Laszl6 Barabasi
Network Science
Chapter 4.1 —4.5,4.11, 4.12, 4.13
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Facebook

 Ugander, Johan & Karrer, Brian & Backstrom, Lars & Marlow,
Cameron. (2011). The Anatomy of the Facebook Social Graph.
arXiv preprint. 1111.4503.

— Degree distribution
Pag 3, Figure 1

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Twitter

e Seth A. Myers, Aneesh Sharma, Pankaj Gupta; and Jimmy Lin.
2014. Information network or social network?: the structure
of the twitter follow graph. In Proceedings of the 23rd
International Conference on World' Wide Web (WWW '14
Companion). ACM, New York, NY, USA, 493-498. DOI:
https://doi.org/10.1145/2567948.2576939

- Degree distribution
Chapter 3.1, Figure 1, Table 1

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA


https://doi.org/10.1145/2567948.2576939

Web

* Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar
Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew
Tomkins, and Janet Wiener. 2000. Graph structure in the
Web. Comput. Netw. 33, 1-6 (June 2000), 309-320.
DOI=http://dx.doi.org/10.1016/51389-1286(00)00083-9

— Degree distribution
Chapter 2.2.1, Figure 1-4

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Mobile communication networks

Structure and tie strengths in mobile communication networks,
J. Onnela, J. Saramaki, J. Hyvonen, G. Szabd, D. Lazer, K. Kaski, J. Kertész, A.
-L. Barabasi

Proceedings of the National Academy of Sciences May
2007, 104 (18) 7332- 7336; DOI: 10.1073/pnas.0610245104

- Degree distribution: Figure 1a

Calling, texting, and moving: multidimensional interactions of mobile
phone users

Matteo Zignani, Christian Quadri, Sabrina Gaito & Gian Paolo Rossi
Computational Social Networks volume 2, Article number: 13 (2015)

- Degree distribution: Figure 5

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA
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Hubs represent the most striking difference between a random and a
scale-free network. Their emergence in many real systems raises
several fundamental questions:

*Why does the random network model of Erdés and Rényi fail to
reproduce the hubs and the power laws observed in many real
networks?

* Why do so different systems as the WWW or the cell converge to a
similar scale-free architecture? (Different type of nodes, links, history
and. purpose)



To understand why so different systems
converge to a similar architecture we need to
first uncover the mechanism responsible for the
emergence of the scale-free property

Given the major differences between the
systems that display the scale-free property,
the explanation must be simple and
fundamental.



Why are hubs and power laws absent in
random networks?

There are two hidden assumptions of the
Erdios-Renyi model, that are violated in real
networks
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Growth and preferential attachment



BA MODEL: Growth
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BA MODEL.: Preferential attachment

ER model: links are added randomly to the network

New nodes prefer to connect to the more connected nodes

Rich-gets-richer phenomenon

Barabasi & Albert, Science 286, 509 (1999)



BA MODEL.: Preferential attachment

We are familiar with only a tiny fraction of the trillion or
more documents available on the WWW. The nodes we
know are not entirely random: we all heard about Google
and Facebook, but we rarely encounter the billions of
less-prominent nodes that populate the Web. As our
knowledge is biased towards the more connected nodes,
we are more likely to link to a hub than to a node with only®
few links.

NUMBER OF HOSTS

With more than a million scientific papers published each
year, no scientist can attempt to read them all. The more
cited is a paper, the:more likely that we will notice it.
Therefore, our.citations are biased towards the more cited,
publications.

The more movies an actor has played in, the higher are
the.chances that he/she will be considered for a new role

NUMBER OF PAPERS

NUMBER OF MOVIES

Barabasi & Albert, Science 286, 509 (1999)
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Section 2: Growth and Preferential Sttachment

The random network model differs from real networks in two important
characteristics:

Growth: While the random network model assumes that the number of
nodes is fixed (time invariant), real networks are the result of a growth
process that continuously increases.

Preferential Attachment: While nodes in random networks randomly choose
their interaction partner,.in.real networks new nodes prefer to link to the more
connected nodes:

Barabasi & Albert, Science 286, 509 (1999)
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The Barabasi-Albert model



Origin of SF networks: Growth and preferential attachment

(1) Networks continuously expand by the
addition of new nodes

WWW : addition of new documents

(2) New nodes prefer to link to highly
connected nodes.

WWW : linking to well known sites

Barabasi & Albert, Science 286, 509 (1999)

GROWTH:

add a new node at each time step
with k links that connect the new node
to k nodes-already in the network

PREFERENTIAL ATTACHMENT:

the probability that a node connects to a node
with Kk links is proportional to k.

n(ki):ki/ijj

Preferential attachment is a probabilistic
mechanism: A new node is free to connect
to any node in the network. However, if a
new node has a choice between a degree-
two and a degree-four node, it is twice as
likely that it connects to the degree-four
node.
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It shows nine subsequent steps of the Barabasi-Albert model.

Empty circles: newly added nodes deciding where to connect their two links using
preferential attachment.

Afew nodes gradually turn into hubs




Barabasi-Albert model

The definition of the Barabasi-Albert model leaves many mathematical
details open:

It does not specify the precise initial configuration of the first m, nodes.

It does not specify whether the k links assigned to a new node are added
one by one, or simultaneously.- This leads to potential mathematical conflicts:

If the links are truly independent, they could connect to the same node |,
resulting in multi-links and-loops.

The first mathematical model was introduced by Bollobas et al.:

Linearized chord diagram model



Time in networks

As we compare the predictions of the network models with real data, we have to decide how to
measure time in networks. Real networks evolve over rather different time scales:

World Wide Web

The first webpage was created in 1991. Given its trillion_documents, the WWW added a node each
millisecond (103 sec)

Cell

The cell is the result of 4 billion years of evolution. With roughly 20,000 genes in a human cell, on
average the cellular network added a node every 200,000 years (~10'3 sec).

Given these enormous time-scale differences, it is impossible to use real time to compare the dynamics
of different networks. Therefore, in network theory we use event time, advancing our time-step by one
each time when there'is a change in the network topology.

For example, in the Barabasi-Albert model the addition of each new node corresponds to a new time
step, hence t=N.

In other.models time is also advanced by the arrival of a new link or the deletion of a node. If needed,
we can establish a direct mapping between event time and the physical time.
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Do we need both growth and preferential attachment?

YEP

The absens of preferential attachment leads to a growing
network with a stationary but exponential degree distribution

The absense of growth leads to the loss of stationarity,
forcing the network to converge to a complete graph



The BA model is only a minimal model.

® Google K}

Founded six years after birth of the World Wide Web, Google was a latecomer to
search. By the late 1990s Alta Vista and Inktomi, two search engines with an
early start, have been dominating the search market. Yet Google, the third
mover, soon-not only became the leading search engine, but acquired links at
such anincredible rate that by 2000 became the most connected node of the
Web'as well [1]. But its status didn’t last: in 2011 Facebook, with an even later
start, took over as the Web’s biggest hub.
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Connectivity

How nodes are connected via a sequence of links in a network

Two nodes are adjacent if they are connected via a link. O—O
Two links are incident, if they share an end-point : :

An edge in a graph can be traversed when one starts at
one of its end-nodes, moves along the edge, and stops
at its other end-node.
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Path

Walk: a sequence of incident links visited one after another

{(vy, v3), (3, V), (g, V), (Vs, Vs3), (v3, V,)}
Path: a walk where nodes and links are distinct

{(vy, v3), (v3, vy), (v, ve)} [Alternatively in simple graph: {v,, v, v, Vc)}]
Path length: the number of links visited in the path

A node v; is connected to node v; (or reachable
fromv;) if it is adjacent to it or there exists a
path from v, tov;
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Connected graph

A graph is connected, A graph is disconnected, if it
if there exists a path is not connected.
between any pair of nodes in it [It exists at least a pair of

nodes which are not
connected]
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Connected components: intuition

Subgroups of nodes, with no connections

1 connected components 2 connected components 3 connected components
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Connected components: definition

A connected component is a subgraph of a network such that
there exists at least one path from each member of that
subgraph to each other member,

and

no other vertex in the network can be added to the subgraph
while preserving this property (maximality)

1 connected components 2 connected components 3 connected components
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Connected component: definition

A connected component is a subgraph of a network such that
It is a node-generated subgraph, i.e. the subsets of vertices and all edges that
are between them

there exists at least one path from each member of that subgraph to each other member,
There is a path between all pair of vertices in the component
Each node of the component is reachable from any other node of the
component

no other vertex in the network can be added to the subgraph while preserving this

property
There is no path between a node in the component and any other not in the
component (maximality)
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Connected components in social networks

There is typically a very large component that fills most of the network -
usually more than half and not infrequently over 90% - while the rest of the
network is divided into a large number of small components.

There are some networks for which the largest component fills the entire
network such as

the Internet, communication networks, transportation networks, power grids
In these cases there is always a good specific reason.
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Connected Components in social networks

1e+04 1e+06

Number of components
1e+02
I

| | | |
1e+00 1e+02 1e+04 1e+06 1e+08
Component size

1e+00
|

Figure 3. Component size distribution. The fraction of components with a given component size
on a log-log scale. Most vertices (99.91%) are in the largest component.

Ugander et al., The Anatomy of the Facebook Social Graph
, 2011.
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Connect Components in social networks

Can a network have two or more large components that fill a sizable fraction of
the entire graph?

Usually the answer is no.

The argument is that if a network of n nodes was divided into two large
components of about n/2 nodes each, then there would be n?/4 possible pairs of
nodes such that one node was in one large component and the other node in the
other large component.

It is highly unlikely that not one such pair would be connected.
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Connected components in directed networks

a directed graph is strongly connected if there exists a directed path
between any pair of nodes

a directed graph is weakly connected if there exists a path between any
pair of nodes, without following the edge directions
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Connected components in directed networks

In a directed graph, a strongly connected component is a maximal subset
of nodes such that each can reach and is reachable from all the others
along a directed path

In a directed graph, a weakly connected component is a maximal subset
of nodes such that each can reach and is reachable from all the others
along an undirected path
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Connectivity in directed networks

o\

(a) Connected (b) Disconnected  (c) Strongly connected (d) Weakly connected
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Connected components in
real-world directed networks

There is typically one large strongly connected component and a
selection of small ones.

The largest strongly connected component in the Web fills about
a quarter of the network
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Credits

Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Social Media Mining: An Introduction

A Textbook by Cambridge University Press
Chapter 2.4

Newman, M.E.J.

Networks: An Introduction.
Oxford University Press. 2010.
Chapters 6.11, 8.1

Albert-Laszl6 Barabasi
Network Science
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RANDOM-REAL NETWORKS
CONNECTED COMPONENTS



Connected components
in real-world networks

Real-world networks: giant component
and power-law connected components
size distribution




Growing a random network

Starting with N isolated nodes, the links are ‘added gradually
through a random process.

This corresponds to a gradual .increase of p, with striking
consequences on the network topology.

To quantify this process, we first inspect how the size of the
largest connected cluster within the network, N, varies with the
average degree <k>.
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Connected components
in random networks

N_G: number of nodes in the giant component
Two extreme cases:

p=0 = disconnected nodes, <k>=0, N_G=1
p=1 -> fully connected, <k>=N-1, N_G=N

One would expect that the largest component grows
gradually from N_G=1to N _G=N

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Size of the giant component

One would expect that the largest
component grows gradually
Yet, this is not the case.

S=N_G/N
S: fraction of nodes in the largest
connected component

1
o N_G/N remains.zero for small <k>, indicating
08 - . the lack of alarge connected component.
Once <k> exceeds a critical value, N;/N
06 - ~ “.increases, signaling the rapid emergence of a
5 > large component that we call the giant
0.4 - - component.
02 _ _ Erdés and Renyi in their classical 1959 paper
predicted that the condition
[\ | | for the emergence of the giant component
0 1 2 3 is:
(k) <k>=1
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Size of the giant component

S=N_G/N
S: fraction of nodes in the largest

In other words, we have a. giant component
connected components

if and only if each node has
b) on average more than-one link.

08 - _ The fact that we need at least one link per
node to observe a giant component
is not unexpected. Indeed, for a giant

0.6 ~ _ .
component to exist, each of
5 > its nodes must be linked to at least one
04 - - other node.
02 L ~ ltis somewhat counterintuitive,
however, that one link is sufficient for its
[ | | emergence.
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In this section we introduce the argument, proposed independently by
Solomonoff and Rapoport [11], and by Erdés and Rényi [2], for the emer-
gence of giant component at <k>=1[33].

Let us denote with u=1- N./N the fraction of nodes that are not in the
giant component (GC), whose size we take to be N,.. If node i is part of the
GC, it must link to another node j, which must also be part of the GC. Hence
if i is not part of the GC, that could happen for two reasons:

« There is no link between i and j (probability for this is 1- p).

« There is a link between i and j, but j is not part of the GC (probability
for this is pu).

Therefore the total probability that i is not part of the GC via node j is
1- p + pu. The probability that i is not linked to the GC via any other node is
therefore (1-p + pu)"-, as there are N - 1 nodes that could serve as potential
links to the GC for nodei. As u is the fraction of nodes that do not belongto
the GC, for any p and N the solution of the equation

u =(|._p +pu)N" (3.30)

provides the size of the giant component via N, = N(1- u). Using p = <k> /
(N'- 1) and taking the logarithm of both sides, for <k> « N we obtain

Inu =(N—I)In|:l—%(l—u):|== (N-1) [— %(l_u)]z —(k)(1-u), 3.31)

where we used the series expansion for In(1+x).
Taking an exponential of both sides leads to u = exp[- <k>(1 - u)]. If we

denotewith S the fraction of nodes in the giant component, S=N_/ N, then
S=1-uand (3.31) results in
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§=1- e—(k)S (3.32)

Giant component
(Barabasi’s book, Section 3.14 —
Advanced topics 3.C)




Size of the giant component (3.14)

S=N_G/N
§ =g ts 3.3 S: fraction of nodes in
the largest connected
components

(b) 1 I I

(a)
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disconnected r.odes - METWORK.

d I T
0.8
0.6
® e ° ’A\’“\\
0.4 | e 7 " : -
..'o 00\.
0-2 - ..Xo. .:H. mea
0 : :

<k>

Erdos and Renyi (1959): the condition for the emergence of
a giant. component is <k>=1.

It.is'evident that one link per node is necessary, but
counterintuitive that it also sufficient.
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Four distinct regimes

1 7 T
0.8 —
0.6 - |: 1l: i \V; =
Sullzcrltlial Cliltlc—all Supercritical Cck)nneclteﬁ|
0.4 L <k> < <k> = <k> > 1 <k>> In |

.,.:\'\\Aﬂﬁfi"‘/
AT N s TTIUAN
DR )
N6
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1 7
0.8
]
0.6 |- | i
Subcritical
<k>< 1 :
0.4 | |
p <p~1N '
0.2 |-
0 ] @

<k>
The network consists of numerous tiny components, whose size follows the exponential
distribution. Hence these.components have comparable sizes, lacking a clear winner that we
could designate as a giant component.

No giant component.

Isolated clusters, cluster size distribution is exponential
The largest cluster is a tree, its size ~ In N. Hence N_G/N is vanishing

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA




1 7
"]
0.8 |-
0.6 - If
Critical
<k>=1
0.4
p=p.=1/N
0.2
]
0O

<k>

At this point the relative size of.the largest component is still zero
Unique giant component: N~ N2/3

- contains still a vanishing fraction of all nodes, Ng/N~N-%/3
—>Numerous small components which are trees. A jump in the cluster size:

N=7 10° = In N~ 22; N2/3~3 659,250
Cluster size distribution: p(s)~s3/2
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0.8

0.6

0.4

0.2

0

23
A

N
N

Lt Sl

N
S %cal

a <k>>1
| p > pC::I./N : <k>=3

<k>

The giant component contains a finite fraction of the nodes.

Unique giant component: Ns~ (p-p)N

—~>Non vanishing

Cluster size distribution: exponential

(s ~ 532~ (K -Ds+(s-Dn(k)

The supercritical regime lasts until all nodes are absorbed by the giant

component.

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA




V:
Connected
<k>> In N
p > (In N)/N

1 )
0.8
0.6
0 | 4 RN
0.2 <k>=5
0 ¥

<k>

Only one cluster: Ng=N
—>GCis dense.
Cluster size distribution: None
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A\

>

K :1

ki =z InN

¢ "
.
e . ™
v Koy
. e
L 4 » 0.. e
L pe
L ..C. *
PP a S = X -
ey 0 - . ‘e A
. .
oocﬂ. on . bl >
B T e
v S A% . o
. - LJ
e "la 0%
K L -
x
¢
o -~
.
o . .
i oaa Kt d
4 &9
3 C B -
.o .e
& o -'40 .
oL e *
n»’.t..‘.&. . A
\ po p
-.ooc.tw..- .
0. ‘N«.h-n 9 =
s N Wy ™~ 2
¥ i » "
x » a..li
. . ‘..
.
.
e o
L
- % - o
. - i ®
. o0
o o e & an
PN -s
S 4 2o R e
5% 9 ose * —
0% e @ T % . ¥
e o* s *o »
a® » »
s & " . o
o "0 o
p? A% w . .
-
. - -
* "0 w %
. . -
-

(e) Connected Regime

(d)

{c) C

Q

(b)

e

.
Py
.

.
o
=
-,

ponent!

"

o
1
¥
g =
5 5
2z
= 3
g Aa
o~
A E
E4

o
s
MR

=
= =
=2 A




Connected components

Internet . X -
= Network N [ <k> InN
Science
Collaboration B X ] Interrgt 192,244 609,066 634 1217
Pawer Grid 4,941 6,594 267 851
Actor Network . .- , .
Science Collaboration 23133 1865936 | 8.0B 10.04
Yeast Protein W ox 7 Actor Netwiork 212,250 3,054,278 2878 12.27
Interactions )
p  |Yeast Protein Interactions 2,018 2,930 290 761
| |
1 10 <k>

Supercritical: not fully connected

Internet: we should have routers that, being disconnected from the giant component,
are unable to communicate with other routers.

Power grid: some consumers should not get powered

Fully connected
Social media: no individual disconnected
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Albert-Laszl6 Barabasi
Network Science
Chapter 3.6

Newman, M.E.J.

Networks: An Introduction.
Oxford University Press. 2010.
Chapter 12.5

Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Sacial Media Mining: An Introduction
A Textbook by Cambridge University Press
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Facebook

 Ugander, Johan & Karrer, Brian & Backstrom, Lars & Marlow,
Cameron. (2011). The Anatomy of the Facebook Social Graph.
arXiv preprint. 1111.4503.

— Connected components
Pag 3, Figure 1
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Twitter

e Seth A. Myers, Aneesh Sharma, Pankaj Gupta; and Jimmy Lin.
2014. Information network or social network?: the structure
of the twitter follow graph. In Proceedings of the 23rd
International Conference on World' Wide Web (WWW '14
Companion). ACM, New York, NY, USA, 493-498. DOI:
https://doi.org/10.1145/2567948.2576939

— Connected'components
Chapter 3.2, Figure 2
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Web

* Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar
Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew
Tomkins, and Janet Wiener. 2000. Graph structure in the
Web. Comput. Netw. 33, 1-6 (June 2000), 309-320.
DOI=http://dx.doi.org/10.1016/51389-1286(00)00083-9

— Connected components
Chapter 2.2.2,2.2.3, Figure 5,6
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Mobile communication networks

Structure and tie strengths in mobile communication networks,
J. Onnela, J. Saramaki, J. Hyvonen, G. Szabd, D. Lazer, K. Kaski, J. Kertész, A.
-L. Barabasi

Proceedings of the National Academy of Sciences May
2007, 104 (18) 7332- 7336; DOI: 10.1073/pnas.0610245104

- Weakly largest connected component: 84%

Calling, texting, and moving: multidimensional interactions of mobile
phone users

Matteo Zignani, Christian Quadri, Sabrina Gaito & Gian Paolo Rossi
Computational Social Networks volume 2, Article number: 13 (2015)

- Weakly largest connected component: 90%
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Centrality measures
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Wasserman, Stanley and Katherlne
Faust. 1994.

