
Social Networks Analysis



Instructor

• Prof. Sabrina Gaito 

• sabrina.gaito@unimi.it

• Via Celoria 18

• Zoom meeting by appointment via e-mail

mailto:Sabrina.gaito@unimi.it


Objectives

The learning objective of the course is provide students with the
main concepts and methods of social network analysis.

Students will learn to manage data about network structure and
to analyze, model and visualize such data to get valuable
insights.

At the end of the course students will be able to design and carry
out large-scale social network analysis studies.



Short Description

This course is an introduction to the concepts and methods of
social network analysis.

It provides the main theories, models and methods in social
network mining, as well as algorithms to handle large-scale
networks efficiently.

By completing the course the students will be able to understand
the basic concepts of social networks, to manage the
fundamental concepts in analysing the large-scale data that are
derived from social networks, to perform mining on large social
networks and to visualize and get conclusions from the results.



Program

• Basic notions for networks from graph theory

• Networks models: Random model, scale-free networks, small-world networks

• Connected components

• Node centrality

• Link strength and reciprocity

• Transitivity, Triadic closure and Clustering coefficient

• Ego-networks

• Node similarity

• Node assortativity

• Dense subgraphs and Community detection

• Information diffusion

• Network visualization and basic analyses with Gephi

• Social network analysis with Python: the NetworkX library



Schedule

It will be held on zoom and the link will be 
posted before each lesson. 

Please check any news on Ariel.

The recorded lesson will be made available after 
the lesson.

Course timetable:
Monday: 14.45 - 16.30
Thursday: 13.00 - 14.30



Final Examination

Oral exam: questions about definitions, methods,

algorithms, concepts and calculations on the

topics covered in the course, as well as

discussions on real-data case studies.

A small project on the visualization and analysis of

a social network from publicly available datasets

(Gephi and/or Python)



ANY QUESTIONS?



Social Network Analysis



The social side of the Web

https://fredcavazza.net/2020/04/

21/panorama-des-medias-

sociaux-2020/



Statistics on social media

Vinco’s blog: vincos.it
World maps of the first and second ranked social 
networks on https://vincos.it/world-map-of-
social-networks/

https://wearesocial.com
https://wearesocial.com/blog/2020/01/digital-
2020-3-8-billion-people-use-social-media
https://wearesocial.com/it/digital-2020-italia

https://blog.hootsuite.com/social-media-
statistics-for-social-media-managers/



Sociological analysis

In 1974, Blau defined the field of sociology as follows:
… Social structures are defined by their parameters—
the criteria underlying the differentiation among people
and governing social interaction …

The initial focus on the individual



A network perspective

In the 1930s, a new perspective on human data was 
developed: sociometry

instead of only looking at attributes of single persons or 
aggregating measures of groups of persons 

take into account who is connected to whom.



Early social network analysis
In 1933 Moreno displays the first sociogram at a meeting of the 
Medical Society of the state of New York

 article in NYT

 interests: effect of networks on e.g. disease propagation 

Preceded by studies of (pre)school children in the 1920’s

Source: The New York Times (April 3, 1933, page 17)



Social network analysis
Wasserman-Faust:

«…Focus on relationships among social entities, and on the patterns and 
implications of these relationships….

…The fundamental difference between a social network explanation and a 
non-network explanation of a process is the inclusion of concepts and 
information on relationships among units in a study…

…The network perspective differs in fundamental ways from standard social 
and behavioral science … Rather than focusing on attributes of autonomous
individual units, the social network perspective viewes characteristics of the 
social units as arising out of structural or relational processes or focuses on 
properties of the relational systems themselves…

…Relational ties among actors are primary and attributes of actors are 
secondary…»

Beyond Google Insights, Facebook analytics, …



Social Network Analysis (SNA)

Social network analysis is both an 
approach to understanding social 
structure and a method of analysis 
which can be applied to other 
domains, such as web networks, 
biological networks, economic, 
networks, financial networks, …

Social network 
analysis (SNA) is the 
process of investigating 
social structures through 
the use 
of networks and graph 
theory [Wikipedia]

Complex networks theory

Network Science



Stephen Hawking
January 23, 2000`

Network Science: Introduction

NETWORKS AT THE HEART OF COMPLEX SYSTEMS 



Behind each complex system there is a 
network, that defines the interactions 
between the component. 