Social Network AnaKpa@thods
and Applications
Cambridge;Ca@dge University
Press. d\

\'F ree artificial graphs that
highlight the differences

among centrality
measures.

One node in the star c&ely outranks the others, while the other themselves
are mterchangea%\

All nodes m%ﬁe circle are interchangeable.

In t(ejllgne graph centrality decreases from that for n1, to n2 and n3, and so on up
to n6 and n7.



Degree centrality



Degree Centrality in undirected networks

 The degree centrality ranks nodes with more
connections higher in terms of centrality

Ca(v;) = d;
* d. is the degree (number of adjacent edges) for
vertex v,

In this graph degree centrality for vertex v, isd, =
8.and for all othersisd; =1,j#1
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Star: C4(1)= 6,\%&( er nodes)=0

Circle:  Cyl {&esk 2

Lin608(1)= 2, C,(2,3)=2, C,(4,5)= 2, C,(6,7)=1

atherine Faust. 1994.
Social Network Analysis:
Methods and Applications.
Cambridge: Cambridge
University Press.



Normalized Degree Centrality

The degree centrality does not allow for centrality values
to be compared across networks.

* Normalized by the maximum Crom () = d;
possible degree d Z n-—1

* Normalized by the. maximum v () = d;
degree. Issue: outlier d \TH max; d;

* Normalized by the degree sum d, d,

Cfium(vf) = Ed
J

N
5
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d;

Cl™(03) =

di

Cdm“x(vi) =

max j d i
sum _ di _ df

STAR CIRCLE LINE

’\I'\lchg 1 Others All Nodel Nodes Nodes Nodes
3

A 2,3 4,5 6,7

(0(3&% 6 1 2 2 2 2 1
Crorm 6/6=1  1/6 2/6 2/6 2/6 2/6 1/6
s 6/6=1  1/6 2/2=1  2/2 2/2 2/2 1/2

Csum 6/12 1/12 2/14 2/12 2/12 2/12 1/12



Degree Centrality in Directed Graphs

* |In directed graphs, we can either use the in-degree,
the out-degree, or the combination as the degree
centrality value:

Ca(vi) = df” (prestige),
Ca(v;) = dj.’“’ (gregariousness),
Cy(v;) = df” — dj.’“’ :

d°¥t.is the number of outgoing links for vertex v,
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atherine Faust. 1994.
Social Network Analysis:
Methods and Applications.
Cambridge: Cambridge
University Press.

)% an the degree centrality fully represent
@Q ifferent aspects of the concept of centrality?

Q* What about nodes n, and n, in the line graph
CP

having the same centrality?



Betweenness centrality

Undirected and directed
networks



ldea

To measure the extent to which a node
lies on paths between other nodes, i.e.
how much a node falls between others,
while the degree centrality measures
how well-connected a node is.

Nodes with a high betweenness
centrality have control over information
flowing in the network.

Example: Internet
Example: Organization networks
Example: Grid networks
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Assumptions

Consider information, rumours, news, etc.
flowing within a network as they are passed.from one person
to another.

Let’s assume that:

- All pair of nodes (connected by a path) exchange the same
amount of information per time unit

- All information flow on the shortest paths

Asymptotically,

how many information will pass through each node?
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Note

In the next 3 slides the definition of betweenness
centrality and the results of computation on the star,
circle and line graphs are presented.

For a step by step lesson please refer to the pdf and mp4
files named Betweeness
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Betweenness Centrality

We define the betweenness centrality as:

Cb (Uj) _ Z Jst(vi)

O
SEEED; st

0s(0i) the number of shortest paths from s to t that pass through v,

Ost the number of shortest paths from vertex s to t —also known as
information pathways.
Note that the path from s to t is different from the path from t to s,
even in undirected networks.

The definition holds for both undirected and directed
networks (rarely used in directed networks)
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Normalizing Betweenness Centrality

* In the best case, node v; is on all shortest paths from s to t,
hence,
0st(Vi) =1
Ost

Co(oi)= ) "’;(”")= Y. 1=2("2 1) =(n—1)(n-2).

s£t#v, st s#f#uv,

n_
Therefore, the maximum value is 2 ( ) )

Normalized betweenness CO™(1).) = Cp(v;)
. b l = T
centrality: 2" . )
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Examples \\‘OS\

See f@}named

ples_betweenness
or a step by step
solution

Star: C,(1) =1, C,(other nodes) =0
Circle: Cb(all no 1/5
Line: Cb(l , Cp(2,3) = 8/15, C,(4,5) = 5/15, C,(6,7) =0

?Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and
tions. Cambridge: Cambridge University Press.



Betweenness Centrality Example

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA

Exercize:

See files
Exercize_betweenness
for a step by step
solution



Betweenness Centrality Example

Cp(v2) =2x( (1/1) + (1/1) + (2/2) + (1/2) + - 0+ 0 )

S=Ut=U1  S=Uyt=Uy S=01t=0s S=Dy t=py S=UaI=Us  SSUI=Us
=2%x35=7,

Cp(v3)=2%x( 0 + 0 + (1/Y2)+ O + (1/2) + 0O )

s=0,t=02 5=04,t=04 5=m,t=Us §=03,1=04 S=0,,i=05 S=0y4,f=05
=2x1.0=2,

Cp(vg) = Cp(v3) =2%x1.0=2,
Co(vs)=2%x(-0 + 0 + 0 + 0 + 0 +(1/2))

S=I’1lt=v2 S=v1:t=v3 S=U]lt=v4 S=02:t=v3 5=U2:t=v4 S=U3,t=v4
=2x05=1,
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Closeness centrality

Undirected and directed networks



Closeness Centrality

* The intuition is that influential and central nodes can quickly
reach other nodes

 These nodes should have a smaller average shortest path
length to other nodes

 We define the closeness centrality as:

-2 1
lvi = ﬁ Z‘Uﬁfvi liff N Iy
that is node v/’s average shortest >  consider the inverse.
path length to other nodes. Now:
But, with this definition: Low values for less
Low values for more central nodes, central nodes, high values
high values for less central nodes. for more central nodes.

Issues: It holds within components, the range of values is small in
small-world networks.
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Examples \\‘OS\

for a step by step
solution

Star: C(1) =1, C, odes) = 6/11

Circle:  C.(all no /2
Line: C(1 C(2 3) = 6/13, C.(4,5) = 3/8, C.(6,7) = 6/21

QStanley and Katherine Faust. 1994. Social Network Analysis: Methods and
tlons Cambridge: Cambridge University Press.



Example: Compute Closeness Centrality
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Exercize

See files named
Exercize_closeness
for a step by step
solution



Compute Closeness Centrality

Civi)>=1/(1+2+2+3)/4) =0.5,

C(v) =1/(1+1+1+2)/4)=0.3,
Co(vz) = Cp(vy) =1/(1+1+2+2)/4) =0.66,

Cvs) =1/(1+1+2+3)/4) =0.57

UNIVERSITA DEGLI STUDI DI MILANO
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Eigenvector centrality
Katz centrality
Page rank

(cenni)



Eigenvector Centrality (undirected)

* |tis an extension of the degree centrality.

* Not all friends are equivalent. Thus, having more
friends does not by itself guarantee that someone is
more important, but having more important friends
provides a stronger signal.

* Eigenvector centrality tries to generalize degree
centrality by incorporating the importance of the
neighbors.

UNIVERSITA DEGLI STUDI DI MILANO
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Eigenvector Centrality (undirected): idea

* Degree centrality: awarding nodes just one point for
each friend

* Eigenvector centrality: awarding nodes a score
proportional to the sum of the scores of its friends.

UNIVERSITA DEGLI STUDI DI MILANO
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Eigenvector Centrality (undirected)

* Degree centrality: awarding nodes just one point for
each friend

* Eigenvector centrality: awarding nodes a score
proportional to the sum of the scores of its friends.

* For directed graphs, we can-use incoming or
outgoing edges

n
B 1 C,(v;): the eigenvector
Ce(U,‘) — Z Z Aj,ice(vj)f {centrality of node v,
=1

A: some fixed constant
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Eigenvector Centrality, cont. (undirected)

* Let Ce — (Ce(vl)/ Ce(UZ)/ sy CB(UYIT))
2>  AC, =A'C.

* This means that C_ is an eigenvector of adjacency
matrix A and A is the corresponding eigenvalue

 Which eigenvalue-eigenvector pair should we
choose?

UNIVERSITA DEGLI STUDI DI MILANO
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Eigenvector Centrality (undirected)

Theorem 3.1 (Perron-Frobenius Theorem). Let A € R™" represent the adja-
cency matrix for a [strongly] connected graph or A : A;j > 0, i.e.,a positive n
by n matrix. There exists a positive real number (Perron-Frobenius eigenvalue)
Amax, Such that Ayg is an eigenvalue of A and any other eigenvalue of A is
strictly smaller than Awa. Furthermore, there exists.a corresponding eigenvector
v = (01,0y,...,0,) of A with eigenvalue Ay, stich that Vo; > 0.

Therefore, to have positive centrality values, we can compute
the eigenvalues of A and then select the largest eigenvalue.

The corresponding eigenvector is Ce.

Based on the Perron-Frobenius theorem, all the components
of Cewill be positive, and this vector corresponds to
eigenvector centralities for the graph.

UNIVERSITA DEGLI STUDI DI MILANO
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Eigenvector Centrality: Example

01 01 0]
1 01 1 1
A=10 1 0 1 O
110 0l T A=(268,:1.74,-1.27, 0.33,0.00)
1001 00 0] Eigenvalues Vector
(0
= ¥2 @ ] ~ Basedon
0 0.4119 eigenvector
0.5825 |  centrality,
M =2.68 =  Co=| 04119 node v:is
0.5237 the most
- 0.2169 | central

JNIVERSITA DEGLI STUDI DI MILANO

node.
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Eigenvector Centrality (directed)

It can be computed also for undirected networks but some
ISSues arise.

The adjacency matrix is asymmetric -2 it has two sets of
eigenvectors, the left eigenvectors and the right eigenvectors.

Which of the two should be used?

Usually the right eigenvectors because it accounts for the in-
going links.
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Eigenvector Centrality (directed)

A major problem with eigenvector centrality arises when it deals
with directed graphs

Centrality only passes over outgoing edges and in special cases
such as when a node is in a weakly connected component
centrality becomes zero even though the node can have many

edge connected to it Node 1 has only utgoing links and

O hence has eigenvector centrality
Zero.
Node 2 has one ingoing link, but it
originates at node 1 and hence node
B has centrality zero, too.

Mathematically, only nodes in a strongly connected components
of two or more nodes can have non-zero eigenvector centrality.

UNIVERSITA DEGLI STUDI DI MILANO
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Katz Centrality

* To resolve this problem we add a bias term 3 to the
centrality values for all nodes

CKatz(vi) = Z Aj,iCKatz(Uj) + B

J=1

UNIVERSITA DEGLI STUDI DI MILANO
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Katz Centrality, cont.

Cra=(0) = @ Y AjiCrarz(0)) + .
/&

Controlling term Bias term

Rewriting equation in a vector form

CKatz — aATCKatz T )81\

vector of all 1’s

Katz centrality: Cra. = fI—aA")™ - 1.

UNIVERSITA DEGLI STUDI DI MILANO
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Katz Centrality, cont.

Ckatz = ,B(I — aAT)_l - 1.
* When a=0, the eigenvector centrality is removed and all

nodes get the same centrality value 8

* As agets larger the effect of g.is reduced

e For the matrix (I- aA") to be invertible, we must have
— det(l- aAT) =0
— By rearranging we get det(A'- al)=0

— This is basically the characteristic equation, which first becomes zero when the
largest.eigenvalue equals a?

* Inpractice we select a < 1/A, where A is the largest
eigenvalue of AT
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Katz Centrality Example

i e L =

0

i e

1

ot O e

1

1
1
1
0

0

O == O

* The eigenvalues are~-1.68, -1.0, 0.35, 3.32

* We assume a=0.25 < 1/3.32 =0.2

Cratz = B — aAT) 1.1 =

UNIVERSITA DEGLI STUDI DI MILANO
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1.31
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PageRank

* Problem with Katz centrality: in directed graphs, once
a node becomes an authority (high centrality), it
passes all its centrality along all of its out-links

* This is less desirable since not everyone known by a
well-known person is well-known

* To mitigate this problem we can divide the value of
passed centrality by the number of outgoing links,
i.e., out-degree of that node such that each
connected neighbor gets a fraction of the source
node’s centrality

UNIVERSITA DEGLI STUDI DI MILANO
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PageRank, cont.

C,(0) = ZA,I df,,v/)

i

{(d‘}“ > 0) —-C,=aA'D7'C, + A1,

D = diﬂg(dl,dQ ..... dn)

C,=pI-aA'DH"-1

—_ - —_

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



PageRank Example

* We assume a=0.95 and 3=0.1

J5 1 1 |

@ 1 0101
\ A=(0101 1}{.
10100

G?,Qrﬁ 1110 0
2.14

2.13

C,=pIl-aA'™DH) 1= 214

1.45

2.13

UNIVERSITA DEGLI STUDI DI MILANO
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Credits

Reza Zafarani
Social Media Mining
Chapter 2

M.E.J. Newman
Networks

An Introduction
Oxford university press
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PageRank

Cheick Tidiane Ba




Ranking

* In the web we care about Ranking: we want to
determinate the importance of a page or a user in a
network.

 Endogenous Ranking: rank based on a page’s
content. Look at terms in web pages to figure out
wheter they are relevant for the user’s query.

* Issue: term spamming

| can insert a lot of keywords to appear in many
searches, obtaining always a high rank

Social Network Analysis Cheick Tidiane Ba ‘



Ranking

« We want an exogenous centrality measure
« Harder to tamper with
 In theory it is harder to have control on multiple web pages

« Exogenous measures can be divided in
« Geometric Centralities
« Spectral Centralities

Social Network Analysis Cheick Tidiane Ba .



Geometric centralities

« Geometric centralities rely on the concept degree
(number of connected nodes) or distance measures

* You have seen already:
« Degree Centrality
« Betweenness centrality
« Closeness centrality

Social Network Analysis Cheick Tidiane Ba ‘



Spectral Ranking

« Spectral rankings are methods based on eigenvectors

- Among them we have:
« Eigenvector centrality
« Katz centrality

- PageRank

- Invented by Larry Page and Sergey Brin, founders of Google

« Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual
Web Search Engine. In: Seventh International World-Wide Web
Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

« The first metric used in Google Search and the reason of Google’s
success

* Now is not the only metric, more metrics are considered

« HITS (Hyperlink-Induced Topic Search)

- also known as hubs and authorities

Social Network Analysis Cheick Tidiane Ba .



PageRank

« Simulation of a user’s web browsing.

« Random Surfer on the web, browses through the
WWW network.

« The WWW network is described by an adjacency
matrix A, where if i —> jthen 4;; =1

- A transition matrix 4 is obtained by dividing each row
by its sum.

- A row in the transition matrix 4 describes the
probability of moving from a page i to page j.

Social Network Analysis



PageRank - Transition Matrix example

Social Network Analysis Cheick Tidiane Ba



PageRank

- We are interested in the visits on a certain node
during the random surfing.

« Given a vector p, , that expresses the probability to be
on a certain page at time t.
* Pt = (Po,P1 ) Pn)

- We can simulate a user moving to a new page by
computing: p;,1 = p; * 4
« This is a Markov chain

 We keep multiplying till p,,; doesn’t change too
much with respect to the previous p,

* The vector p, contains the PageRank value for each
page

Social Network Analysis Cheick Tidiane Ba .



PageRank - Computation example

e Start
* po = [0.20.20.20.20.2]

. Transition matrix 4

* Calculation: p,,; = p, * A

* 0.362, 0.483, 0.483, 0.181, 0.302
* 0.294, 0.440, 0.587, 0.235, 0.206
» 0.205, 0.509, 0.538, 0.293, 0.215
- 0.211, 0.490, 0.561, 0.280, 0.210

« 0.210, 0.491, 0.560, 0.281, 0.210

« 0.210, 0.491, 0.561, 0.280, 0.210

* 0.210, 0.491, 0.561, 0.281, 0.210 1. 3

Low N High

Social Network Analysis Cheick Tidiane Ba




Issues

 Several theorems and demonstrations from
eigenvalue theory and markov chain are available in
the literature.

* They grant us that we can find a ranking vector p as
long as we are not considering:

 Isolated components
« Dangling nodes (nodes without outgoing edges)

 These structure are present, we need to address
them

Social Network Analysis Cheick Tidiane Ba ﬁ



Bowtie

« The Bowtie is still relevant

Tendrils ;
A— @Miion
] Nodes :
4
N sce olr <~
4 56 4“4
Million Million Million
y Nodes Nodes Nodes

)' * Tubes/
Al

18 Million Disconnected Component

Source: K. Laudon & C. Trever, E-Commerce

2009 (5th Edition), Prentice Hall.
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Bowtie

 In Component
 They have mainly edges

towards the scc A~ bilon
s odes ‘;
« SCC: strongly 4
connhected component N sce ouT N €~
» OUT component a Milfon illon
’; Nedes Nodes Nodes
 Reached by other nodes
* Lots of isolated & L
components ¥ A wl |
- Tubes connect In and Ml
Out com ponents 18 Million Disconnecied Component
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Dangling nodes

 The random surfer on the Internet always ends up
reaching a dangling node.

* The surfer stops surfing through hyperlinks.

1 7 8

High

; / \ L Low
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Loops

 The random surfer can get stuck in loops
« Values are higher for the nodes in the loop
* These structure are also called spider traps High

Low

k
Social Network Analysis Cheick Tidiane Ba n




Isolated components

 Surfer stuck like in the previous scenarios

® : ® vigh

0 - - 3 4
6 - - 5

Low
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Teleport

* The solution is known as teleport or tax

At each step, the user can:
« Go one of the following pages with probability a
* Teleport to a random node with probability 1 — «

« We can express the probability to teleport to a
certain page as a distribution.

* It is just a vector v, with sum equal to 1
« Usually a uniform distribution

 The final formula becomes:
‘P =axAp,+ (1 —a) *v

Social Network Analysis Cheick Tidiane Ba a



Teleport — Transition Matrix example

:} ? ] Bﬁ (0) 0.0 0.33 0.00 0.33 0.00 0.0 0.33 0.0 0.0
| 0.0 0.00 0.00 0.00 0.00 0.0 0.00 0.0 0.0

p. 0.0 0.00 0.00 0.00 0.00 0.0 1.00 0.0 0.0

0 2 e 4 3 0.0 0.00 0.00 0.00 0.00 0.0 0.00 1.0 0.0
| 4 0.0 0.00 0.00 1.00 0.00 0.0 0.00 0.0 0.0

2 5 0.0 0.00 0.33 0.00 0.33 0.0 0.33 0.0 0.0

: \ 6 0.0 0.00 0.50 0.00 0.00 0.5 0.00 0.0 0.0
> 7 0.0 0.00 0.00 0.00 0.00 0.0 0.00 0.0 1.0

8 0.0 0.00 0.00 1.00 0.00 0.0 0.00 0.0 0.0

Social Network Analysis Cheick Tidiane Ba a



Teleport - Computation example

. Basic * With Teleport

* po =[0.11, ...,0.11] * po =[0.11, ...,0.11]

. Transition matrix 4  Transition matrix A

. _ .+ v=[0.11, ...,0.11]

« Calculation of p,,{ = p;* A4 .« ¢=05

- 0.000, 0.040, 0.099, 0.277, 0.040, i

0.059, 0.198, 0.119, 0.119 » Calculation of
- 0.000, 0.000, 0.121, 0.161, 0.020, 0.101, D1 =a*Ap, + (1 — @) * v

0.121, 0.282, 0.121 . 0.067, 0.106, 0.165, 0.343, 0.106, 0.126, 0.264,

e 0.185, 0.185
- 0.067, 0.082, 0.184, 0.278, 0.095, 0.156, 0.221,
- 0.000, 0.000, 0.000, 0.197, 0.000, o903 oo 0184, 0.278, 0.095, 0.156, 0.221
0.000, 0.000, 0.298, 0.180 .
 0.000, 0.000, 0.000, 0.180, 0.000, - 0.067, 0.081, 0.169, 0.297, 0.097, 0.139, 0.221,
0.000, 0.000, 0.197, 0.298 3.323, g'i’: 0.169, 0.298, 0.097, 0.139, 0.221
 0.000, 0.000, 0.000, 0.298, 0.000, 0.260,0.236
0.000, 0.000, 0.180, 0.197 . 8'227'00'2%%1' 0.169, 0.298, 0.097, 0.139, 0.221,

Social Network Analysis Cheick Tidiane Ba a



Loops with teleport

Low N High
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Dangling nodes with teleport

[ ]
Low D High
T s e e



Isolated components with teleport

. 7 . 1 7 . 8

nd ha\d» 'y & !

/zx A

6 s | |
Low T High
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For the final project

 PageRank can be computed directly in Gephi
« Implemented version deals with the all the issues

Context X —
10568 Appearance X -_—
Edges: 178115 I r- ’
ge Rank settings X B A
Undirected Graph Nodes Edg | ® @ A T
Repefnnk Unique Partition Ranking

Fiters Statistics X - Ranks nodes “pages” according to how often a user following links will non-randomly reach the node “page”.

Settings -—Choose an attribute v
' ~—Choose an attribute

[=] Network Overview Directed Probability (p): 0.85| Degree

Auerage DEUEE Run @ @ Undirected Used to simulate the user randomly restarting the web-surfing. PagERank

. Epsilon: 0.001
Avg. Weighted Degree Run @
Stopping criterion, the smaller this value, the longer convergence will take,

Metwork Diameter Run @ R

Graph Density Run @

" o o ][ cons

Modularity Run @

es ' Apply
PageRank Run @
Connected Components Run @

Social Network Analysis Cheick Tidiane Ba a



For the final project

« Methods for Pagerank computation are also available
in Networkx
- pagerank(G|, alpha, personalization, ...])
« pagerank_numpy(GI, alpha, personalization, ...])
- pagerank_scipy(G|, alpha, personalization, ...])

« Same algorithm, difference in computation times

 Docs available here:

. https://networkx.org/documentation/stable/reference/algorithms/Ii
nk_analysis.html?highlight=pagerank

Social Network Analysis Cheick Tidiane Ba a


https://networkx.org/documentation/stable/reference/algorithms/link_analysis.html?highlight=pagerank

Thank you for the attention!

For any question send an email at
cheick.ba@unimi.it
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Transitivity

Global and Local
Clustering coefficient
in undirected networks



Transitivity
Mathematic representation:
— For a transitive relation R; @¢Rb AbR¢ — aRce

Networks:
— the transitive relation R: connected by a link
— If v,, v, are connected and v,, v, are connected

@ V2 Vi v,
V4, V5 are connected

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

Social Networks:
— the transitive relation R: friendship
— If v,, v, are friends and v,, v; are friends

@ Va Vi v,
V4, V5 are friends

Transitivity is when
a friend of my friend is my friend

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

— Perfect transitivity only occursiin-networks where each
component is a fully connected graph or clique (a subgraph
in which all nodes are-connected to all others)

— Perfect transitivity is a useless concept in social networks as
it never occurs

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

— Partial transitivity is. much more useful
— The friend of my.friend is not guaranteed to be my friend

— But is far more likely to be my friend than any other node in
the network.

— v, is more likely to be friend of v, than v.
—ASsv, more likely to be friend of v, than v,?

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

— Partial transitivity is much.more useful
— The friend of my friend is not guaranteed to be my friend

— But is far more likely to be my friend than any other node in
the network.

— v, is more likely to be friend of v; than v,
— v, has\the same probability to be friend of v; and v,

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient
Measure based on paths

We want to quantify the level of transitivity of a network

We can measure it by counting the paths of length two and
check whether the third edge exists

co [Paths of Length 2'that have the third edge|
- [Paths of Length 2|

1 2 A path of length 2 which has the third
link is called closed path as it forms a
loop of length 3. [Closed paths are
also called closed triad in social
networks.]

UNIVERSITA DEGLI STUDI DI MILANO

5 | DIPARTIMENTO DI INFORMATICA



Global Clustering Coefficient

co [Paths of Length 2 that have the third edge|

[Paths of Length 2| Note that paths, also

closed paths, have a

Path of length 2 Third edge direction in undirected

213 32 network, too.

312 23 Two paths that
traverse the same links

123 31 but in opposite

321 13 direction are counted
separately.

132 21 (1 2

231 12

C=6/6 e

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient

Co |Paths of Length 2 that have the third edge|
- [Paths of Length 2|

Path of length 2 Third edge @ @
123 - /

- | ©

C=0/2=0

DIPARTIMENTO DI INFORMATICA



Example

Path of length 2 Third edge
<4\ . 213 312 yes
/ K) (:) 214 412 no
314 413 no
Ay /2 123321 yes
125 521 no
325523 no
132 231 yes
145 541 no
C=6/22=3/11 254 452 no
256 652 no
456 654 no

[Note: you could divide both the numerator and the denominator by
two, by considering paths in one direction only]

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient

Measure based on triples

If we have a path {1,2,3} (and {3,2,1}) of length 2, it is also true to
say that nodes 1 and 3 have a common neighbour: node 2.
If the triad {1,2,3}is closed, nodes 1 and 3 are themselves friends.

The clustering coefficient can be thought as the
fraction of pairs of people with a common friend
who are themselves friend.

UNIVERSITA DEGLI STUDI DI MILANO
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Clustering coefficient

a friend of my friend is my  pairs of people with a common
friend friend who are themselves friend.

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Global Clustering Coefficient
Measure based on triplets

The clustering coefficient can be thought as the fraction of pairs of people with
a common friend who are themselves friend.

We can also define the global clustering coefficient based on the concept of
(connected) triplets of nodes.

A connected triplet consists of three nodes {v,, v,, v;}, that are connected by
the two links (v,, v,) and (v,, v3). The third link (v, v3) can be present (closed
triplet) or not (open triplet).

oo <

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient
Measure based on triples

Triplets (open) Triplets (closed)

£2,1,3} [with links (2,1) and (1,3)] {2L3Hwith links (2,1) and (1,3)
{1,2,3}[with links (1,2) and (2,3)]

{1,3,2} [with links (1,3) and (3,2)]




Global Clustering Coefficient
Measure based on triples

The global clustering coefficient is-the number of
closed triplets over the total number of triplets (both
open and closed):

number of closed triplets

total number of triplets
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Global Clustering Coefficient
Measure based on triples

Triplets (open) Triplets (closed)
123
C=0/2=0 132

C=3/3=1




Example

Triplets
213

214
314
123

C=3/11

ﬁi

125
325
132
145
254
256
456

UNIVERSITA DEGLI STUDI DI MILANO

Closed?
yes
no
no
yes
no
no
yes
no
no
no
no
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Global Clustering Coefficient
Measure based on triangles

A triangle consists of six paths.
213,312,123, 321, 132, 231
A triangle consists of three triples, one centered on each of the

nodes.
. )@

213, 123, 231
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Global Clustering Coefficient
Measure based on triangles

The global clustering coefficient is the. number of
closed paths of length 2 (or 6 x triangles) over the
total number of paths of length 2

6 * number of triangles
number of paths of length 2

The global clustering coefficient is the number of

closed triplets (or 3 x triangles) over the total number
of triplets

3 * number of triangles

number of triplets
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Example

Path of length 2 Triangles
213 312 123
214 412
314 413
123321
125 521
325523
132 231
145 541
C=1*6/22=3/11 2>4 452
256 652
456 654

®
&i
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Exercize
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. Path of length 2 Third edge
Exercize 513312 Jes
215512 no
315513 yes
9 123 321 yes
e 132 231 yes
134 431 no
135531 yes
234 432 no

235 532 no

@, e 435 534 no
153 351 yes

0 156 651 no

C=12/32=3/8 157 751 no
356 653 no
357 753 no

657 756 no

UNIVERSITA DEGLI STUDI DI MILANO
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Triplets Closed?

Exercize 213 yes
215 no

315 yes

9 123 yes

e 132 yes
134 no

135 yes

234 no

235 no

@/ e 435 no
153 yes

0 156 no

C=6/16=3/8 157 no
356 no
357 no

657 no

R UNIVERSITA DEGLI STUDI DI MILANO
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Exercize

Number of triangles:.2

e 9 ¢ = __6+number of triangles

number of paths of length 2

=6%2/32=12/32=3/8

@/ _ 3xnumber of triangles
C= .
0 number of triplets

C=3*2/16=6/16=3/8

C=6/16=3/8

UNIVERSITA DEGLI STUDI DI MILANO
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Local Clustering Coefficient

* Local clustering coefficient measures transitivity at the node
level

* Commonly employed for undirected graphs,.it computes how
strongly neighbors of a node v (nodes adjacent to v) are
themselves connected

number of pairs of neighbors of v; that are connected

number of pairs of neighbors of v;

C(v;) =

In an undirected graph, the d
denominator can be rewritten as: (i) —_ f.fi(df — ]_)/2

JNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Local Clustering Coefficient:

C(v)=1 Cvyp)=1/3 Civ)=0

* Thin lines depict connections to neighbors
* Dashed lines are the missing connections among neighbors

* Solid linesiindicate connected neighbors
— When none of neighbors are connected C=0
— When all neighbors are connected C=1
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Pairs of Open or Clustering

friends closed coeff
triad

1 23 closed c=1/3
@ 24 open
# 34 open

2 13 closed c=1/3
15 open
35 open

3 12 closed c=1/1

9 Cc=6/22=3/11 * o SN
5 24 open c=0/3=0

26 open
46 open

6 - i i
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Pairs of Open or Clustering

friends closed coeff
The clustering coefficient triad
distribution therefore is: 1 23 closed c=1/3
24 open
C Frequency 34 open
2 13 closed c=1/3
0) 2/5 15 open
1/3 2/5 35 open
1 1/5 3 12 closed c=1/1
4 15 open c=0
The mean clustering 5 24 open c=0/3=0
coefficient is: 1/3 26 open
46 open
6 - - -
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Average and Global
clustering coefficient

For the previous example, the average clustering is 1/3
while the global clustering is 3/11.

These two common measures of clustering can differ. Here
the average clustering is higher than the overall clustering,
it can also go the other way.

Moreover, it is possible to generate networks where the
two measures can produce very different numbers for the
same.network.
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Exercize
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Pairs of neighbours
Exercize 213
215
315
9 123
e 132
134
135
234
235

@/ e 435
@) 12

157

356

357
657

JNIVERSITA DEGLI STUDI DI MILANO

Connected?

yes
no
yes
yes
yes
no
yes
no
no
no
yes
no
no
no
no
no

c(1)=2/3
c(2)=1/1

c(3)=2/6
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Clustering coefficient
in random network

s AR

J;=1/2

L; represents the number of links between the k; neighbors of node i.

Since edges are independent.and have the same probability p,

< 2L

*The clustering coefficient of random graphs is small.

*C is independent of a node’ s degree k.
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(a) All Networks (b)
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Comparing the average clustering
coeff. of real networks -with the
prediction for random networks

" Ck(k - 1) N’

C decreases with the system size N.

Cis independent of a node’ s
degree k.

The random network model does
not capture the clustering of real
networks.

Instead real networks have a much
higher clustering coefficient than
expected for a random network of
similar N and L.




Clustering coefficient

Random networks Real networks
The clustering coefficient of random A much higher clustering coefficient

graphs is small. than expected for a random network of
similar N and L.

For fixed degree C decreases with

_ Independent of N
the system size N.
C is independent.of a node’ s High-degree nodes tend to have a
degree k. smaller clustering coefficient than low-

degree nodes.

_ <k>
Ci= =7
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Clustering coefficient

A clustering coefficient is a measure of the degree to which
nodes in a graph tend to cluster together. Evidence suggests
that in most real-world networks, and in particular social
networks, nodes tend to create tightly knit groups
characterized by a relatively high density of ties; this likelihood
tends to be greater than the average probability of a tie
randomly established between two nodes.
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Clustering Coefficient

* |n real-world networks, friendships are highly
transitive, i.e., friends of an individual are
often friends with one another

— These friendships form triads -> high average
[local] clustering coefficient
* |n May 2011, Facebook had an average
clustering coefficient of 0.5 for individuals
who had 2 friends.

Web Facebook Flickr LiveJournal Orkut YouTube
0081 0.14 (with 100 friends) 0.31 0.33 0.17 0.13
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Credits

Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Social Media Mining: An Introduction

A Textbook by Cambridge University Press
Chapter3.2.1

Newman, M.E.J.

Networks: An Introduction.
Oxford University Press. 2010.
Chapter 7.9

Albert-LaszI6 Barabasi
Network Science
Chapter 3.9
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Transitivity

Global and Local
clustering coefficient
in undirected networks



Transitivity
Mathematic representation:
— For a transitive relation R; @¢Rb AbRc¢ — aRe

Networks:
— the transitive relation R: connected by a link
— If v,, v, are connected and v,, v, are connected

@ V2 Vl V2
V4, V5 are connected

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

Social Networks:
— the transitive relation R: friendship
— If v, v, are friends and v,, v, are friends

@ Va Vi v,
V4, V5 are friends

Transitivity is when
a friend of my friend is my friend

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

— Perfect transitivity only occurs in networks where each
component is a fully connected graph or clique (a subgraph
in which all nodes are connected to all others)

— Perfect transitivity is a useless concept in social networks as
it never occurs

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

— Partial transitivity is much more useful
— The friend of my friend is not guaranteed to be my friend

— But is far more likely to be my friend than any other node in
the network.

— v, is more likely to be friend of v, than v.
— Is v, more likely to be friend of v, than v,?

UNIVERSITA DEGLI STUDI DI MILANO
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Transitivity

— Partial transitivity is much more useful
— The friend of my friend is not guaranteed to be my friend

— But is far more likely to be my friend than any other node in
the network.

— v, is more likely to be friend of v; than v,
— v, has the same probability to be friend of v; and v,

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA



Global Clustering Coefficient
Measure based on paths

We want to quantify the level of transitivity of a network

We can measure it by counting the paths of length two and
check whether the third edge exists

co [Paths of Length 2 that have the third edge|
- [Paths of Length 2|

1 2 A path of length 2 which has the third
link is called closed path as it forms a
loop of length 3. [Closed paths are
also called closed triad in social
networks.]

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient

co [Paths of Length 2 that have the third edge|

[Paths of Length 2| Note that paths, also

closed paths, have a

Path of length 2 Third edge direction in undirected

213 32 network, too.

312 23 Two paths that
traverse the same links

123 31 but in opposite

321 13 direction are counted
separately.

132 21 (1 2

231 12

C=6/6 e

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient

Co |Paths of Length 2 that have the third edge|
- [Paths of Length 2,

Path of length 2 Third edge @ @
123 - /

- | ©

C=0/2=0
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Example

Path of length 2 Third edge
@ . 213 312 yes
/ K) (:) 214 412 no
314 413 no
Ay /2 123 321 yes
125521 no
325523 no
132 231 yes
145 541 no
C=6/22=3/11 254 452 no
256 652 no
456 654 no

[Note: you could divide both the numerator and the denominator by
two, by considering paths in one direction only]

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient

Measure based on triples

If we have a path {1,2,3} (and {3,2,1}) of length 2, it is also true to
say that nodes 1 and 3 have a common neighbour: node 2.
If the triad {1,2,3}is closed, nodes 1 and 3 are themselves friends.

The clustering coefficient can be thought as the
fraction of pairs of people with a common friend
who are themselves friend.

UNIVERSITA DEGLI STUDI DI MILANO

7 DIPARTIMENTO DI INFORMATICA



Clustering coefficient

a friend of my friend is my  pairs of people with a common
friend friend who are themselves friend.
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Global Clustering Coefficient
Measure based on triplets

The clustering coefficient can be thought as the fraction of pairs of people with
a common friend who are themselves friend.

We can also define the global clustering coefficient based on the concept of
(connected) triplets of nodes.

A connected triplet consists of three nodes {v,, v,, v;}, that are connected by
the two links (v,, v,) and (v,, v;). The third link (v,, v3) can be present (closed
triplet) or not (open triplet).

5o S
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Global Clustering Coefficient
Measure based on triples

Triplets (open) Triplets (closed)

£2,1,3} [with links (2,1) and (1,3)] 1213} [with links (2,1) and (1,3)
{1,2,3} [with links (1,2) and (2,3)]

{1,3,2} [with links (1,3) and (3,2)]




Global Clustering Coefficient
Measure based on triples

The global clustering coefficient is the number of
closed triplets over the total number of triplets (both
open and closed):

number of closed triplets

total number of triplets

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient
Measure based on triples

Triplets (open) Triplets (closed)
213 213

123
C=0/2=0 132

C=3/3=1




Example

Triplets
213

214
314
123

C=3/11

ﬁi

125
325
132
145
254
256
456

UNIVERSITA DEGLI STUDI DI MILANO

Closed?
yes
no
no
yes
no
no
yes
no
no
no
no
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Global Clustering Coefficient
Measure based on triangles

A triangle consists of six paths.
213,312,123, 321, 132, 231
A triangle consists of three triples, one centered on each of the

nodes.
. )@

213, 123, 231

UNIVERSITA DEGLI STUDI DI MILANO
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Global Clustering Coefficient
Measure based on triangles

The global clustering coefficient is the number of

closed paths of length 2 (or 6 X triangles) over the
total number of paths of length 2

6 * number of triangles
number of paths of length 2

The global clustering coefficient is the number of

closed triplets (or 3 x triangles) over the total number
of triplets

3 * number of triangles

number of triplets

UNIVERSITA DEGLI STUDI DI MILANO
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Example

Path of length 2 Triangles
213 312 123
214 412
314 413
123 321
125521
325523
132 231
145 541
C=1*6/22=3/11 2>4 452
256 652
456 654

®
&i
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Exercize
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Local Clustering Coefficient

* Local clustering coefficient measures transitivity at the node
level

« Commonly employed for undirected graphs, it computes how
strongly neighbors of a node v (nodes adjacent to v) are
themselves connected

number of pairs of neighbors of v; that are connected

number of pairs of neighbors of v;

C(v;) =

In an undirected graph, the d
denominator can be rewritten as: (i) —_ f.fi(df — ]_)/2
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Local Clustering Coefficient:

C(v)=1 Cv)=1/3 Civ)=0

* Thin lines depict connections to neighbors
* Dashed lines are the missing connections among neighbors

* Solid lines indicate connected neighbors
— When none of neighbors are connected C=0
— When all neighbors are connected C=1

JNIVERSITA DEGLI STUDI DI MILANO
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Pairs of Open or Clustering

friends closed coeff
triad

1 23 closed c=1/3
@ 24 open
# 34 open

2 13 closed c=1/3
15 open
35 open

3 12 closed c=1/1

9 C=6/22=3/11 * o SN
5 24 open c=0/3=0

26 open
46 open

6 - i i

UNIVERSITA DEGLI STUDI DI MILANO
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Pairs of Open or Clustering

friends closed coeff
The clustering coefficient triad
distribution therefore is: 1 23 closed c=1/3
24 open
C Frequency 34 open
2 13 closed c=1/3
0) 2/5 15 open
1/3 2/5 35 open
1 1/5 3 12 closed c=1/1
4 15 open c=0
The mean clustering 5 24 open c=0/3=0
coefficient is: 1/3 26 open
46 open

6 - _ _

UNIVERSITA DEGLI STUDI DI MILANO
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Average and Global
clustering coefficient

For the previous example, the average clustering is 1/3
while the global clustering is 3/11.