We will never understand complex 
system unless we map out and 
understand the networks behind them.

Network Science: Introduction



The network describing the interactions between genes, proteins, and 
metabolites integrate the processes behind living streams.

The wiring diagram capturing the connections between neural cells hold the 
key to our understanding of brain functions. 

The sum of all professional, friendship, and family ties is the fabric of the 
society. 

Trade networks maintain our ability to exchange goods and services, being 
responsible for the material prosperity. They also play a key role in the spread 
of  financial and economics crises. 

Networks are at the heart of some of the most revolutionary technologies of 
the 21st century, empowering everything from Google to Facebook, CISCO, 
and Twitter. 
At the end, networks permeate science, technology, and nature



Despite amazing the diversity in form, size, nature, age, 
and scope present in real networks, most networks 

observed in nature, society, and technology are driven 
by common organizing principles. 

In other words once we disregard the nature of the 
components and their interactions, the obtained 

networks appear to be more similar than different from 
each other. 

NETWORK SCIENCE



Introduction to network science

“Networks are everywhere” with Albert-László Barabási

Introduction: first 4 minuted

An award-winning documentary, Connected, by Australian 

filmmaker Annamaria Talas, has brought the field to our TV 

screen, being broadcasted all over the world and winning 

several prestigious prizes

https://www.youtube.com/watch?v=2rzxAyY7D7k

The documentary introduction on:

https://www.youtube.com/watch?v=zK1Cb9qj3qQ

https://www.youtube.com/watch?v=c867FlzxZ9Y
https://www.youtube.com/watch?v=zK1Cb9qj3qQ
https://www.youtube.com/watch?v=zK1Cb9qj3qQ


Why didn’t network science emerge 
two hundred years ago?



TWO FORCES HELPED THE 

EMERGENCE OF NETWORK 

SCIENCE 

Network Science: Introduction 



To describe the behavior of a system consisting of hundreds to

billions of interacting components, we first need a map of the

system’s wiring diagram.

In the past, we either lacked the tools to map these networks

out, or it was difficult to keep track of the huge amount of data

behind these maps.

The emergence of the Internet, offering effective and fast data

sharing methods, together with cheap digital storage,

fundamentally changed this, allows us to collect, assemble,

share, and analyze data pertaining to real networks.

Network Science: Introduction 



Movie Actor Network,  1998;

World Wide Web,  1999.

C elegans neural wiring diagram 1990

Citation Network,  1998

Metabolic Network, 2000;
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NETWORKS
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Network: definition

3

A network consists of a finite set of actors (nodes) 
and the relations (links, ties, edges) defined on 
them.

In network science relation ties among actors are 
primary and attributes of actors are secondary.. 



From complex systems to networks

4

The choice of the proper network 
representation determines our ability to use 
network theory successfully.

In some cases there is a unique, unambiguous 
representation. 
In other cases, the representation is by no 
means unique.

For example, the way we assign the links 
between a group of individuals will determine 
the nature of the question we can study.
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If you connect individuals 

that work with each other, 

you will explore 

the professional network.



Which network?
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If you connect individuals based on their first name 

(all Peters connected to each other), you will be 

exploring what? 

It is a network, nevertheless.



Examples of networks
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Directed and undirected networks
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Directed or 
undirected ?



Directed and undirected networks
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NETWORKS AND GRAPHS

10



Graphs

11

The mathematical representation of a
network is a graph

System Network Graphs

Actors Nodes Vertices

Interactions Links Edges, Ties

G(N,L) or G(V,E)

The two terms are often used 

interchangeably.