These two common measures of clustering can differ. Here
the average clustering is higher than the overall clustering,
it can also go the other way.

Moreover, it is possible to generate networks where the
two measures can produce very different numbers for the
same network.

UNIVERSITA DEGLI STUDI DI MILANO
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Exercize
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Clustering coefficient
in random network

s AR

C;=1/2

L; represents the number of links between the k; neighbors of node i.

Since edges are independent and have the same probability p,

kk -1) I VR
LT i> Ty PN

*The clustering coefficient of random graphs is small.

*C is independent of a node’ s degree k.

UNIVERSITA DEGLI STUDI DI MILANO
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(a) All Networks (b)
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Comparing the average clustering
coeff. of real networks with the
prediction for random networks

2L)

=T - P

_ _ ko
"k (k 1) '

N

C decreases with the system size N.

Cis independent of a node’ s
degree k.

The random network model does
not capture the clustering of real
networks.

Instead real networks have a much
higher clustering coefficient than
expected for a random network of
similar N and L.




Clustering coefficient

Random networks Real networks
The clustering coefficient of random A much higher clustering coefficient

graphs is small. than expected for a random network of
similar N and L.

For fixed degree C decreases with

_ Independent of N
the system size N.
C is independent of a node’ s High-degree nodes tend to have a
degree k. smaller clustering coefficient than low-

degree nodes.

_ <k>
Ci= =7~
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Clustering coefficient

A clustering coefficient is a measure of the degree to which
nodes in a graph tend to cluster together. Evidence suggests
that in most real-world networks, and in particular social
networks, nodes tend to create tightly knit groups
characterized by a relatively high density of ties; this likelihood
tends to be greater than the average probability of a tie
randomly established between two nodes.

UNIVERSITA DEGLI STUDI DI MILANO
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Clustering Coefficient

* |n real-world networks, friendships are highly
transitive, i.e., friends of an individual are
often friends with one another

— These friendships form triads -> high average
[local] clustering coefficient
* |n May 2011, Facebook had an average
clustering coefficient of 0.5 for individuals
who had 2 friends.

Web Facebook Flickr LiveJournal Orkut YouTube
0.081 0.14 (with 100 friends) 0.31 0.33 0.17 0.13
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Credits

Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Social Media Mining: An Introduction

A Textbook by Cambridge University Press
Chapter3.2.1

Newman, M.E.J.

Networks: An Introduction.
Oxford University Press. 2010.
Chapter 7.9

Albert-LaszI6 Barabasi
Network Science
Chapter 3.9
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Strong and weak ties
Bridging the local and the global

The strength of weak ties



Granovetter’s paper

Mark Granovetter (born October 20, 1943): an American
sociologist and professor at Stanford University.

1969: submitted his paper to the American Sociological
Review—rejected!

1972, submitted a shortened version to the American
Journal of Sociology—published in 1973 (Granovetter,
1973).

According to Current Contents, by 1986, the Weak Ties
paper had become a citation classic, being one of the
most cited papers in sociology

UNIVERSITA DEGLI STUDI DI MILANO
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Granovetter’s paper
Bridging the local and the global

“A fundamental weakness of current sociological theory is that it does not
relate micro-level interactions to macro-level patterns in any convincing

way. Large-scale statistical, as well as qualitative, studies offer a good

deal of insight into such macro phenomena as social mobility, community
organization, and political structure. At the micro level, a large and increasing
body of data and theory offers useful and illuminating ideas about what
transpires within the confines of the small group. But how interaction in
small groups aggregates to form large-scale patterns eludes us in most cases.
| will argue, in this paper, that the analysis of processes in interpersonal
networks provides the most fruitful micro-macro bridge. In one way or
another, it is through these networks that small-scale interaction becomes
translated into large-scale patterns, and that these, in turn, feed back into

small groups.»

UNIVERSITA DEGLI STUDI DI MILANO
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THE STRENGTH OF TIES

“Most intuitive notions of the "strength" of an interpersonal tie should
be satisfied by the following definition:

the strength of a tie is a (probably linear) combination of the amount of
time, the emotional intensity, the intimacy (mutual confiding), and the
reciprocal services which characterize the tie.

Each of these is somewhat independent of the other, though the
set is obviously highly intracorrelated.

Discussion of operational measures of weights attaching to each of
the four elements is postponed to future empirical studies.

It is sufficient for the present purpose if most of us can agree, on a
rough intuitive basis, whether a given tie is strong, weak, or absent.»

UNIVERSITA DEGLI STUDI DI MILANO
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Granovetter’s experiment

Granovetter interviewed people about how they discovered
their jobs

Most people did so through personal contacts, often
described as acquaintances and not close friends

WHY?

Basic intuition: close friends are part of triad closures and
would know what you know and would know others who
would know what you know

”It is the distant acquaintances who are actually to thank for
crucial information leading to your new job, rather than your
close friends!”

UNIVERSITA DEGLI STUDI DI MILANO
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From dyads to small structures
Triadic closure

“The hypothesis which enables us to relate dyadic ties to larger
structures is:

The stronger the tie between A and B, the larger the proportion
of individuals to whom they will both be tied, that is, connected

by a weak or strong tie.

This overlap in their friendship circles is predicted to be least when their tie
is absent, most when it is strong, and intermediate when it is weak.”

Motivations: amount of time spent together, similarity

UNIVERSITA DEGLI STUDI DI MILANO
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From dyads to small structures
Triadic closure

“The theory of cognitive balance, as formulated by Heider (1958) and
especially by Newcomb (1961, pp. 4-23), also predicts this result.

If strong ties A-B and A-C exist, and if B and C are aware of one another,
anything short of a positive tie would introduce a "psychological strain" into
the situation since C will want his own feelings to be congruent with those of

his good friend, A, and similarly, for B and his friend, A.

Where the ties are weak, however, such consistency is psychologically less
crucial.”
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Bridging local to global

“To derive implications for large networks of
relations, it is necessary to frame the basic
hypothesis more precisely.

This can be done by investigating the possible
triads consisting of strong, weak, or absent ties
among A, B, and any arbitrarily chosen friend
of either or both”

UNIVERSITA DEGLI STUDI DI MILANO
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Strong triadic closure

A more extreme version of the triadic closure
Strong Triadic Closure Property (Granovetter):

If a node A has two strong links (to B and C) then a link (strong
or weak) must exist between B and C.

A&
° Forbidden triad

S e
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Bridge
Let us now introduce another important concept:
bridges
Edge between A and B is a bridge if, when deleted, it
would make A and B lie in 2 different components

E G F H

Bridges are presumably extremely rare in real social
networks.
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Local bridge

An edge is a local bridge if its endpoints have no friends In
common — If deleting the edge would increase the distance of

the endpoints to a value more than 2.
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Local bridge

An edge is a local bridge if its endpoints have no friends In
common — If deleting the edge would increase the distance of

the endpoints to a value more than 2.

M N
/
| Triangle
/ \\ —>not a local
bridge

C Aﬁx-B

s
X

= G F H
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Bridges are weak ties

If node A satisfies the STCP and is involved in at least two strong ties, then any local
bridge it is involved in must be a weak tie.

Proof by contradiction (AB is strong and is a bridge)

“Consider the strong tie A-B: if A has another strong tie to C, then forbidding
the triad of figure 1 implies that a tie exists between C and B, so that the path
A-C-B exists between A and B; hence, A-B is not a bridge.

Weak ties suffer no such
restriction, though they are
certainly not automatically
bridges.

What is important, rather, is
that all bridges are weak
ties.”
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The strength of weak ties

Intuitively speaking, this means that whatever is to be diffused
can reach a larger number of people, and traverse greater social
distance (i.e., path length), when passed through weak ties
rather than strong.

If one tells a rumor to all his close friends, and they do likewise,
many will hear the rumor a second and third time, since those
linked by strong ties tend to share friends.
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Almost local bridge

Since a very small fraction of the links in social networks are local
bridges, it makes sense to soften this definition

We define the neighborhood overlap of an edge connecting A and
B to be the ratio:

number of nodes who are neighbors of both A and B

number of nodes who are neighbors of at least one of A or B

where in the denominator we don't count A or B themselves

UNIVERSITA DEGLI STUDI DI MILANO
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Almost local bridge

Neighborhood overlap:

O(A, B) _ n(A)Nn(B)

n(A)Un(B)




Almost local bridge

Neighborhood overlap: O(A, B) = Z%ﬁ%gzggg
M N
edges with very

I /

A
X

overlap are almost"
local bridges.

L \ small neighborhood
D

= G F H
O(A,B)=1/9
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Almost local bridge

Neighborhood overlap: O(A,B) = ngjggzgg;

N
\ Local bridge are

A \( 7 \ mos o
<]
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Case-study:
mobile phone networks

Networks, Crowds, and Markets:

Reasoning About a Highly Connected
0.2¢ {  World
3 David Easley e Jon Kleinberg
0.15¢ - Cambridge University Press, 2010
s 9  Chapter 3
6 01} :
v Do Structure and tie strengths in mobile
0.057 | communication networks
JP Onnela, J Saramaki, J Hyvonen, G Szabd,

00 02 o0z o6 os 1 DlLlazer, KKaski, J Kertész, A-L Barabasi
Pcum (w) Proceedings of the National Academy of
Sciences 104 (18), 7332, 2007

Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing St rength:

tie strength is consistent with the theoretical predictions from Section 3.2. (Image from .
B3 P (fmag aggregated duration
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Case-study: Facebook

Three categories of links based on usage over a one-month observation period.

* Alink represents reciprocal (mutual) communication, if the user both sent
messages to the friend at the other end of the link, and also received
messages from them during the observation period.

 Alink represents one-way communication if the user sent one or more
messages to the friend at the other end of the link (whether or not these
messages were reciprocated).

 Alink represents a maintained relationship if the user followed information
about the friend at the other end of the link, whether or not actual
communication took place;

Networks, Crowds, and Markets: Reasoning About a Highly Connected World
David Easley e Jon Kleinberg - Cambridge University Press, 2010 - Chapter 3

Facebook:
Cameron Marlow
http://overstated.net/2009/03/09/maintained-relationships-on-facebook
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http://overstated.net/2009/03/09/maintained-relationships-on-facebook

Case-study: Facebook

Active Network Sizes

—— Maintained Relationships
— One-way communication
—— Reciprocal communication

40 —

Passive engagment:

even for users who report very

large numbers of friends on

their profile pages (on the order

of 500), the number with whom

they actually communicate is

generally between 10 and 20,

and the number they follow

T T T o T B even passively (e.g. by reading
etworksize about them) is under 50

# of People
1
[=]
1

Figure 3.9: The number of links corresponding to maintained relationships, one-way com-

munication, and reciprocal communication as a function of the total neighborhood size for

users on Facebook. (Image from [286].)
“The stark contrast between reciprocal and passive networks shows the effect of
technologies such as News Feed. If these people were required to talk on the phone to each
other, we might see something like the reciprocal network, where everyone is connected to
a small number of individuals. Moving to an environment where everyone is passively
engaged with each other, some event, such as a new baby or engagement can propagate

very quickly through this highly connected network."
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Case-study: Facebook

All Friends Maintained Relationships

Figure 3.8: Four different views of a Facebook user’s network neighborhood, showing the
j jvely t0 ol doclorad fiondabine qpaintained relation-
Image from

structure of linkseareanandine roano o
ships, one-way
286].)
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Number of Friends

15

10

Case-study: Twitter

Even for users who maintain
very large numbers of weak
ties on-line, the number of

. strong ties remains relatively
modest, in this case
stabilizing at a value below
50 even for users with

over 1000 followees.

o : ) 1
o 200 400 600 800 1000 1200
Number of followees

Figure 3.10: The total number of a user’s strong ties (defined by multiple directed messages)
as a function of the number of followees he or she has on Twitter. (Image from [222].)

Networks, Crowds, and Markets: Reasoning About a Highly Connected World
David Easley e Jon Kleinberg - Cambridge University Press, 2010 - Chapter 3

Huberman, Bernardo A. and Romero, Daniel M. and Wu, Fang, Social Networks
that Matter: Twitter Under the Microscope (December 5, 2008).
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Strong and weak ties in
social networks

Mobile communication networks:
Structure and tie strengths in mobile communication networks
JP Onnela, J Saramaki, J Hyvbnen, G Szabd, D Lazer, K Kaski, J Kertész, A-L

Barabasi
Proceedings of the National Academy of Sciences 104 (18), 7332, 2007

Facebook:

Cameron Marlow
http://overstated.net/2009/03/09/maintained-relationships-on-facebook

Twitter:

Huberman, Bernardo A. and Romero, Daniel M. and Wu, Fang, Social
Networks that Matter: Twitter Under the Microscope (December 5, 2008).
Available at

SSRN: https://ssrn.com/abstract=1313405 or http://dx.doi.org/10.2139/ssrn.13

UNIVERSITA DEGLI STUDI DI MILANO

%/ | DIPARTIMENTO DI INFORMATICA


http://overstated.net/2009/03/09/maintained-relationships-on-facebook
https://ssrn.com/abstract=1313405
http://dx.doi.org/10.2139/ssrn.1313405

Sources

The Strength of Weak Ties

Author(s): Mark S. Granovetter

Source: American Journal of Sociology, Vol. 78, No. 6 (May, 1973), pp. 1360-1380
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Six degree of separation
Small-world networks

Small-world model



Six degree of separation

The small-world phenomenon



Stanley Milgram’s experiment (1960)

 Random people from Nebraska
were asked to send a letter (via
intermediaries) to a stock broker
in Boston

* S/he could only send to someone
with whom they were on a first-
name basis

Among the letters that reached the
target, the average path length was
SiX.
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Stanley Milgram’s experiment
(1960)

Six Degrees? From Milgram to Facebook

(a) In Milgram's experiment 64 of the 296
letters made it to the recipient. The fig-
ure shows the length distribution of the
completed chains, indicating that some
letters required only one intermediary,
while others required as many as ten. The
mean of the distribution was 5.2, indicat-
ing that on average six ‘handshakes’ were
required to get a letter to its recipient. The

0.7 . . : . playwright John Guare renamed this ‘six

Worldwide - _ degrees of separation’ two decades later.

USA = After [25].

10 -

NUMBER OF CHAINS

0 L e F . E—
01 2 3 4 5 6 7 8 9 10112

NUMBER OF INTERMEDIARIES

. - (b) The distance distribution, p,, for all pairs

of Facebook users worldwide and within
the US only.Using Facebook’s N and L (3.19)
predicts the average degree to be approx-
imately 3.90, not far from the reported
four degrees. After [18].

Source: Barabasi’s book
Six Degrees? From Milgram to Facebook

UNIVERSITA DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA




Facebook: four degree «of separation

“We decided to extend our

e ° o it experiments in two directions:
+ i % regional and temporal. We thus
o X U8 analyse the entire Facebook graph
o o (fb), the SA subgraph (us), the
Em— a °\ Italian subgraph (it) and the
E -—\-__;‘:\*ﬁs Swedish (se) subgraph. We also
el = a p——— ¥ ¥ analysed a combination of the
< Italian and Swedish graph (itse) to
o check whether combining two
regional but distant networks could
o significantly change the average
! ! ! ! ! . distance, in the same spirit as in the
2007 2008 2009 2010 2011 curr o )
Year original Milgram’s”

Figure 3. The average distance graph. See also Table 6.

In May 2011, the average path length between individuals in the Facebook graph
was 4.7. (4.3 for individuals in the US)

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. 2012. Four degrees of separation.
In Proceedings of the 4th Annual ACM Web Science Conference (WebSci ’12). Association for Computing Machinery,
New York, NY, USA, 33—42. DOI:https://doi.org/10.1145/2380718.2380723
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Average distance in social networks

Web Facebook Flickr LiveJournal Orkut YouTube
16.12 47 5.67 5.88 4.25 5.10
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The small-world model



Short paths

Should we be surprised by the fact that the paths between random pairs
of people in social networks are so short?

Suppose each of us knows more than 100
other people on a first-name basis (in fact,
for most people, the number is significantly
larger). Then, taking into account the fact
that each of your friends has at least 100
friends other than you, you could in principle
be two steps away from over 100 * 100 =
10000 people. Taking into account the 100
friends of these people brings us to more
than 100 * 100 *100 = 1000000 people who
in principle could be three steps away.

In other words, the numbers are growing by powers of 100 with each step,
bringing us to 100 million after four steps, and 10 billion after five steps.
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Random graph: diameter

Random graphs tend to have a tree-like topology with almost
constant node degrees.

<k> nodes at distance one (d=1).
<k>? nodes at distance two (d=2).
<k>3nodes at distance three (d =3).

<k>4nodes at distance d.

<k>dmax 1 _q
(k) -1

» (k)™ =

Z
[
=
+
—~
>
~—
+
—~
>
~—

(N}
+
+
~
>
~—
o
3
&
I
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Small World

In most networks this offers a better approximation to
the average distance between two randomly chosen
nodes, (d), thanto d,_ ..

<d>=

Small world phenomena: the property that the average
path length or the diameter depends logarithmically on
the system size.

"Small” means that (d) is proportional to log N
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NETWUORK ‘- ! A uf) J

Irdecr!

Acior Netmark

Claton Neltwark

Given the huge differences in scope, size, and average degree, the agreement is excellent.
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Do social networks
deviate from this model?

( () () @ () your friends

SO0000CO00O00Q0O0OOOOD 00 QY friendsof your friends

(a) Pure exponential growth produces a small world

your friends

friends of your friends

(b) Triadic closure reduces the growth rate

“The difficulty already manifests itself with
the second step, where we conclude that
there may be more than 10000 people
within two steps of you.

As we've seen, social networks abound in
triangles (sets of three people who mutually
know each other) and in particular, many of
your 100 friends will know each other. As a
result, when we think about the nodes you
can reach by following edges from your
friends, many of these edges go from one
friend to another, not to the rest of world.
The number 10000 came from assuming
that each of your 100 friends was linked to
100 new people; and without this, the

Figure 20.1: Social networks expand to reach many people in only a few stepsr.‘umber Of frlendS you COUId reaCh In two
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Watts — Strogatz model (1998)
Crou )

QR R yourtiends Can we make up a simple model

......................... i o your s that exhibits both of the

features we've been discussing:

many closed triads, but also very
short paths?

(a) Pure exponential growth produces a small world

your friends

Yy  friends of your friends

(b) Triadic closure reduces the growth rate

Figure 20.1: Social networks expand to reach many people in only a few steps.

Documentary: https://www.cornell.edu/video/emergence-of-network-science
Start: six-degree of separation
Minutes 12-16: small-world model
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Watts — Strogatz model (1998)

Regular lattice + rewiring

Triangles High clustering
+ +
Weak ties Short paths
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regular ring lattice

of degree c:
Algorithm 4.1 Small-World Generation Algorithm nodes are

Require: Number of nodes [V], mean degree ¢, parameter f§
1: return A small-world graph G(V, E)

connected to their

2 G= A regular ring lattice with |V| nodes and degree ¢ previous ¢/2 and
% for node v; (starting from v4), and all edges e(z;, v;),1 < j do foIIowing C /2
4 p=>5elect a node from V uniformly at random. ichb
5 if rewiring e(w;, v;) to e(ty, vy) does not create loops in the graph or nNeignoors.
multiple edges between v; and v, then

f: rew ire {7y, ;) with probability : £ = E—{e(v;, v;)}, E = EUle(v;, 7))
7:  endif
& end for
o Return G{V,E)

. , AR —
As in many network generating 7 - % h/'f \ “§;\ﬁ
algorithms Ih .‘; K\/& N

. ™ ) .