Graphs
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Networks and Graphs

13



Undirected graph
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Directed graph or digraph
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Directed graph
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yes No



Graph drawing

17

Graphs are represented visually by drawing a dot or
circle for every vertex, and drawing an arc between
two vertices if they are connected by an edge. If the
graph is directed, the direction is indicated by drawing
an arrow.

A graph drawing should not be confused with the
graph itself (the abstract, non-visual structure) as
there are several ways to structure the graph
drawing.



Example
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Example

19



Networks and graphs
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N={1,2,3,4} 
L={(1,2),(1,3),(2,3),(2,4)}



Simple graph

21

Simple graph Multigraph



Weighted networks
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

 


 j and ibetween  edge no is There 0,

Rww,
ijA

G(V, E, W)

• A weighted graph is one where edges are 
associated with weights
– For example, a graph could represent a map 

where nodes are cities and edges are routes 
between them
• The weight associated with each edge could represent 

the distance between these cities



Networks and graphs

23

Complex system

Network

Graph

Wiring diagram



GRAPH MATHEMATICAL 
REPRESENTATION

24



Graph mathematical representations

25

• Edge List
• Adjacency List
• Adjacency Matrix

Note: we are not speaking about efficient data structure



Edge List
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• List of nodes and links



Adjacency list

27

• For each node, the list of nodes which is 
connected to



Adjacency matrix

28





ijA
0, otherwise

1, if there is a link between nodes vi and vj



29

• The adjacency matrix for directed graphs is 
not symmetric (A  AT)
– (Aij  Aji) 

• The adjacency matrix for undirected graphs is 
symmetric (A = AT)

1

23

4



Directed graph
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ijA
0, otherwise

1, if there is a link from node vj to node vi



Adjacency
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out-links



Simple networks

Weighted, (un)directed network

Affiliation networks

Bipartite networks



Networks

• We will consider networks which have:

– No loops

– No multiple edges

• We will consider:

– Directed and undirected networks

– Weighted and unweighted networks



A special case: Affiliation networks

• They have two types of nodes:

• Actors

• Groups

• Representation by bipartite 
(two-mode) networks

• Links connect actors to groups

• No links between actors

• No links between groups

• Actors are connected via co-
membership of groups

A B C D

1 2 3 4 5 6 7

The incidence matrix is a rectangular matrix gxn

Bij = 
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑔𝑟𝑜𝑢𝑝 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



One-mode projections
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A B C D

1 2 3 4 5 6

A B

C D

Projection onto groups

Nodes are groups, two nodes are 

connected by a link if they share an actor

Projection onto actors

Nodes are actors, two actors are 

connected if they share a group

7

1

2

3 4

5

6

Nodes sharing a group

form a clique



One-mode weighted projection
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A B C D

1 2 3 4 5 6

Information loss:

how many groups two nodes share

Projection weighted:give each link a 

weight equal to the number of 

common groups

7
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3 4
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7
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Human disease network

Barabasi’s book: 2.7



Human disease network

Barabasi’s book: 2.7



Tripartite networks

Barabasi’s book: 2.7



Tripartite networks

Barabasi’s book: 2.7



Credits

M.E.J. Newman
Networks – An Introduction
Oxford University Press
Section 6.6

Barabasi
Network Science
Section 2.7



Social Networks Analysis

Density and Average Degree



Degree and Density

Consider a network G(N,L) where we know only:
N: number of nodes
L: number of links

[No information on where the links are]

What can we measure?

Local property

Global property



Undirected Networks



Degree

Node degree: Number of links connected to it

We will denote the degree of node i by di or ki

2
3

1

4



Degree
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For an undirected network of N 
nodes the degree can be written
in terms of the adjacency matrix
as:



Degree

Node degree: Number of links of a node

Do we know anything about node degree from N and L?

Average degree



Average Degree

Average degree: average number of links per node



Average Degree
Each link in an undirected network has two nodes as end-points.
If there are L links then there are 2L end-points of links.
But the number of end-points is also equal to the sum of the 
degrees of all nodes.

Combining the two :

Is it a local or a global property?



Average degree

A local property mediated on the 
global network.

A function of N and L only.
No need to know where the links

are in the networks.



Density (connectance)

Average degree: 
a local property mediated on the global network

What about a global property?

Does the network have few/many links given the number of
nodes? The density is related to the total number of links built
by the nodes

How to define the density of the network?



Density: definition

The density of a network is the fraction of all

possible links that are actually present.

The density of a network is the ratio of the 

number of links L to the number of possible

links in a network with N nodes

and is given by

?

HINT: compute the number of links in a 

complete graph of N nodes. Start by 

thinking node per node



Density

Numerator: L

Denominator: 

the maximum possible number number of links

in a network of N nodes is:



Density

The density of a network is the ratio of the number of links L to 
the number of possible links in a network with N nodes

given by



Density and Average Degree

The density is inversely

proportional to the 

square of the number

of nodes

The average degree is

inversely proportional

to the number of nodes



Density and Average Degree

The degree is related to the number of links of a single 

node (local)

The density is related to the number of links of the whole

network (global)

Which is the relation between

the density and the average degree?



Density and Average Degree



Directed Networks



Degree, in-degree and out-degree

• Out-degree: expansiveness 

• In-degree: popularity

21

In-degree: number of in-going links of a node (j,i)

Out-degree: number of out-going links of a node (i,j)

1

2

3

4
5



• Outdegree =
0 0 0 0 1

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

0 0 0 1 0

A =




n

j

ijA
1

The outdegree of node 3 is 2, sum of the 

elements of the third coloumn

 Indegree =

A =




n

i

ijA
1

The indegree of node 3 is 1, sum of the 

elements of the third row




n

i

iA
1

3




n

j

jA
1

3
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0 0 0 0 1

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

0 0 0 1 0

1

2

3

4
5





ijA
0, otherwise

1, if there is an edge from j to i

From 5 to 1



26

Write the definition of average in- and out- degree

Indegree and outdegree

Are they related?



27

Indegree and outdegree

Are they related?

The average in-degree is equal to the average

out-degree



Directed Networks

Compute the average in-degree and out-degree

as a function of the number of nodes N and the 

number of links L

1

2

3

4

5



Density: definition

The density of a network is the fraction of all

possible links that are actually present.

The density of a network is the ratio of the 

number of links L to the number of possible

links in a network with N nodes

and is given by

?



Undirected network Directed network

2

3

1

2

3

1

4
4



Real networks are sparse



L <<  Lmax

or 
<d> <<N-1.  

Compute the average degree and the density

Real networks are sparse

Undirected network N L

Internet 1.92E+05 6.09E+05

Mobile phone calls 3.66E+04 9.18E+04

e-mail 5.72E+04 1.04E+05

Actor network 7.02E+05 2.94E+07

protein network 2018 2930

Facebook2011 7.21E+08 6.90E+09

Twitter2009 4.16E+07 1.4E+09

Youtube 1.10E+06 2.90E+06



Network Science: Graph Theory 

Metcalfe’s law: the Internet boom of 2000

Value: proportional to the 

square of the number of its 

consumers

Costs would grow only linearly. 

Two fundamental 

problems with Metcalfe's 

law: 

- While all links are 

possible, in real networks 

not all links are present. 

Indeed, most real 

networks are sparse, 

which means that only a 

very small fraction of the 

links are present. 

- Not all links are of equal 

value. 

  

Lmax =
N

2

æ 

è 
ç 

ö 

ø 
÷ =

N(N -1)

2



Graph densification

«…Most of real networks densify over time, with the 

number of edges growing super-linearly in the 

number of nodes…»

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph

evolution: Densification and shrinking diameters. ACM Trans. Knowl. 

Discov. Data 1, 1, Article 2 (March 2007). 