« Disallow self-edges E:Iz:\ ;;' O SN L
« Disallow multiple edges 1\-i.':t--r.g:‘.%iﬁ- b

rewiting of links
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Case-studies

Original Network Simulated Graph
Network Size Average | Average | C | Average | C

Degree | Path Path

Length Length

Film Actors 225,226 | 61 3.65 0.79 | 4.2 0.73
Medline 1,520,251} 18.1 4.6 0.56 | 5.1 0.52
Coauthorship
E.Coli 282 7.35 29 0.32| 4.46 0.31
C.Elegans 282 14 2.65 0.28| 3.49 0.37
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Social Media Mining
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Networks, Crowds, and Markets: Reasoning About a Highly Connected World
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Chapter 3
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Balance and Status

 Measuring stability based
on an observed network

Social Media Mining Network Measures | 1



Social Balance Theory

 Social balance theory discusses consistency in
friend/foe relationships among individuals.
Informally, social balance theory says friend/foe
relationsh 7y, friend of my friend is my friend,
The friend of my enemy is my enemy,
The enemy of my enemy is my friend,
The enemy of my friend is my enemy,.

* In the network
— Positive edges demonstrate friendships (w;;=1)
— Negative edges demonstrate being enemies (w;;=-1)
 Triangle of nodes i, j, and k, is balanced, if and only if
— w;; denotes the value of the edge between nodes i and j
W; W jxWy; = 0

Social Media Mining Network Measures | 2




Social Balance Theory: Possible Combinations

balanced balanced balanced balanced
_ . + + . +
e—¢ A —@
unbalanced unbalanced unbalanced unbalanced

For any cycle if the multiplication of edge values become
positive, then the cycle is socially balanced

Social Media Mining Network Measures | 3




Social Status Theory

 Status defines how prestigious an individual is
ranked within a society

 Social status theory measures how consistent
individuals are in assigning status to their
neighbors

If X has a higher status than Y and Y has a higher status than Z, then
X should have a higher status than Z.

Social Media Mining Network Measures | 4



Social Status Theory: Example

Unstable configuration Stable configuration

* A directed ‘+’ edge from node X to node Y shows
that Y has a higher status than X and a ‘-’ one
shows vice versa

Social Media Mining Network Measures | 5
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Exercize

. Consider an undirected network with 10 nodes and 5 links. Model it with an Erdos-
Renyi random network G(N, p).

. Consider a directed network with 10 nodes and 5 links. Model it with an Erdos-

Renyi random network G(N, p).

. Consider an undirected network with 10 nodes and an average degree equal to 1.
Model it with an Erdos-Renyi random network G(N, p).

. Consider a directed network with 10 nodes and mean in-degree and out-degree equal
to 1. Model it with an Erdos-Renyi random network.G(N, p).

. Consider an undirected network with 10 nodes and density equal to 0.1. Model it
with an Erdos-Renyi random network G(N, p).

. Consider a directed network with 10 nodes and density equal to 0.1. Model it with
an Erdos-Renyi random network G(N, p).



Social Media Mining

Influence and Homophily
Assortativity
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Social Forces

 Social forces connect individuals in different ways

« Among connected individuals, one often observes high
social similarity or assortativity

— This similarity is exhibited by similar behavior, similar interests,

similar activities, and shared attributes such as language, among
others.

— In networks with assortativity, similar nodes are connected to
one another more often than dissimilar nodes.

— In social networks, a high similarity between friends is observed

* Friendship networks are examples of assortative
networks

Social Media Mining Influence and Homophily | 2



Why connected people are similar?

 Influence

 Influence is the process by which an individual (the
influential) affects another individual such that the
influenced individual becomes more similar to the
influential figure.

 If most of one’s friends switch to a mobile company, he might be
influenced by his friends and switch to the company as well.

 Homophily
— It is realized when similar individuals become friends due to
their high similarity.
» Two musicians are more likely to become friends.
* Confounding
— Confounding is environment’s effect on making individuals
similar
» Two individuals living in the same city are more likely to become
friends than two random individuals

Social Media Mining Influence and Homophily | 3




Influence, Homophily, and Confounding

@
¢

Similarity

T

( Confounding J

9JUan|ju]

AjlydowoH

v
(_ Connection )
Homophily Influence
Similar individuals Friends become
become friends similar

Social Media Mining Influence and Homophily | 4




Source of Assortativity in Networks

Both influence and
homophily generate
similarity in social
networks but in
different ways
 Homophily
selects similar
nodes and links
them together

 Influence makes
the connected
nodes similar to
each other

Social Media Mining Influence and Homophily | 5




Assortativity: An Example

The city's draft tobacco control strategy says more than
60% of under-16s in Plymouth smoke regularly

News Sport Weather Travel v Radio More...

BBC RADIO DEVON
Listen Live Listen Again

BBC Local Page last updated at 14:58 GMT, Monday, 14 June 2010 15:58 UK

Devon E-mail this to a friend & Printable version
Things to do

Patches for Plymouth's young smokers

Nature & Outdoors

e By Jo Irving » MORE FROM DEVON
./ BBC Devon website
Religion & Ethics NEWS

Arts & Culture

SPORT

BBC Introducing
TV & Radio WEATHER
Local BBC Sites TRAVEL
News
Sport
Weather ELSEWHERE ON THE WEB
Travel » Plymouth NHS Trust Stop Smoking Service

Neighbouring Sites
Cornwall
Dorset
Somerset

Related BBC Sites
England

=

- v & U
More than 60% of Plymouth's under-16s smoke

Social Media Mining Influence and Homophily | 6




Smoking Behavior In a Group of Friends: why is
happening?

 Smoker friends influence their

non-smoker friends Influence
« Smokers become friends Homophily
» There are lots of places that Confounding

people can smoke

Social Media Mining Influence and Homophily | 7



Our goal in this chapter?

 How can we measure assortativity?

« How can we measure influence or homophily?

[

« How can we model influence or homophily? NO

« How can we distinguish the two? NO

]

Social Media Mining Influence and Homophily | 8



Measuring Assortativity

Social Media Mining Influence and Homophily | 9



Measuring Assortativity

Nominal attributes

Social Media Mining Influence and Homophily | 10



Measuring Assortativity for Nominal Attributes

 Where nominal attributes are assigned to nodes
(language), we can use edges that are between
nodes of the same type (i.e., attribute value) to
measure assortativity of the network

— Node attributes could be nationality, race, sex, etc.

1 1
— ) 0@, 1) = 5= ) Ayd(tH@), 1)
(vi,vj)eE ]
|0, itx#y
t(v;) denotes type of vertex v, o, y) B { 1, ifx= Yy

Kronecker delta function

Social Media Mining Influence and Homophily | 11



Assortativity Significance

 Assortativity significance measures the difference

between the measured assortativity and its expected
assortativity

— The higher this value, the more significant the assortativity
observed

« Example

— Consider a school where half the population is white and
half the population is Hispanic. It is expected for 50% of the
connections to be between members of different races. If all
connections in this school were between members of
different races, then we have a significant finding

Social Media Mining Influence and Homophily | 12



Assortativity Significance: Measuring

Assortativity The expected assortativity in the whole
graph
did,
Q = 5- Z"Al]éa(v) H©)) - S 0(H(0), 1))

'j

= — Z}AU mf NGCHRIED))

This measure Is called modularity
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Normalized Modularity

The maximum happens when all vertices of the same type are connected
to one another

-Qrmrmufized — ’
Qmm:

7 LA = m‘f:’)éu(m) t(v}-))
X 3 Lij Aijo(H(©i), H(©))) = 5 Z:; 5 2 8(H), F(v))
- L;(Aff — ) (H(w:), o))
a2 = 5 Zf}- 2L 5(H(v:), H(0;))
YAy = )5t (0r), (7))

2m — Y5 M5 (Hoy), Hoy)
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Modularity: Matrix Form

« Let A € R™* denote the indicator matrix and
let k denote the number of types

AL i) =
KTV 0, if Hx) £k

« The Kronecker delta function can be
reformulated using the indicator matrix

5( Hwy), H(v;) ) Zaﬂria%

» Therefore,
erelore, (AAT),; = 8(H©,), H0)))
‘Social Media Mining Influence and Homophily | 15




Normalized Modularity: Matrix Form

Let Modularity matrix be:
where d € R™!

B — A - ddT/Zm Is the degree vector

Then, modularity can be reformulated as

= om Z(A,} - ) 5( t(Uz) tH(v;) ) = ziTr(BAAT) _ L Tr(ATBA)

i~ _—

(AA )i j
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Modularity Example

o o ‘000 1 1] "1 07 0
v loot11| J1o0|, [2]
A=l110 0|20 19| |/m=4
e‘o 110 0| 0 1| 2
05 -05 05 05
05 -05 05 05
_ . T _
B=A-dd'/2m=1 oo 5 g5 _05
05 05 -05 -05
1

—Tr(ATBA) = -0.5.
2m

the number of edges between nodes of the same color is less than the expected

number of edges between them
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Measuring Assortativity

Ordinal attributes
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Measuring Assortativity for Ordinal Attributes

« A common measure for analyzing the
relationship between ordinal values is
covariance.

It describes how two variables change together.

e In our case we are interested in how values of
nodes that are connected via edges are
correlated.
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Covariance Variables

« We construct two variables X; and Xy, where for
any edge (v;; v;) we assume that x; is observed
from variable X; and x; is observed from variable
Xe.

 In other words, X, represents the ordinal values
associated with the left node of the edges and Xj

represents the values associated with the right
node of the edges

* Our problem is therefore reduced to computing
the covariance between variables X; and X;
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Covariance Variables: Example

18 21

List of
edges:

((A, O),
(C, A),
(C, B),
(B, C))

e X, :(18, 21, 21, 20)
¢ Xi:(21,18, 20, 21)
9

E(Xp) = E(XRr),

L'T(Xf__) — L’T(XR) .
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Covariance

For two given column variables X; and X; the covariance is

o(Xp, Xg) = E[(Xp - E[X ])(Xg — E[Xg])]
= E[XpXr — XLE[XR] - E[X.]Xr + E[XL]E[XR]]
= E[X.Xr] — E[XL]E[XRr] — E[XL]E[XR] + E[X.]E[XR]
= E[X.XRr] — E[X.]E[XRr]. ‘

E(X,) is the mean of the variable and E(X; X;) is the mean of
the multiplication

- ~ XiXp)i  Xidix

Bl = E{Xxp) = 'm 2m
1 Zi.Ai-xi.’C'
SRV
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Covariance

Y (XLJ XR )

E[ X  Xgr| — E[ X |E[XR]
Zij Afjxixj Z” djdj?f;jl’j
2m (2m)?

1 did
%IZJ‘(A” > )Xij.
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Normalizing Covariance

Pearson correlation P(X,Y) is the normalized 7(X., XR)
version of covariance p(Xp, XR) = S
0(Xp)o(XR)

In our case: 0(X;) = 0(XR)

O(XL/ XR)

o(Xp)? '
LY (A;— %% yex,
2m =iij 1] 2m ]

E[(X1)?] — (E[XL])?
d;d;
ﬁ Zij( Aij - 27,] )xixj
dd )
# Zij Aifxz'z 2m Z:l] 2m x’x]
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Correlation Example

18 21
®n

18 271 7
21 18
AL = 21 / XR = 20
20 | 21

p(XL, XR) = —0.67.
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Social Influence

 Measuring Influence
 Modeling Influence
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Social Influence: Definition

* the act or power of producing an effect without
apparent exertion of force or direct exercise of
command
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Measuring the Influence
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Measuring Influence

« Measuring influence is assigning a number to each
node that represents the influential power of that
node

 The influence can be measured either based on
prediction or observation
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Prediction-based Measurement

 In prediction-based measurement, we assume that an
individual’s attribute or the way she is situated in the
network predicts how influential she will be.

« For instance, we can assume that the gregariousness
(e.g., number of friends) of an individual is correlated
with how influential she will be. Therefore, it is
natural to use any of the centrality measures
discussed in Chapter 3 for prediction-based influence
measurements.

* An example:

— On Twitter, in-degree (number of followers) is a benchmark
for measuring influence commonly used
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Observation-based Measurement

 In observation-based we quantify influence of an
individual by measuring the amount of influence
attributed to the individual

— When an individual is the role model

e Influence measure: size of the audience that has been
influenced

— When an individual spreads information:

 Influence measure: the size of the cascade, the population
affected, the rate at which the population gets influenced

— When an individual increases values:

e Influence measure: the increase (or rate of increase) in the
value of an item or action
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Case Studies for Measuring
Influence in Social Media

 Measuring Social Influence on
Blogosphere

 Measuring Social Influence on Twitter

Social Media Mining Influence and Homophily | 32



Measuring Social Influence on Blogosphere

« The goal of measuring influence in blogosphere
is to figure out most influential bloggers on the
blogosphere

* Due to limited time an individual has, following
the influentials is often a good heuristic of
filtering what’s uninteresting

« One common measure for quantifying influence
of bloggers is to use indegree centrality

* Due to the sparsity of in-links, more detailed
analysis is required to measure influence in
blogosphere
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iFinder: A System to measure influence on
blogsphore

inlinks < 3 . outlinks
5P >
Influence “coming in” Influence “going out”
through inlinks through outlinks
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Social Gestures

Recognition
— Recognition for a blogpost is the number of the links that point to
the blogpost (1n-hnks%.
» Let I, denotes the set of in-links that point to blogpost p.

« Activity Generation
— Activity generated by a blogpost is the number of comments that p
recelves.
* ¢, denotes the number of comments that blogpost p receives.

 Novelty

— The blogpost’s novelty is inversely correlated with the number of
references a blogpost employs. In particular the more citations a
blogpost has it is considered less novel.

* O, denotes the set of out-links for blogpost p.

- Eloquence

— Eloquence is estimated by the length of the blogpost. Given the
unformal nature of blogs and the bloggers tendency to write short
blogposts, longer blogposts are believed to be more eloquent. So the
length of a blogpost 1, can be employed as a measure of eloquence
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Measuring Social Influence on Twitter

 In Twitter, users have an option of following
individuals, which allows users to receive tweets
from the person being followed

* Intuitively, one can think of the number of
followers as a measure of influence (in-degree
centrality)
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Measuring Social Influence on Twitter:

Measures

 Indegree
— The number of users following a person on Twitter
— Indegree denotes the “audience size” of an individual.

e Number of Mentions

— The number of times an individual is mentioned in a
tweet, by including @username in a tweet.

— The number of mentions suggests the “ability in
engaging others in conversation”

« Number of Retweets:

— Tweeter users have the opportunity to forward tweets
to a broader audience via the retweet capability.

— The number of retweets indicates individual’s ability
in generating content that is worth being passed on.
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Measuring Social Influence on Twitter:

Measures

» Each one of these measures by itself can be used to
identify influential users in Twitter.

 This can be performed by utilizing the measure for each
individual and then ranking individuals based on their
measured influence value.

» Contrary to public belief, number of followers is
considered an inaccurate measure compared to the other
two.

* We can rank individuals on twitter independently based
on these three measures.

« To see if they are correlated or redundant, we can
compare ranks of an individuals across three measures
using rank correlation measures.
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* Spearman’s rank correlation is the Pearsons
correlation coefficient for ordinal variables that
represent ranks (i.e., takes values between 1. . .
n); hence, the value is in range [-1,1].

 Popular users (users with high in-degree) do not
necessarily have high ranks in terms of number
of retweets or mentions.

Measures Correlation Value
Indegree vs Retweets 0.122
Indegree vs Mentions 0.286
Retweets vs Mentions 0.638
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Social Media Mining

Network Measures
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Network Similarity

How similar are two nodes 1n a
network?

* Neighbourhood
e Attributes
e Contents
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Structural Equivalence

 In structural equivalence, we look at the
neighborhood shared by two nodes; the size of
this neighborhood defines how similar two
nodes are.

For instance, two brothers have in
common sisters, mother, father,
grandparents, etc. This shows that they
are similar, whereas two random male or
female individuals do not have much in
common and are not similar.
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Structural Equivalence: Definitions

Vertex similarity

o(v;, vj) = IN(v;) " N(v))|.

N(v;) N N(v;)

c e Ulaccard(vir U,) — ’
Jaccard Similarity: N(v;) UN(v;)
5 (v -, ) N(U,') N N(U])

Cosine Similarity: Cosine\Ui, Uj) = .
g VIN@)IN(@))

« Range: [0,1]
* In general, the definition of neighborhood N(v) excludes the
node itself v.

— Nodes that are connected and do not share a neighbor will be
assigned zero similarity

— This can be rectified by assuming nodes to be included in their
neighborhoods
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Similarity: Example

|{Ul/ U3, 04} M {03/ Z)6}|
G}accard(UZI 7)5) — = 0.25

|{Ull 03,04, Z)6}|

|{vll U3, 04} M {03/ Z)6}|

Vo1, v3, va}ll{v3, Vel

OCosine(U2/ Z75) = = 0.40
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Regular Equivalence

 In regular equivalence, we do not look at
neighborhoods shared between individuals, but
how neighborhoods themselves are similar

For instance, athletes are similar not
because they know each other in person,
but since they know similar individuals,
such as coaches, trainers, other players,

etlc.
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Regular Equivalence

* V,, v; are similar when their neighbors v, and v, are
similar

Oregular (vi, vj) =a Z Ai,kAj,IORegzllar(vk; ).

kI
*“Uregular(vk,vz)'“* @“\0

# V)
(\7 P VJ)
i (5(6%“\wK
<'—_O'regular(Vi,Vj)'_—’ vi 4
(a) Original Formulation (b) Relaxed Formulation

» The equation (left figure) is hard to solve since it is self
referential so we relax our definition using the right
figure.

* v;is similar to v; when v; is similar to v;’s neighbors v,
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Regular Equivalence

* v;is similar to v; is similar when v; is similar to
V'S neighbors 4

oregular ( Vi, Vl) __’
I‘Cgul I’(V V)
v\’/
Y] e%“\a{
Gregu]ar (vi ’ Vj) T ’ '
(a) Original Formulation (b) Relaxed Formulation

Gregular(vi, U]) = Z Ai,kGRegulaT’(vkl U])
k

* In vector format
Oreqular = aAGRegular
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Regular Equivalence

* v;is similar to v; is similar when v; is similar to
v.’s neighbors v,

Gregular(vi, U]) = 2 Ai,kGRegular(vk/ U])
k

* In vector format _
Oreqular = aAURegular

A vertex is highly similar

to itself, we guarantee this Oregular = aAo Regular T 1
by adding an identity

matrix to the equation

Oreqular = (I - aA)_l
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Regular Equivalence: Example

OO
() ONEES
()

The largest eigenvalue of A is 2.43

Set a=0.4<1/2.43 - 1.43 0.73
0.73 1.63

0.73 0.80
0.26 0.56
0.26 0.32
' 0.16 0.26

Gr@gular — (I - 0'4A)_1 =

O == O

0.73
0.80
1.63
0.32
0.56
0.26

O = = O =

o O O =

0.26
0.56
0.32
1.31
0.23
0.46

=0 O = O
_o = O O

0.26
0.32
0.56
0.23
1.31
0.46

O = O O O

0.16 |
0.26
0.26
0.46
0.46
1.27

* Any row/column of this matrix shows the similarity to other vertices

 We can see that vertex 1 is most similar (other than itself) to vertices 2

and 3
 Nodes 2 and 3 have the highest similarity
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Crawling

Cheick Tidiane Ba




What is a crawler

« A Web crawler, sometimes called a spider or
spiderbot and often shortened to crawler, is an
Internet bot that systematically browses the World
Wide Web, typically for the purpose’of Web indexing
(web spidering).

- We make the distintion between

« Crawling: the activityof dowload of web pages, while
visiting the web

 Web scraping: extracting data from websites.
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Why we care

- Data is key for machine learning and business
decisions

* It is important to understand the issues behind data
retrieval,

« As data scientists we may néeed to address those
issues and configure scraping tools to obtain data

« Understanding congepts helps us deal with those tools
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Basic organization of a large-
scale, distributed web crawler




The web is enormous

« The web is a\network

A— QMlon - Large scale
) - Reconstruction of the
________ N sce DU~~~ ~\\structure depends on
Wi i wion %2 where we start
4 ¥ N\ ' decides the result

18 Million Disconneciad Component

Source: K. Laudon & C. Trever, E-Commerce
2009 (5th Edition), Prentice Hall.
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URLs classification

 Seed: set of urls
 Frontier: URLs available but that have . not been
visited yet.
* From the seed set
 Found in pages we have alreadyvisited

* Visited URLs: dowloaded’pages that have been
anhalyzed and processed.