DOI: https://doi.org/10.1145/1217299.1217301



Credits
Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Social Media Mining: An Introduction
A Textbook by Cambridge University Press

Albert-László Barabási
Network Science
2.3.1, 2.3.2, 

Newman, M.E.J.
Networks: An Introduction.
Oxford University Press. 2010.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph
evolution: Densification and shrinking diameters. ACM Trans. Knowl. 
Discov. Data 1, 1, Article 2 (March 2007). 
DOI: https://doi.org/10.1145/1217299.1217301



Social Network Analysis
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Network Models

Random networks

Degree distribution in random 

networks
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Generative network models

When we analyse or mine a network we measure the 
structure of the network with mathematical, statistical
and computational methods for making sense of the 
data we get from our measurements.

This is a data-driven approach.

Why do we need network models?
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Network models

1. If we know a network has some particular property, 
what effects will that have on the overall behavior
of the system?

To get a feel for these effects we build
mathematical models, i.e. mathematical models
of networks. The properties of these networks can 
be  calculated analytically, or at least numerically.

Copyrig
ht U

niversità
 degli S

tudi d
i M

ila
no



Network models

2. A large part of understanding what properties 
measured in a network are interesting depends on 
having an appropriate reference point by which to 
distinguish interesting from non-interesting. 

Random network models represent the 
conventional reference point (null model). 

Compare the network with the observed property
to networks without it by create artificial
networks with and without that property and 
compare them.
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Network Models

3. Network models allow us to identifying the 
mechanism of the system that produces an 
empirically observed pattern.

That allows us to better understand and predict 
networks  and to immediately understand the 
nature of a new network when we see that pattern  
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Network Models

A network (or graph) model is a mathematical
model of networks in which some specific

parameters are fixed, but the network is random 
in all the other respects.

The aim is to build models that reproduce some 
or all properties of real-world networks. 
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Random networks

The Erdos-Renyi network model
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9

Links are created randomly

Assumption
From a modeling perspective a network is a relatively simple object, 
consisting of only nodes and links. 
The real challenge, however, is to decide where to place the links 
between the nodes so that we reproduce a system. 
In this respect the philosophy behind a completely random network 
is simple: we assume that this goal is best achieved by placing
the links randomly between the nodes. 
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Random networks: models

Two definitions of a random network:

G(N, L) Model
N labeled nodes are connected with L randomly placed links. 
G(N, p) Model
Each pair of N labeled nodes is connected with probability p.

G(N, L) model fixes the total number of links L 
G(N, p) model fixes the probability p that two nodes are 
connected

Which one?
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Random networks: models

G(N, L) Model
N labeled nodes are connected with L randomly placed links. 
G(N, p) Model
Each pair of N labeled nodes is connected with probability p.

Compute the average degree

G(N, L) model
the average degree of a node is simply <d> = 2L/N

G(N,p) model?
Seems to be more complicated but …
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Random networks: models

While in the G(N, L) model the average degree of a node is 
simply <d> = 2L/N, other network characteristics are easier to 
calculate in the G(N, p)

Asymptotically the two models are equivalent

Random network, Erdos-Renyi model: G(N,p)
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Random networks

A random network consists of N nodes where each node pair is 
connected with probability p.

To construct a random network we follow these steps:
1) Start with N isolated nodes.
2) Select a node pair among the N(N-1)/2 for undirected networks 
or N(N-1) directed networks and generate a random number r
between 0 and 1.
If r<=p, connect the selected node pair with a link, otherwise leave
them disconnected.
3) Repeat step (2) for each of the node pairs.

The Gn,pGn,p graph algorithm chooses each of the [n(n−1)]/2[n(n−1)]/2 (undirected) or n(n−1)n(n−1) (directed) possible edges with probability
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p=1/6

N=12

L=8 L=10 L=7

Erdos – Renyi model
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p=0.03

N=100

Erdos – Renyi model
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P(L): the probability to have exactly L links in a network of N nodes and 
probability p:
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pL (1- p)

N(N-1)

2
-L

The maximum number of links 

in a network of N nodes.

Number of different ways we can choose 

L links among all potential links.