« Unknown URLs}'‘everything else

Social Network Analysis Cheick Tidiane Ba



What does the crawler do

« The crawler loads the seed set in the frontier set.

 While there are URLs left:
1. Pick URL in the frontier
2. Connect and download a page

3. Processing of the page'\(URLs extraction,
summary)

4. Move the URL from the frontier to the set of
Visited URLS

5. Filter extracted URLs:

« remove the already visited links
‘new URLS are added to the frontier

Social Network Analysis Cheick Tidiane Ba



The system

A
3. Processing of the page

Content or Web .
Summary 2T [

2. Connect and
download a page

Unexplored

1. Pick URL
from the
Already — frontier

4. Clear Visited URLs from Frontier

Visited

5.Filter extracted URLs
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Download Issues




The system

Content or

Summary ?
Download
> S
—
DB / Disk / Cloud Unexplored

1. Pick URL
Already from the
Visited frontier
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Download - Algorithmic issues

 We are dealing with a graph

 While there a lot visiting algorithms forgraphs they
can't be applied

* The issue is that they require to. know a priori how
many nodes are available and-which ones.

 In the crawling process.we have important choices to
make.
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Download - Algorithmic issues

* First choice: policy
« the way we choose an url in frontier.

* The policy influences the crawling order and the
obtained structure

* The policy can prioritize different aspects and could
be changed with time.

« Examples of policy:
« Content-based
* The basis(0f*Scraping processes for specific content
 Priority.to’most frequent urls

* Priority to long urls
 We want to visit the sub pages first (sort of a depth first visit)
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Download - Algorithmic issues

 Where we start is just as important as how we'choose
the next page

* The seed set must be chosen carefully

 What we want for the seed
e Limited set

Tendrils

* In the main component A— &l |
- Content driven selection 4
IN scc o <
- Theme focus P “ 56 “ \
. Million Million Million
- General purpose needs more variety 4 L S
I VX
’ * Tubes/
AL

18 Million Disconneciad Component
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Download - Resource issues

* The Frontier grows rapidly, much more quickly'than
the number of visited wesites

* The growth could be exponential

Social Network Analysis



Download - Resource issues

* We need Resources
 Ram
« Storage (Disk or Cloud)

* The resources available may not be enough

* The crawler may need to stop-downloading: the
programmer should include a procedure to perform a
Graceful Degradation

« When RAM is fully‘\rely on Storage

 When Disk-is about to be full, stop and don’t compromise
the operative sytsem

Social Network Analysis Cheick Tidiane Ba ﬂ



Politeness




The system

A
=
Content or
Summary m 2. Connect and

download a page
>
DB / Disk / Cloud Unexplored

=
-—

Already
Visited
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Politeness

 We should not exceed with the amount of time
dedicated to dowloads from a single site or server.

 While we may have a lot resources, shall i use them
all

« The issue is that we can create issues for those we
handle the websites or.sérvers.

Social Network Analysis Cheick Tidiane Ba a



Why do i care about Politeness

« Some hosting sites make clients pay based ofvthe
transmitted data or bytes

 Unexpected costs

« Some hosting services may havealimit on traffic

« We may be slowing down otherlegit users or blocking
them out completely

« Some pages require-a fot CPU work to be loaded.

« Again some hosts\may have high costs for this kind of
resource.
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Why do i care about Politeness

« Crawlers are automatic and unsupervised. They visit
sites without approval

« Story time: you may accidentally destroy a database

« A testing link to an http delete command was hidden in a
crawled page

* Visiting that URL deleted an‘entire database
« Only protection is an acécurate log system

Social Network Analysis Cheick Tidiane Ba a



What are the consequences

 The consequences
« Potentially Ban by IP
« Legal issues

« Mechanisms so that sites can signal that they wish for
crawler to limit to certain’sections or URLs or that
they may not be crawled at all

« One of them.is.the “robots.txt” files
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Robots.txt

* File used by websites to indicate which parts of the
website can be visited by a crawler, if any.

* It doesn’t have legal value, it can be\ighored
« But it avoids us issues with website managers

* The file must be downloaded the first time we access
the website. Then checkéd periodically (e.g. 6 hours),
looking for updates:

« Example:
» https://www.nytimes.com/robots.txt
. https://www.facebook.com/robots.txt
* https://corriere.it/robots.txt
 https://www.reddit.com/robots.txt
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Example: Facebook

 We can notice that except for all the big of [T that

have some specified rules, for everyone-else all is
forbidden

# Notice: Collection of data on Facebook through automated means is

# prohibited unless you have express written permission from, Faegbook
# and may only be conducted for the limited purpose containgd\ in/said
# permission.

# See: http://www.facebook.com/apps/site_scraping_tos ‘teéems.php

User-agent: Applebot

Disallow: fajax/ UEEF'EEE'nt: *
Disallow: /falbum.php .
Disallow: /checkpoint/ Dizallow: _.I|r

Disallow: /fcontact_ importer/
Disallow: /dialog/

Disallow: /fbml/ajax/dialegy
Disallow: /feeds/

Disallow: /file“download.php
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Example: Corriere.it

- User-agent: *

* Rules applied to everyone,
even browsers.

 Notes:

« More disorganized
compared to big websites

 We can find sitemaps

« Urls that specify thé
structure of the\website

« Some pages are not
reachable \following links in
the pages

(Ysually are links generated
through javascript.

UiZolluw: JLuanrnrizrep
Disallow: Iflmefpleé i-battista_ 8@

Disallow: fcuu fricerca
Allow: f51t
Allow: —ultlma ora/rss_col.xml

Allo I* xml
Qsalute!sltemap dizionario.xml
3 /rss/ultimora.xml
1low: /rss/homepage.xml
Allow: /notizie-ultima-ora/sitemap-news.xml
#richiesta da Ruggiero BG27112811
Allow: /feditorspicks/

Sitemap: https://www.corriere.it/rss/homepage.xml
Sitemap: https://www.corriere.it/sitemap/sitemap_ 10@.xml

Sitemap: https://www.corriere.it/salute/sitemap-dizionario.xml

Sitemap: https://www.corriere.it/sitemap 180 english.xml
51temap: https://www.corriere.it/sitemap 100 chinese.xml

__ _ __ _ _ _ _ . _ _  _ ______ _ _ _ _ _____

________ Laas ___ FF .
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Crawl delay

« An option that specifies a waiting time is crawldelay

* This options specificies an amout of time\in seconds
that the crawler should wait before making
consecutives connections

* E.g.
- crawl-delay:2
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How a crawler can prevent issues

« Option 1: limit the time of a request between\each
request.

« Even if it not specified by a robots.txtfile
 In practical terms a sleep()
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How a crawler can prevent issues

« Option 2: limit the fraction of time of dowload
compared to the time passed not dowloading.

 Given:
 a fraction of time p
« maximum download time s e.g (1s)

« We want that the proportion of download time and
non-download timetobe equal to p

« Caveats:

- We need.to\monitor s

« Slow resources could require a bigger s time, so we need to
adjust.
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Page Processing and Storage




The system

Page

Processing

Content or

Summary

S B

DB / Disk / Cloud

Social Network Analysis

Unexplored

Already
Visited
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Content processing

- Given a new page, we may want to:
1) extract new URLs

« 2) Save the content
« Apply some processing functions

« Usually compressed before saving in a DB.

« For this large-scale data, usuyally a distributed database, e.g. Mongo
or Google’s Bigtable
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Content processing

« Potential processing steps include
- Remove dates

Delete markup, html tags or attributes

Remove links

Remove headers

Remove or execute javascript code (if we want to save the
dynamic content of a page, we need to be careful about
code with infine loops or broken code (sometimes we have
traps)

« We may not'\be interested in the entire page

« Extract\the interesting values and bundle them up, in a file
orjson structure
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Duplicate pages

* Delete duplicate pages to save storage space

« Some pages are exact duplicates non memorizzare
pagine che non cambiano di molto

« google.com, google.it

« Some pages are quasi-dupli¢ates, as they update
small parts like dates orxfandom ids

* nytimes.com, nyt.com

« Some websites‘are crawler traps
 They generate random links to trap crawlers

= Q Qﬂ \ U.S. INTERNATIONAL CANADA ESPANOL =3
s Che New York Eimes .
Today’s Paper S5&P 500 -0.93% +

World U.s. Politics N.Y. Business Opinion Tech Science Health Sporis Arts Books Style Food Travel Magazine T Magazine Real Estate Video
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When can we check for duplicates

e We can check at two different moments intime

1. After storage

« Save all the pages, clear duplicates after.the crawling
process

2. Before storage

 We need to identify poteritial duplicates before saving
them
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Bloom filters

- Data structure for the detection of quasi duplicates
« Compact representation of big sets of elements

« Characterized by
« Rapid answer
« Memory efficient

* Probabilistic data structure
« The price for efficiency

 What we can do:
« Add elements to the list of seen elements
« Andask if we have seen a certain element already
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Bloom filters

 Bit Vector
- Compact space
 We can keep it in RAM for efficient'.¢checks

01 2'3'4 5 6 7 8 9 10111213 14
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Bloom filters
* It tells us that the element either definitelyisnot in
the set or may be in the set.

« Asking if in an element is contained,¢an yield 2
results:
 false: definitely is not in the set
* true: may be in the set

- The accuracy/ probability of error of the answer
depends on theamount on the number of elements
we plan to save’(insert)
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Bloom Filter example

 Given a Bloom filter of 15 bits
A set of URLs X
« Two hash function h1, h2

« | want to add the following web page summary: «the
fox is on the table»

0'1'2 3 4 5 6 7 8 9 101112 13 14
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Bloom Filter example

« | want to our set the summary x e.g. «the fox\is'on the
table»

« Apply each hash function
* E.g. h1(x) =10; h2(x) =13

« Set the bits in position 10 and13 to 1

01 2 3 456 7 8 01011121314
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Bloom Filter example

« | want to check if the summary x e.g. «the foXds on
the table»

« Apply each hash function
* E.g. h1(x) =10; h2(x) =13

« Check the bit values bit values in positions 10 an

« The AND combination of'the bit values can be 1 (true) or O
false

h.
Y\ N ) . .

D01 2 3 456 7 8 0101112 13 14
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Bloom Filter example

 Reminder: asking if in an element is containéd;'can
yield 2 results:
« False (0) : definitely is not in the set
* True (1): may be in the set

e The AND combination of the-bits can bel1or O

* If all those values are setto 1in the bit vector, it might
be because another¢élement or some combination of
other elements.could have set the same bits

« So | say thatimay be in the set, we don’'t know for sure

- if atleast ]l of those values are set to 0, you know that
the-element isn't in the set
* We know for sure
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Why bloom filters
* The filter is useful as it limits the access to Storage.
« Avoid access to slower storage like and HDD

« Particulary effective if we have enough bits to obtain often
negative answers

« Allows us to deal with large sets;, without checking them
directly

« Important for big elements like URLs

* This data structure offers us graceful degradation (
when full we always check the disk)

- Key property: we can influence the probability of
error by khowing how many elements i may have to
save

Social Network Analysis Cheick Tidiane Ba n



Graceful degradation

* The filter fills up as we add new elements

« Adding «the cat is on the table»
. h1(x) = 14, h2(x) = 7

012 3 4 567 8 ¢ 101112 13 14

 With time weé have more false positives
 We obtain’'1 but we didn’t actually see the element before

« Asiatitls up, we'll check the disk more often

Social Network Analysis Cheick Tidiane Ba a



Proability of error

A mathematical analysis show us that we cah@choose
a proper number of hash functions

* The choice depends on the number éf'bits m, and the
probability of error we aim to obtain

« SO we can decide the right'amount of bits required

* The analysis gives us the‘probability to observe a
positive answer, (false or true) after ninserts

« This probability)is a majoration of the probability of a
false positive.

Social Network Analysis Cheick Tidiane Ba



Recap

Social Network Analysis




The system

A
3. Processing of the page

Content or Web .
Summary 2T [

2. Connect and
download a page

Unexplored

1. Pick URL
from the
Already — frontier

4. Clear Visited URLs from Frontier

Visited

5.Filter extracted URLs

Social Network Analysis Cheick Tidiane Ba a



Next lesson

* Quick recap

- Bloom Analysis

* Frontier data structure

 Load management for distributed crawling systems

Social Network Analysis Cheick Tidiane Ba n
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References

. http://vigna.di.unimi.it/algoweb/
- https://llimllib.github.io/bloomfilter-tutorial/ (bloom
filter demo)

« Burton H. Bloom. Space-time trade-offs in hash
coding with allowable errotrs. €@ommunications of the

ACM, 13(7):422-426, 1970

 https://www.cs.princeton.edu/courses/archive/spring
02/cs493/lec6.pdf'(Bloom filter analysis, section 3.1)

Social Network Analysis


http://vigna.di.unimi.it/algoweb/
https://llimllib.github.io/bloomfilter-tutorial/
https://www.cs.princeton.edu/courses/archive/spring02/cs493/lec6.pdf

Thank you for the attention!

For any question send an email at
cheick.ba@unimi.it




COMMUNITY DETECTION
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Books:
Barabasi, Network Science, Chapter 9

Zafarani, Social Media Mining, Chapter 6 (particularly the introductive part)
Newman, Networks

Papers:

Santo Fortunato, Darko Hric, Community detection in networks: A user guide, Physics
Reports, Volume 659, 11 November 2016, Pages 1-44, ISSN 0370-1573,
https://doi.org/10.1016/j.physrep.2016.09.002.
(http://www.sciencedirect.com/science/article/pii/S0370157316302964)

Santo Fortunato, Community detection in graphs, Physics Reports, Volume 486, Issues
3-5, February 2010, Pages 75-174, ISSN 0370-1573,
https://doi.org/10.1016/j.physrep.2009.11.002.
(http://www.sciencedirect.com/science/article/pii/S0370157309002841)



http://www.sciencedirect.com/science/article/pii/S0370157316302964

Communities

Why to study communities?

individuals often form groups based on their interests and we are
interested in identifying these groups. Consider the importance of
finding groups with similar reading tastes by an online book seller
for recommendation purposes.

groups provide a clear global view of user interactions, whereas a
local-view of individual behavior is often noisy and ad hoc
(mesoscale).

some behaviors are only observable in a group setting and not on
an-individual level. This is because the individual’s behavior can
fluctuate, but group collective behavior is more robust to change.




Communities

 Two types of communities:
— Explicit Groups: formed by user subscriptions

— Implicit Groups: implicitly. formed by social
interactions

* (individuals calling Canada from the United
States need not be friends) -> the phone
operator considers them one community for
marketing purposes

 We may see group, cluster, cohesive subgroup, or
module in different contexts instead of “community”




Examples of explicit social media community

* Facebook

— Facebook has groups and communities. In both, users
can post messages and images, can.comment on
other messages, can like posts, and can view activities
of other users

 Google+
— Circles in Google+ represent communities

e Twitter

— Communities form as lists. Users join lists to receive
information in the form of tweets

 LinkedIn

— LinkedIn provides Groups and Associations. Users can
join professional groups where they can post and
share information related to the group




COMMUNITY DETECTION

DISCOVERING
IMPLICIT COMMUNITIES

COMPUTE SETS OFNODES BASED
ON THEIR\CONNECTIVITY

Hypothesis:
The-nhetwork community structure is
encoded in its wiring diagram




Real networks have community structure

Real networks are
not random.
Weak ties seem to
bridge groups of
tightly coupled
nodes
(communities)

A simple graph with three communities,
enclosed by the dashed circles

Source: S. Fortunato / Physics Reports 486 (2010) 75-174 -




Example: scientist collaboration network

\F
e Collaboration network "
between scientists
working at the Santa \;;«,-..‘
Fe Institute. Edges are
placed between

scientists that have
published at least one
paper together.

N

Agent-based
Models

The colors indicate high
level communities and
correspond to research
divisions of the institute

' Structure of RN A
it

Source: S. Fortunato / Physics Reports 486 (2010) 75-174 -




Example: Zachary’s Karate Club

3 > Zachary observed 34
> members.ofa karate club
; 20 i over two-years. Edges
: AN NS / 5 connect individuals who
5 : 3 \ / Ei iz were observed to interact
NEISZ4i \11 77 “outside the activities of the

club.

18

During the course of observation, the club members split
into two groups because of the disagreement between the
administrator of the club and the club’s instructor (nodes: 1
and 34), and the members of one group left to start their
own club m




Disjoint communities

Separating networks into disjoint subsets seems
to make sense when communities are somehow

“adversarial”
Measuring the\Web - Blogosphere

Political Blogosphere \
2004 US Presidential Election’. ! \

-
Bloggers:
Blue -Democrat-
Red - Repuplieafi .‘ / Dle
Pink - Neutral NG S

—

L. Adamic, N. Glance, The pohtlcal.blogosphere and the 2004 U S electlon:
divided they blog, LinkKDD'05 :




Communities

Disjoint communities (i.e., groups of friends who
don’t know each other) e.g. my American friends
and my Australian friends

Overlapping communities (i.e., groups with some
intersection) e.g.‘my friends and my girlfriend’s

friends




Defining communities

There is no unique definition of community

Intuition:

There are more links inside a.community than links
connected with the rest of the network

Hypothesis:

a community is a locally dense connected
subgraph in a network




Hypotheses

Connectedness Hypothesis:

Density Hypothesis:

A community corresponds to
a connected subgraph.

All members of a
community must
be reached
through other
members of the
same community

Communities correspond to
locally_ dense neighborhoods
of a network.

Nodes of the same
communityhas
higher probability
of linking to other
members of the
same community
than to nodes
outside it




Local definition: maximum cliques

One of the first paper on community defined a community as
a group of individuals whose members all know each other

* [tis a connected subgraph with maximallink density
* Triangles are frequent; larger cliques are rare.

* Finding the cliques of a network is computationally rather
demanding, being a so-called NP-complete problem.

* Too restrictive: communities do not necessarily correspond to
complete subgraphs, as many of their nodes do not link directly
to each other.

* Relaxingcliques
—'n-clique, n-clan, n-club, k-plex
— k-core: maximal subgraph that each vertex is adjacent to at
least k other vertices in the subgraph -




Almost loca definitions

Graph G, a connected subgraph C and node i

The internal degree k™ of node i is the number of links that
connect i to other nodes in C.

The external degree k' is the number of links that connect i to
the rest of the network.

If k#'=0, each neighbor of i is.within C, hence C is a good
community for node i. If k/"*=0,then node i should be assigned
to a different community

kMt k&t internal and external degrees of i € C

k& ., kS internal and external degrees of C
Sum of the Internal and external degrees of all v € C




Almost local definitions

strong community: weak community:
each node has more links within the the total internal degree of the subgraph
community than with the rest of the graph. exceeds its total external degree,
int t in out
K(C) > kSY(C) Y kNC) > Y k)
ieC ieC
b. 3
Strong community Weak community




Almost local definitions

Clique = strong community = weak

Is the converse true?-No

b. (03

Strong community Weak community




Definition:

We call a partition a division of a network into-an arbitrary
number of groups, such that each node belongs to one and
only one group.

Community detection:
the number and size of the.communities are unknown at
the beginning.

Partition detection:

division of @ network into groups of nodes, so that each
node belongs to one group.

the number and size of the communities are known at the

beginning. B




How many ways can we partition
a network into communities?

I
Bell number e

The number of
possible partitions is
given by the Bell
number and grows
faster than
exponentially

Brute-force approaches that aim to identify
communities by inspecting all possible
partitions are computationally infeasible g3



Global definition: modularity

Randomly wired networks lack an inherent community
structure

By comparing the link density of a community with the
link density obtained for the same group of nodes for a
randomly rewired network, we could decide if the
original community corresponds to a dense subgraph,
or its connectivity pattern emerged by chance.