Binomial distribution...

Erdos–Renyi model: L

Probability that L of the attempts to 

connect all potential pairs have resulted 

in a link
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P(L): the probability to have a network of exactly L links

  

P(L) =

N

2

æ 

è 
ç 

ö 

ø 
÷ 

L

æ 

è 

ç 
ç ç 

ö 

ø 

÷ 
÷ ÷ 
pL (1- p)

N(N-1)

2
-L

  

< L >= LP(L) = p
N(N -1)

2
L= 0

N(N-1)

2

å

•The average number of links <L> in a random graph

•The variance

  

s2 = p(1- p)
N(N -1)

2

Erdos–Renyi model: L
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How to choose N and p
for comparison with the network 

under study
Real network: N,L

Random network: N,p

N as the real network

p?
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How to choose N and p
for comparison with a real network

Real network: N,L

Random network: N,p

N as the real network

p such that

<Lrandom> in the random network is equal to the 

number of links in the real network

<Lrandom>=L

p=?
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< L >= LP(L) = p
N(N -1)

2
L= 0

N(N-1)

2

å

How to choose N and p
for comparison with a real network

Hint:

L

=

<L>
L = Δ 𝑁(𝑁 − 1)/2
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How to choose N and p
for comparison with a real network

Real network: N,L

Random network: N,p

N as the real network

p such that

<Lrandom> in the random network is equal to the 

number of links in the random network

<Lrandom>=L

p = Δ
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An ensemble of networks

The random network model is not defined in terms of a single 
randomly generated network, but as an enesemble of 
networks.

When one talks about the properties of random networks, one
tipically means the average properties of the ensemble.

Some properties can be calculated analitically (as the average
number of links), others generating an ensemble of networks 
with the same parameters and computing the average of the 
property on them.
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Random networks

Random networks are a very useful model to 
compare with the real-world networks behavior. 

When we study a phenomenon at the real network, 
we can use a random model to realize if the 

phenomenon carries information or if it is random.
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DEGREE DISTRIBUTION
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As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>.

Select k 

nodes from N-1
probability of 

having k links

probability of 

missing N-1-k

links

  

P(k) =
N -1

k

æ 

è 
ç 

ö 

ø 
÷ p

k(1- p)(N-1)-k

  

< k >= p(N -1)

  

sk

2 = p(1- p)(N -1)

  

sk

< k >
=

1- p

p

1

(N -1)

é 

ë 
ê 

ù 

û 
ú 

1/ 2

»
1

(N -1)1/ 2

Random networks: degree distribution

Probability that a randomly 

selected node has degree k 
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P(k) =
N -1

k

æ 

è 
ç 

ö 

ø 
÷ p

k(1- p)(N-1)-k

  

< k >= p(N -1)

For large N and small k, 
the degree distribution can be approximated by the Poisson distribution:

  

P(k) = e-< k> < k >k

k!

That’s why it is also called Poisson random model

Poisson distribution
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P
(k

)   

P(k) = e-<k> < k >k

k!
<k>=50

Random networks: degree distribution
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Exact Result
-binomial distribution-

Large N limit
-Poisson distribution-

P
ro

b
a

b
ili

ty
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti
o

n
 

(P
D

F
)

It does not
depend on N

Random networks: degree distribution
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How big the differences are between the node degrees in a random 
networks? 

Can high-degree nodes coexist with small-degree nodes?

Random networks: degree distribution
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How big the differences are between the node degrees in a random 
networks? 

Can high-degree nodes coexist with small-degree nodes?

Random networks: degree distribution

Example:
Sociologists estimate that a typical
person knows about 1000 
individuals on a first-name basis: 
<k>=1000
Human society: N=109

Which is the number of friend 
of a typical individual?
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How big the differences are between the node degrees in a random 
networks? 

Can high-degree nodes coexist with small-degree nodes?