Global definition: modularity

Systematic deviations from a random configuration
allow us to define a quantity called-modularity

It measures the quality of each partition.

It allows us to decide if a particular community
partition is better than some other one.

Modularity optimization offers a novel approach to
community detection.




Global definition: modularity

Global definition: with respect to the whole
graph
— Null model: A random graph where some
structure properties are-matched with the
original graph

— Intuition: a subgraph is a community if the
number-of.internal links exceeds the expectation
over all realizations of the null model




Modularity

Modularity measures the difference between the
network’s real wiring diagram (A;) and the expected
number of links between jiand j if the network is
randomly wired (p;)

ey 1
Definition: Q = %Zij(Aif — pl-j)6(Ci, Cj)
* p;;: expected number of links between i and j in the
null model

*.random graph: p;; = p, Vi, j




Modularity

Modularity is the fraction of the links that fall
within the given groups minus the expected such
fraction if links were distributed at random

Higher Modularity Implies Better Partition
The higher.is M for a partition, the better is the
corresponding community structure




Modularity

— Range: [—%, 1)
— if we treat the whole graph-as one community Q = 0

— if each vertex is one community Q < 0




Maximal Modularity Hypothesis

(a)

(c)

(b)

Optimal Partition Suboptimal Partition
M =04 M =0.22
(d)
Negative Modularity Slngle Communlty
M = —-0.12

Ve

Optimal partition:
maximizes the modularity.

Sub-optimal but positive
modularity.

Negative Modularity: if we
assign each node to a
different community.

Zero modularity: Assigning all
nodes to the same
community, we obtain,
independent of the network
structure.

Modularity is size dependent.




Modularity-based community detection methods

* Modularity maximization
For a given network the partition with maximum
modularity corresponds to the optimal community
structure

* Finding the best value for Q is NP hard

e Hence we use heuristics




Modularity maximization: greedy algorithm

Greedy techniques [Newman], iteratively joins nodes if the move increases the
partition’s modularity.

1. Start with all nodes as isolated that is assign each node to a community of its
own, e.g. start with “communities”.

2. Inspect each pair of communities connected by at least one link and
compute the modularity variation (on the full network) obtained if we merge
these two communities.

3. Identify the community-pair for which AM is the largest and merge them.

4. Repeat Step 2 and 3 until all nodes are merged into a single community.

5. Record "M for each step and select the partition for which the modularity is
maximal.

Issues: limit resolution and modularity maxima




Modularity maximization: resolution limit

Physics E—print Archive, 56276 vertices .7 | mostly condensed matter, 9350 vertices / subgroup, 134 vertices
11070

’
L’ 4
’ ’
’ 7
~ ’
,, /
’
87% H.E.P.,
2 /
’
’
. O
/7 ’
z 4
’

13454
93% C.M.

9278 9350 v T e |
989 86% C.M. Q O O O/ ; .
o astro O \ a I

74 4 4y I

o @) O O O O OQ - single research group g ) > :

ties ™~ “sl 28 vertices —— | .

* 600 Smaller COmMImynEtes T~ o pOWer—law diStribution of group SiZCS Siag - : ____________ I

- ~

The community structure of the collaboration network of physicists. The greedy algorithm
predicts four large communities, each-composed primarily of physicists of similar interest.
These four large communities (together containing 77% of all nodes) coexist with 600
smaller communities, resulting-in an overall modularity M=0.713.

Identifying Subcommunities

We can identify subcommunities by applying the greedy algorithm to each community,
treating them as separate networks. This procedure splits the condensed matter
community into-many smaller subcommunities, increasing the modularity of the partition
to M=0.807.

Research Groups

One of these smaller communities is further partitioned, revealing individual researchers
and the research groups they belong to. -




Modularity maxima

All algorithms based on
maximal modularity rely on
the assumption that a
network with a clear
community structure has an
optimal partition with a
maximal M.

In practice we hope

that M, is easy to find and
that the communities
predicted by all other
partitions are distinguishable
from those corresponding
to M,

Yet, this optimal partition is
difficult to identify among a
large number of close to
optimal partitions.

MODULARITY, M




Modularity maximization: fast modularity

The greedy algorithm is neither particularly fast nor particularly
successful at maximizing M.

Scalability: Due to the sparsity of the adjacency matrix, the update
of the matrix involves a large number of useless operations.

The use of data structures for sparse matrices can decrease the
complexity of the computational algorithm to O(Nlog?N)

See:
Clauset, Aaron, Fast Modularity" Community Structure Inference
Algorithm.

http://www. cs. unm. edu/~ aaron/research/fastmodularity.
htm (2012).




Modularity maximization: Louvain algorithm

Louvain method: Finding communities in large
networks

The modularity optimization algorithm achieves a
computational complexity of O(L).

Hence it allows us toidentify communities in networks
with millions of nodes.

Fast unfolding of communities in large networks,
Vincent .D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre,
Journal of Statistical Mechanics: Theory and Experiment 2008 (10), P10008 (12pp)




Louvain algorithm: weighted network of N nodes

“Our algorithm is divided in two phases that are repeated iteratively.
Phase 1

First, we assign a different community to each node of the network. So, in this
initial partition there are as many communities as there are nodes.

Then, for each node j we consider the neighborsj of i and we evaluate the gain
of modularity that would take place by removing i from its community and by
placing it in the community of j. The node iis then placed in the community for
which this gain is maximum (in case of a tie we use a breaking rule), but only if
this gain is positive. If no positive'gain is possible, i stays in its original
community.

This process is applied repeatedly and sequentially for all nodes until no further
improvement can be achieved and the first phase is then complete. Let us insist
on the fact that a node may be, and often is, considered several times.

This first phase stops when a local maxima of the modularity is attained, i.e.,
when no'individual move can improve the modularity.

One should also note that the output of the algorithm depends on the order in
which-the nodes are considered. Preliminary results on several test cases seem to
indicate that the ordering of the nodes does not have a significant influence on the

modularity that is obtained.”




Louvain algorithm: weighted network of N nodes

Our algorithm is divided in two phases that are repeated. iteratively.

Phase 2
We construct a new network whose nodes ‘are the communities

identified during phase I.

The weight of the link between two nodes is the sum of the weight of
the links between the nodes in the corresponding communities. Links
between nodes of the same.community lead to weighted self-loops.

Once phase 2 is completed, we repeat phases 1 - 2, calling their
combination a pass.

The number of communities decreases with each pass.

The passes are repeated until there are no more changes and
maximum modularity is attained.




Louvain algorithm

1STPASS
AMg, = 0.023
1 AM, 0.032
AMg, =0.026
2/// 3\AM;-;mo
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Some studies that use the Louvain method

Twitter social network (2.4M nodes 38M links, Twitter)
Divide and Conquer: Partitioning Online Social Networks
Josep M. Pujol, Vijay Erramilli, Pablo Rodriguez

arXiv 0905.4918, 2010

LinkedIn social network (21M nodes, LinkedIn)

Mapping search relevance to social networks

Jonathan Haynes, Igor Perisic

Proceedings of the 3rd Workshop on Social Network Mining and Analysis, 2010

Audio sharing networks (Freesound)

Community structure in audio clip sharing

Gerard Roma, Perfecto Herrera

International Conference on Intelligent Networking and Collaborative Systems, INCoS 2010

Mobile phone networks (4M nodes, 100M links)

Tracking the Evolution of Communities in Dynamic Social Networks

Greene, D.; Doyle, D.; Cunningham, P.;

International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2010

Flickr 1.8M/22M, LiveJournal 5.3M/77M, YouTube 1.1M/4.5M

Real World Routing Using Virtual World Information

Pan Hui, Sastry N.

International Conference on Computational Science.and Engineering, 2009

Citation network (6M nodes, 1SI database)

Subject clustering analysis based on ISI category classification

Lin Zhang, Xinhai Liu, Frizo Janssens, Liming Liang and Wolfgang Glanzel
Journal of Informetrics, VVolume 4, Issue 2, April 2010

Retail transaction data network

Market basket analysis with networks

Troy Raeder, Nitesh V. Chawla

Social Network Analysis and Mining, 2010

Human brain functional networks

Hierarchical Modularity in Human Brain Functional Networks

David Meunier, Renaud Lambiotte, Alex Fornito, Karen D. Ersche and Edward T. Bullmore -
Neuroinformatics, 3: 37, 2009




Overlapping communities

Cligue finder
http://cfinder.org

Uncovering the

overlapping community
structure of complex
networks in nature and
society

G. Palla, I. Derényi,

|. Farkas, and T. Vicsek:
Nature 435, 814—-818 (2005)



http://cfinder.org/

Overlapping communities

Department of
Biological Physics

cientific
ommunity
Family

Palla, Derenyi, Farkas, Vicsek. Nature (2005).



Overlapping communities: cligue percolation

* Two k-cliques (complete subgraphs of k
nodes) are considered adjacent if they
share k-1 nodes

* A k-cligue community is the largest
connected subgraph obtained by the
union of all adjacent k—cliques

* Other k-cligues that can not be reached e

from a particular k-clique correspond to
other k-cliqgue-communities

Palla, Derenyi, Farkas, Vicsek. Nature (2005).



CPM

* Other k-cliques that can not
be reached from a particular -
clique correspond to other -
clique-communities

(e)




CPM: 4-clique

d.
k=4 community structure of a small network, consisting of complete four.node subgraphs
that share at least three nodes. Orange nodes belong to multiple.communities.




CFinder algorithm

The main steps of the CFinder algorithm.
Starting from the network shown in the figure,
our goal is to identify. all cliques. All five k=3
cliques present in the network are highlighted.
The overlap matrix O of the k=3 cliques. This
matrix is viewed as an adjacency matrix of a
network whose nodes are the cliques of the
original network.

The matrix indicates that we have two
connected components, one consisting of
cliques (1,2) and the other of cliques (3, 4, 5).
The connected components of this network
map into the communities of the original
network.

The two cligue communities predicted by the
adjacency matrix.

The two cligue communities shown in (c),
mapped on the original network.




bright:

Science  pstronomy =
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community containing light-
related, glow or dark;

community capturing
different colors (yellow,
brown)

community consisting of
astronomical terms (sun,

ray).

community linked to
intelligence (gifted,
brilliant).




Example: mobile call

Communities extracted from the call pattern of
the consumers of the largest Belgian mobile
phone company. The network has about two
million mobile phone users. The nodes
correspond to-communities, the size of each
node being proportional to the number of
individuals in the corresponding community.
The color of each community on a red—green
scale represents the language spoken in the
particular community, red for French and
green for Dutch. Only communities of more
than 100 individuals are shown. The
community that connects the two main
clusters consists of several smaller
communities with less obvious language
separation, capturing the culturally mixed
Brussels, the country’s capital.




Communities: size

S. Fortunato, D. Hric / Physics Reports 659 (2016) 1-44 21
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Fig. 18. Distribution of community sizes in real networks. The clusters were detected with Infomap [42], but other methods yield qualitatively similar
results. Various classes of networks are considered. All distributions are broad, spanning several orders of magnitude.
Source: Reprinted figure with permission from [58].




Crawling — Part 2

Cheick Tidiane Ba




What is a crawler

« A Web crawler, sometimes called a spider or
spiderbot and often shortened to crawler, is an
Internet bot that systematically browses the World
Wide Web, typically for the purpose’of Web indexing
(web spidering).

- We make the distinction-between

« Crawling: the activityof dowload of web pages, while
visiting the web

 Web scraping: extracting data from websites.

Social Network Analysis Cheick Tidiane Ba



Why we care

- Data is key for machine learning and business
decisions

* It is important to understand the issues behind data
retrieval,

« As data scientists we may néeed to address those
issues and configure scraping tools to obtain data

« Understanding congepts helps us deal with those tools

Social Network Analysis Cheick Tidiane Ba ‘



Basic organization of a large-
scale, distributed web crawler




Recap

A
3. Processing of the page

Content or Web |}
Summary Page §

2. Connect and
download a page

Unexplored

1. Pick URL
from the
Already — frontier

4. Clear Visited URLs from Frontier

Visited

5. Filter extracted URLs

Social Network Analysis Cheick Tidiane Ba ‘



Recap

* Policy: the way we choose an url in frontier

« Seed set must be chosen carefully Where we start is
just as important as how we choose the next page

* Resource issues: Frontier grows rapidly (exponential)
Ram or Storage (Disk or Cloud)

« Graceful Degradation:property that describes the
ability to deal with this issues

Social Network Analysis Cheick Tidiane Ba



Recap

« Politeness: Issues dowloads from a single sitéor
server.
* robots.txt
 limit the time of a request between‘each request.
 limit the time of a request betwéeh each request.

Social Network Analysis Cheick Tidiane Ba ‘



Recap

« Content processing
* 1) extract new URLs
« 2) Save content

« Avoid duplicate pages to save storage space

- Bloom filters Probabilistic data structure

« Characterized by
« Rapid answer
 Memory efficignt

 Track seen elements
 Add elements to the list of seen elements
« And\ask if we have seen a certain element already

Social Network Analysis Cheick Tidiane Ba ‘



Bloom Filters - Analysis




Bloom Filter example

 Given a Bloom filter of 15 bits
A set of URLs X
« Two hash function h1, h2

« | want to add the following web page summary: «the
fox is on the table»

0'1'2 3 4 5 6 7 8 9 101112 13 14

Social Network Analysis Cheick Tidiane Ba



Bloom Filter example

« | want to our set the summary x e.g. «the fox\is'on the
table»

« Apply each hash function
* E.g. h1(x) =10; h2(x) =13

« Set the bits in position 10 and13 to 1

- Adding «the cat is on thetable»
. h1(x) = 14, h2(x) = 7

01 2 3 45 6 7 8 910111213 14

Social Network Analysis



Bloom Filter example

« | want to check if the summary x e.g. «the foXds on
the table»

« Apply each hash function
* E.g. h1(x) =10; h2(x) =13

« Check the bit values bit valuesin positions 10 an

« The AND combination of'the bit values can be 1 (true) or O
false

01 2 3 45 6 7 8 0910111213 14

Social Network Analysis Cheick Tidiane Ba



Analysis

* Given:
 m = number of bits in bit vector
 d = number of hash function
* n = insert operations

* Find the probability of a (false\or true) positive after n
insert operations

* Probability that a certain bit b is set to 1 after one

o o (] 1
Insert operations'is: -

* Probability\that a certain bit b is set to O after one
insertioperations is the complementary event:

ol_i
m

Social Network Analysis Cheick Tidiane Ba



Analysis

* Probability that a certain bit b is set to 0 after©one

insert operations is:

ol_i

m

* Probability that a certain bit b.is set to O after n insert
operations is

F (1= )
* Probability that a\certain bit b is set to 0 after n insert
operations is

s (1=

Social Network Analysis Cheick Tidiane Ba



Analysis

 Positive: we check d bits and find all 1s
s (1= (1= "1

* Property:
. (1+%)n —e%forn - o

) 4
* In our case we have (1 — €= E)dn)d

C(1- (11— Dyamyd & (@ €em)d

Social Network Analysis Cheick Tidiane Ba a



Analysis

- If we consider p = ¢ "4/™ we canh express d &\ (%) Inp
« We need to minimize:

e 1—p G)ime = o=(F)mpina-p)

« TO minimize we need the first-derivative:
. (m) e—(%) Inp In(1-p) ( In(1-p) Inp

n D 1-p
* The first derivative'is zero when:
*(1-p)In(Azp)=plnp
« A solution'is for surewhen1-p = p
* SO, p = %
* It can be proven it's the only one (See References)

Social Network Analysis Cheick Tidiane Ba n



Analysis

m
n

« Givenp = %, and the previous equation d = —( )lnp

* The probability of (false) positives is minimized for
d =~ mln2/n

Social Network Analysis Cheick Tidiane Ba



Analysis

* The conclusion of the analysis is that given:;
 m = number of bits in bit vector
« d = number of hash function
* n = insert operations

* The probability of (false) positives is minimized for
d =~ mln2/n

- In this case the probabilty of a (false) positive is 27¢

* This means that'we can exponentially improve the
probability. 0f-error by increasing the number of hash
functions'd’or working on the number of bit m

* The proportion is givenbym =~ dn/In2 = 1,44dn
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Frontier




The system
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O =
—
[ — J
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What we need

- We want to:
 Filter URLs
» Clear Visited URLs from Frontier
 Add new URLs to the Frontier
« Implement a Policy

 When it comes to duplicates, we could use the Bloom
Filter

 While good in theory, we have other data structures
that are more suited for the frontier

* Not justduplicates but also act as a queue for the
Frontier
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Sieve

* The Sieve is a data structure that accepts URLs that
may need a visit as input. Then it emits, sometimes as
blocks, URLs ready for the visit.

« Each URL that is inserted in the Sieve can be emitted
only once, no matter how many times is inserted.

* The Sieve has the properties of a dictionary, a priority
queue.

* It represents at'\the same time the frontier, the visited
set and the\queue of urls to be visited. Combined in
one structure, performance is better.
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Sieve in Mercator [HN99]

« Data structure that returns URLs

« Characteristics:

« Return urls in FIFO (first in first out) order. It's the
equivalent of a policy for breadth-first-visit

« Costant Memory Space: remindthat the frontier grows
exponentially, our data structure can’t risk

« Probabilistic: we are not\going to work with URLs; instead
we'll work with Signatures, output of hash functions
applied to the URLS
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Working with Signatures

« Crawler work with Signatures

« Value obtained by applying an hash function to a
URL, obtaining a value of with k bits.

 We expect collisions. They are dependent on the
number of bits k.

 If we indicate U as the-set of unknown nodes with n
the number of bits; @ 'collision estimate is nr2/2U.

* The first collision will happen after O(y/n)

 With an hash function that generates signatures of
64 bits, we'll have 100 collision every billion:
acceptable.
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Sieve

* The Sieve is formed by

« S vector in central memory that contains\the
signatures. Ex: 64 bits. Fixed dimensjon n, starts
empty and gets filled

« Z file on disk that will contain-all the signatures we
meet over

A auxiliary file, on disk, empty at beginning.
« O output file, inn'which we store the new urls
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Adding URLs

Signature(u) Url u
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Adding URLs

- Given an URL u, we compute it signature/hash-h(u).
« The URL uis added to A
* The signature is stored in S

« S will fill up as we add more and more urls.
* We need to do a Flush
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Adding URLs

Signature(u) Url u
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Flush - Sorting

« 1a) Sorting of S.

 Indirect sorting: sorting with an external auxiliary array, so
that we can mantain both the original and the sorted
sequence

« Stable sorting: Sorting that respec¢tsthe insert order of
duplicates.

* 1b) Remove duplicates signatures in S

« We mark them as uséless, we consider only the first one.
We can because€ the sorting is stable

Social Network Analysis Cheick Tidiane Ba a



Indirect sorting

« Sorting with an external auxiliary array, so that'we
can mantain both the original and the sorted
sequence

- Example:

*S: bacedg->abcdeg
*V:012345->10243.5
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Stable sorting

« Sorting that respects the insert order of duphlicates.

« Example of not stable:

bacede->abcdee
*012345->102453
* Not stable because the first appearence of e comes after.
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Flush - Sorting

In S we have signatures; the corresponding URLs are in the
auxiliary file A

Signature(u) Url u
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Flush - Fusion

 We need to generate:
« O: List of URLs to be visited

 We need to know the signatures that are in’S but they are
not yet in Z ( == Visited set).

 2) Fusion of Z with the signhatures in S
« Save the temporarytésult in a new file Z,

« During the fusion'we keep track of the signatures in S that
that are notin\Z.

« Efficient (linear time) as Z and S are sorted.
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Flush - Fusion

Signature(u)

Z’ contains all the URLs we have met
n Resultof Z +S

We are tracking new URLs in S not
inZ
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Flush - new URLs

« To produce the urls to be visited, for output ©

« 3) Scan A and S in parallel, and for every'signature
marked as new in S: emit the URL in output file O.

 The scan of A is sequential, since S iPsorted like A that’'s why
we used and indirect sorting.

* 4) Replace Z with Z';.¢lear S and A.

Cheick Tidiane Ba

Social Network Analysis



Flush - new URLs

Signature(u)

3. Emit
new URLs

Z’ contains all the URLs we have met
Resultof Z+ S

We are tracking new URLs in S not
inZ

4.Replace
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Adding URLs
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Flush - Sorting
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Flush - Fusion
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Flush - Emit New URLs

Social Network Analysis Cheick Tidiane Ba



Flush - Replace Z
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Flush - Clear

01,2 B

A,B,C
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Adding more URLs
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Flush - Sorting
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Flush - Emit New URLs

P2 01,235
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Flush - Replace Z

P2 01,235
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Flush - Clear

0,,2,3,5 'z |

D,F
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Observations

« Z after the Flush contains again all the signatures of
URLs we never visited.

* In O we have all the URLs which signature was not in
Z and (barring collisions) all the unvisited urls.

 The Urls in O are emitted in\FIFO order

 The marking procedure 'and the fusion can be done at
the same time
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Conclusion




The system

Content or Web |
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DB / Disk / Cloud Unexplored

Already
Visited

Social Network Analysis Cheick Tidiane Ba a




References

. http://vigna.di.unimi.it/algoweb/

. https://llimllib.github.io/bloomfilter-tutorial/ (bloom filter
demo)

« Burton H. Bloom. Space-time trade-offsiin"hash coding with
allowable errors. Communicationsof'the ACM, 13(7):422-426,

1970

» https://www.cs.princeton:edu/courses/archive/spring02/cs493
[lec6.pdf (Bloom filter @halysis, section 3.1)

. https://courses.cs.washington.edu/courses/cse454/15wi/paper
s/mercator.pdf fHN99]

- http://vigna.di.unimi.it/ftp/papers/BUbiNG.pdf (Sieve
implemented)

Social Network Analysis Cheick Tidiane Ba a



http://vigna.di.unimi.it/algoweb/
https://llimllib.github.io/bloomfilter-tutorial/
https://www.cs.princeton.edu/courses/archive/spring02/cs493/lec6.pdf
https://courses.cs.washington.edu/courses/cse454/15wi/papers/mercator.pdf
http://vigna.di.unimi.it/ftp/papers/BUbiNG.pdf

Thank you for the attention!

For any question send an email at
cheick.ba@unimi.it
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In February 2013, during the third quarter of Super Bowl
XLVII, a power outage stopped the game for 34 minutes.

Oreo, a sandwich cookie company, tweeted during the
outage: “Power out? No Problem, You can still dunk it in

the dark”.

The tweet caught on almost immediately, reaching nearly
15,000 retweets and 20,000 likes on Facebook in less
than 2 days.

A simple tweet diffused into a large population of
individuals.

It helped the company gain fame with minimum budget

in an environment where companies spent as much as 4

{)mlhlon dollars to run a 30 second ad during the super
owl.

This is an example of Information Diffusion.
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 Information diffusion is studied in a plethora of
sciences.

 Our focus is on techniquesthat can model
information diffusion.

« Information diffusion: process by which a piece
of information (knowledge) is spread and
reaches individuals through interactions.
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Information Diffusion

A diffusion process involves three

elements:

 Sender(s). A sender or a small set of senders that
initiate the information diffusion process;

 Receiver(s). A receiver or a set of receivers that
receive diffused information. Commonly, the set of
receivers is much larger than the set of senders and
can overlap with the set of senders;

e Medium. This is the medium through which the

diffusion takes place. For example, when a rumor is

spreading, the medium can be t!

he personal

communication between individ

uaits
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Information Diffusion Types
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We define the process of interfering with information diffusion
by expediting, delaying, or even stopping diffusion as
Intervention
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Information diffusion types

Herd behavior takes place when individuals observe the
actions of all others and act in an aligned form with them.

Information cascade describes the process of diffusion
when individuals merely observe their immediate neighbors.

In information cascades and herd behavior, the network
of individuals is observable;

In herding, individuals decide
based on global information (global dependence);

In information cascades decisions are made based on
knowledge of immediate neighbors
(local dependence)
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Information diffusion types

Diffusion of innovations provides a bird’s-eye view-of how an
innovation (e.g., a product, music video, or fad) spreads through a
population. It assumes that interactions among individuals are
unobservable and that the sole available information is the rate at which
products are being adopted throughout a certain period of time. This
information is particularly interesting for companies performing market
research, where the sole available information is the rate at which their
products are being bought. These companies have no access to interactions
among individuals.

Epidemic models are similar to diffusion of innovations models, with
the difference that the innovation’s analog is a pathogen and adoption is
replaced by infection.

Another difference is that in epidemic models, individuals do not decide
whether to become infected or not and infection is considered a random
natural process, as long as the individual is exposed to the pathogen.
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Information Diffusion Types
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We define the process of interfering with information diffusion
by expediting, delaying, or even stopping diffusion as
Intervention
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Herd Behavior

* Network i1s observable

* Only public information is
available
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Herd Behavior

Herd behavior describes when a group of
individuals performs actions that are highly
correlated without any plans

Main Components of Herd Behavior

— A method to transfer behavior among individuals or
to observe their behavior

— A connection between individuals

Examples of Herd Behavior

— Flocks, herds of animals, and humans during sporting
events, demonstrations, and religious gatherings
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Herd Behavior Example

Consider people participating in an online auction.

In this case, individuals can observe the behavior of others by
monitoring the bids that are being placed on different items.

Individuals are connected via the auction’s site where they can
not only observe the bidding behaviors of others, but can also
often view profiles of others to get a feel for their reputation
and expertise.

In these online auctions, it is common to observe individuals
participating actively in auctions, where the item being sold
might otherwise be considered unpopular.

This is due to individuals trusting others and assuming that
the high- number of bids that the item has received is a strong
signal of its value. In this case, Herd Behavior has taken place.
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Herd Behavior: Popular Restaurant Experiment

* Assume you are on a trip in a metropolitan area
that you are less familiar with.

 Planning for dinner, you find restaurant A with
excellent reviews online and decide to go there.

« When arriving at A, you see A is almost empty
and restaurant B, which is next door and serves
the same cuisine, almost full.

» Deciding to go to B, based on the belief that
other diners have also had the chance of going to
A, is'an example of herd behavior
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 In this example, when B is getting more and more
crowded, herding is taking place.

« Herding happens because we consider crowd
intelligence trustworthy.

« We assume that there must be private information
not known to us, but known to the crowd, that

resulted in the crowd preferring restaurant B over
A.

 In other words, we assume that, given this private
information, we would have also chosen B over A.
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In general, when designing a herding experiment,
the following four conditions need to be satisfied:
1. There needs to be a decision made.
In this example, the decision involves going
to a restaurant.
2. Decisions need to be in'sequential order.
3. Decisions are not mindless, and people have
private information that helps them decide.
4. No message passing is possible.
Individuals do not know the private
information of others, but can infer what
others know from what they observe from
their behavior.
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Conformity pressure: Solomom Asch’s

Experiment
« In one experiment, he asked groups of students
to participate in a vision test where they were

shown two cards, one with a single line
segment and one with 3 lines, and the ‘ ‘
A B C

participants were required to match line
segments with the same length.

- Each participant was put into a'group where all
other group members were collaborators with
Asch. These collaborators were introduced as
participants to the subject.

— Asch found that in control groups with no pressure

to conform, only 3% of the subjects provided an
Incorrect answer.

— However, when participants were surrounded by
individuals providing an incorrect answer, up to
32% of the responses were incorrect.
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Herd Behavior: Milgram’s Experiment

 Stanley Milgram asked one person to stand still on a
busy street corner in New York City and stare straight
up at the sky.

— About 4% of all passersby stopped to look up.

* When 5 people stand on the sidewalk and look
1strei}ight up at the sky, 20% of all passersby stopped to
ook up.

 Finally, when a group of 18 people look up
simultaneously, almost 50% of all passersby stopped
to look up.
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Herding: Elevator Example

http://www.youtube.com/watch?v=zNNzoyzHcw
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http://www.youtube.com/watch?v=zNNz0yzHcwg
http://www.youtube.com/watch?v=zNNz0yzHcwg

Network Observability in Herb Behavior

In herd behavior, individuals make decisions by
observing all other individuals’ decisions

« In general, herd behavior’s network is close to a
complete graph where nodes can observe at least
most other nodes and they can observe public
information

— For example, they can see the crowd
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Designing a Herd Behavior Experiment

» There needs to be a decision made.
— In our example, it is going to a restaurant

 Decisions need to be in sequential order;

 Decisions are not mindless and people have
private information that helps them decide; and

« No message passing is possible. Individuals
don’t know the private information of others, but
can infer what others know from what is
observed from their behavior.

Social Media Mining Information Diffusion | 19




Herding: Urn Experiment

« There is an urn in a large class with three marbles in it

50% 50%

* During the experiment, each student comes to the urn, picks
one marble, and checks its color in private.

« The student predicts majori;ciy blue or red, writes her
prediction.on the blackboard, and puts the marble back in the
urn.

- Studentscan’t see the color of the marble taken out and can
only see the predictions made by different students regarding
the majority color on the board
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Urn Experiment: First and Second Student

e First Student:

— Board: -
* Observed: B > Guess: B
-Or-
e Observed: R = Guess: R

* Second Student:

— Board: B
* Observed: B = Guess: B
-Or-
* Observed: R = Guess: R/B (flip a coin)
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Urn Experiment: Third Student

« Ifboard: B, R
— Observed: B 2 Guess: B, or
— Observed: R 2 Guess: R
e Ifboard: B, B
— Observed: B = Guess: B, or
— Observed: R 2 Guess: B (Herding Behavior)

The forth student and onward
— Board: B,B,B
— Observed: B/R 2 Guess: B
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Bayes’s Rule in the Herding Experiment

Each student tries to estimate the conditional
probability that the urn is majority-blue or
majority-red, given what she has seen or heard

— She would guess majority-blue if:

Pr[majority-blue | what she has seen or heard] > 1/2

— From the setup of the experiment we know:

Pr[majority-blue] = Pr[majority-red]=1/2

Pr[blue|majority-blue] = Pr[red|majority-red]=2/3
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Bayes’s Rule in the Herding Experiment

Pr[majority-blue|blue] = Pr[blue|majority-blue] * Pr[majority-blue] / Pr[blue]

Pr[blue] = Pr[blue|majority-blue] * Pr[majority-blue]
+ Pr[blue|majority-red ] *.Pr[majority-red ]
=2/3*1/2+1/3*1/2 =1/2

Pr[majority-blue|blue] = (2/3 * ¥2)/(1/2)

* So the first student should guess “blue” when she
sees “blue”

*The same calculation holds for the second student
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Bayes’s Rule in the Herding Experiment: Third

Student

Pr[majority-blue|blue, blue, red] =
Pr[blue, blue, red|majority-blue] * Pr[majority-blue] /
Pr[blue, blue, red]

Pr[blue, blue, red| majority-blue] = 2/3*2/3 *1/3 = 4/27

Pr[blue, blue, red] = Pr[blue,blue, red|majority-blue] * Pr[majority-
+ Pr[blue, blue, red|majority-red ] * Pr[majority-red ]
=(2/3*2/3%1/3)*1/2+ (1/3*1/3%2/3) *1/2=1/9

Pr[majority-blue|blue, blue, red] = (4/27 *1/2) / (1/9) = 2/3

* So the third student should guess “blue” even when she sees “red”
o All future students will have the same information as the third student
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Urn Experiment

™\

Herding
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Herding Intervention

In herding, the society only has access to public
information.

Herding may be intervened by releasing private
information which was not accessible before

The little boy in “The Emperor’s New
Clothes” story intervenes the herd by
shouting “he's got no clothes on”
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Herding Intervention

Milgram Experiment: To intervene the herding
effect, we need one person to tell the herd that there
is nothing in the sky

Social Media Mining Information Diffusion | 28



How Does Intervention Work?

« When a new piece of private information releases, the

herd reevaluate their guesses and this may create
completely new results

The Emperor’s New Clothes

— When the boy 1glives.his private observation, other people
compare it with their observation:and confirm it

— This piece of information may change others guess and ends the
herding effect

In general, intervention is possible by providing private
information to individuals not previously available.
Consider an urn experiment where individuals decide on
majority red over time. Either

— 1) aprivate message to individuals informing them that the urn
is‘'majority blue or

=\ 2) writing the observations next to predictions on the board
stops the herding and changes decisions.
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Information Cascade

- In the presence of a
network

e Only local information is
available
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Information Cascade

* In social media, individuals commonly repost content posted b
others in the network. This content is often received via immediate
neighbors (friends).

. ifon Iraformatlon Cascade occurs as information propagates through
riends

 An information cascade is defined as a piece of information or
decision being cascaded among a set of individuals, where

— 1) individuals are connected by a network and

— 2) individuals are only observing decisions of their immediate neighbors
(friends).

» Therefore, cascade users have less information available to them
compared to herding users, where almost all information about
decisions are available.

In cascading, local information is available to the users, but in herding the
information about the population is available.
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Underlying Assumptions for Cascade Models

« The network is represented using a directed graph.
Nodes are actors and links depict the communication
channels between them. A node can only influence nodes
that it is connected to;

« Decisions are binary - nodes can be either active or
inactive. An active nodes means that the node decided to
adopt the behavior, innovation, or decision;

* A node, once activated, can activate its neighboring
nodes;

 Activation is a progressive process, where nodes change
from inactive to active, but not vice versa 1.
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Independent Cascade Model (ICM)

 Independent Cascade Model is a sender
centric model of cascade

— In this model each node has one chance to activate its
neighbors
* Considering nodes that.are active as senders and
nodes that are being activated as receivers,

— The hinear threshold model concentrates on the
receiver (to be discussed later).

— The independent cascade model concentrates on the
sender
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Independent Cascade Model (ICM)

* In Independent Cascade Model, the node that is
activated at time t, has one chance, at time step t
+ 1, to activate its neighbors

* Let v be an active node at time ¢, for any
neighbor w of it, there’s a probability p,,, that
node w gets activated ‘at time t + 1.

* A node v activated at time t has a single chance
of activating its neighbors and that activation
can only happen at t + 1

« We start with a set of active nodes and we
continue until no further activation is possible.

Social Media Mining Information Diffusion | 34




ICM Algorithm

Algorithm 7.1 Independent Cascade Model (ICM)

Require: Diffusion graph G(V, E), set of initial activated nodes A, activa-
tion probabilities py

1: return Final set of activated nodes A,
22.1=0;
3: while A; # {} do
4:
5 i=i+1;
6: Ai={}
7. forallve Ai_; do
8: for all w neighbor of v, w ¢ U;=0 Ajdo
9: rand = generate a random number-in [0,1];
10: if rand < py then
11: activate w;
12: Ai = Ai U {w);
3 enednf‘i);f Node activation in ICM is a probabilistic
15  end for PTOCESS. . .
16: end while Thus, we might get different results for
17: Aw = Ui_Ay; different runs.

18: Return Ag,;
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Independent Cascade Model: An Example

p.., probability that node w gets activated = Random number generated at time t+1

Step 3: v, can’t activate v,

as it was activated at step 1

After five steps, five nodes get
activated and the ICM
procedure converges.

Social Media Mining Information Diffusion | 36



Maximizing
the Spread of Cascades

Social Media Mining Information Diffusion | 37



Spread maximization

Consider a network of users and a company that is marketing a
product.

The company is trying to advertise its product in the network.
The company has a limited budget; therefore, not all users can
be targeted.

However, when users find the product interesting, they can
talk with their friends (immediate neighbors) and market the
product.

Their neighbors, in turn, will talk about it with their neighbors,
and as this process progresses, the news about the product is
spread to a population of nodes in the network.

The company plans on selecting a set of initial users such

that the size of the final population talking about the product
1s maximized.
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Maximizing the spread of cascades

 Maximizing the Spread of Cascades is the
problem of finding a small set of nodes in a
social network such that their aggregated spread
in the network is maximized
 Applications
— Product marketing
— Influence
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Problem Setting

« (Glven

— A limited budget for initial advertising (e.g., give away
free samples of product)

— Estimating spread between individuals

 Goal

— To trigger a large spread (e.g., further adoptions of a
product)

* Question

— Which set of individuals should be targeted at the very
beginning?
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Problem Statement

« Spread of node set S: {(S)

— An expected number of active nodes, if set S is the
initial active set

* Problem:

— Given a parameter k (budget), find a k-node set S to
maximize f(S)

— A constrained optimization problem with {(S) as the
objective function
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f(S): Properties

« Non-negative (obviously)
* Monotone: f(S+vV)2> f(S)
e Submodular:

— Let N be a finite set
— A set function 1s submodular iff

fu2 >R

VST cN,Vve N\T,
F(S+v)—F(S)>f(T+v)—1(T)
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Some Facts Regarding this Problem

« Bad News

— For a submodular function monotone non-negative f, finding
a k-element set S for which f(S) is maximized 1s an NP-hard
optimization problem

— It is NP-hard to determine the optimum for influence
maximization for both independent cascade model and
linear threshold model (to be introduced in next chapter).

 Good News

— We can use Greedy Algorithm
 Start with an empty set S

e For k iterations:
Add node v to S that maximizes f(S +v) - f(S).

— How good (or bad) it is?
 Theorem: The greedy algorithm is a (1 — 1/e) approximation.

» 'The resulting set S activates at least (1- 1/e) > 63% of the number
of nodes that any k set S could activate (optimum).
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Cascade Maximization: A Greedy approach

Maximizing the cascade is a NP-hard problem but it
is proved that the greedy approaches gives a solution
that is at least 63 % of the optimal.

Given a network and a parameter -k, which k nodes
should be selected to be in the activation set B in
order to maximize the cascade in terms of the total
number of active nodes?

* Let 0(B) denote the expected number of nodes that
can be activated by B, the optimization problem
can be formulated as follows:

maxo (B) s.t. |B| <k
BCV
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Cascade Maximization: A Greedy Approach

The Algorithm

— Startwith B =0

— Evaluate o(v) for each node, and pick the node with
maximum o as the first node vi to form B = {v1}

— Select a node which will increase o(B) most if the
node is included in B.

» Essentially, we greedily find a node v
€V \B such that

v =arg max o(B U {v})
veV\B
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Example 7.3. For the following graph, assume that node i activates node j when
i — j| = 2 (mod 3). Solve cascade maximization for k = 2.

To find the first node w,'we’compute f({v}) for all v. We start with node 1. At
time 0, node 1 can only activate node 6, because

1~ 6]=2 (10d 3), (7.11)

5/ 3 =1 with remainder 2

Social Media Mining Information Diffusion | 48




6-4=2
2/ 3 =0 with remainder 2

6-5=1
1/ 3 =0 with remainder 1

At time 1, node 1 can no longry activate others, but node 6 is active and can
ivate others. Node 6 has outgoinxedges to nodes 4 and 5. From 4 and 5, node

6 can activate 4:

6 — 4] = 2 (mod 3) (7.13)
6 — 5| = 2 (mod 3). (7.14)

At time 2, node 4 is activated. It has a single out-link to node 2 and since
14 = 2| =2 (mod 3), 2 is activated. Node 2 cannot activate other nodes; therefore,
fU1})y=4. Similarly, we find that f({12}) =1, f({3})) =1, f({4}) =2, f({5})) =1,
and f({6}) = 4. So, 1 or 6 can be chosen for our first node. Let us choose 6. If 6
is initially activated, nodes 1, 2, 4, and 6 will become activated at the end. Now,
from the set {1,2,3,4,5,6}\ {1,2,4,6} = {3,5}, we need to select one more node.
This is because in the setting for this example, f(16,1}) = f({16,2}) = f({6,4}) =
f({6}) = 4. In general, one needs to compute f(S U {v}) forall v € V \ S (see
Algorithm 7.2, line 5). We have f(16,3}) = f({6,5}) = 5, so we can select one
node randomly. We choose 3. So, S = {6,3} and f(S) = 5.
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