Sociologists estimate that a typical person knows about 1000 individuals
on a first-name basis: <k>=1000
Human society: N=109

The number of friends a typical
individual has is between 968 and
1032, a narrow window

Random networks: degree distribution
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36

Solving (3.28) with N = 109 and <k> = 1,000 we obtain  k
min

 = 816.  

 

RANDOM NETWORKS ADVANCED TOPICS 3.B

MAXIMUM AND MINIMUM DEGREES

(3.29)P k e
k

k
( )

!min

k
k

k

k

0

min

å=
á ñ-á ñ

=

The expected maximum degree of  a network, 

k
max

, is chosen so that  there is at  most  one node 

whose degree is higher  than k
max

. This is of ten 

called the natural upper cutoff  of  a degree dis-

t r ibut ion. To calculate i t , we need to set  k
max

 

such that  the area under  the degree dist r ibu -

t ion p
k
 f or  k ≥ k

max
 equals 1/ N, hence the total 

number  of  nodes expected in this region is 

exact ly one.  We f ollow a sim i lar  argument  to 

determ ine the expected smallest  degree, k
min

.

Figure 3.16

Minimum and Maximum Degree

k

p
k

k
min

k
max

The area under the curve

should be less than 1/N.

. <k>=1000,  N=109

kmin=816
kmax=1185

We define kmax such that in a network of N nodes we have at most
one node with degree higher than kmax

Random networks: degree distribution
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The most connected individual has degree kmax~1,185
The least connected individual has degree kmin ~ 816
The number of friends a typical individual has is between 968 and 1032

The probability to find an individual with degree k>2,000 is 10-27.  Hence the 
chance of finding an individual with 2,000 acquaintances is so tiny that such 
nodes are virtually inexistent in a random society.

a random society would consist of mainly average individuals, with 
everyone with roughly the same number of friends. 
It would lack outliers, individuals that are either highly popular or recluse, 
no hubs

  

P(k) = e-<k> < k >k

k!

Random networks: degree distribution
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Credits
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Network Science
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Network Science

Class 4: Scale-free property 
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Introduction

Section 1
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Nodes: WWW documents 

Links:   URL links

N: around 10^12 the largest 

network, even larger than 

human brain (N^11)

crawler: collects all URL’s 

found in a document and 

follows them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

WORLD WIDE WEB

Network Science: Scale-Free Property

1998

Hawoong Jeong (Barabasi lab) maps out 

nd.edu:

300000 documents

1.5 milion links

http://barabasi.com/networksciencebook/resources/chapter4.html
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Power laws and scale-free networks

Section 2
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R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

WORLD WIDE WEB

Network Science: Scale-Free Property

<kin>= <kout>= 4.60

σ(k)=2.14

P(k>10)~ 10-3

P(k>20)~ 10-8

P(k=100)~ 10-94
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R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

WORLD WIDE WEB

Network Science: Scale-Free Property

<kin>= <kout>= 4.60

σ(k)=2.14
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FACING REALITY: Degree distribution of real networks

  

P(k) = e-<k> < k >k

k!
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80/20 RULE

Vilfredo Federico Damaso Pareto (1848 – 1923), Italian economist, political scientist and 

philosopher, who had important contributions to our understanding of income distribution and to the analysis of 

individuals choices. A number of fundamental principles are named after him, like Pareto efficiency, Pareto 

distribution (another name for a power-law distribution), the Pareto principle (or 80/20 law).

80 percent of money is earned by only 20 

percent of the population
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Vilfredo Pareto, a 19th century economist, noticed that in Italy a few wealthy 

individuals earned most of the money, while the majority of the population 

earned rather small amounts. He connected this disparity to the observation 

that incomes follow a power law, representing the first known report of a power 

law distribution [3]. His finding entered the popular literature as the 80/20 rule: 

roughly 80 percent of money is earned by only 20 percent of the population. 

The 80/20 emerges in many areas, like management, stating that 80 percent 

of profits are produced by only 20 percent of the employees or that 80 percent 

of decisions are made during 20 percent of meeting time. They are present in 

networks as well: 80 percent of links on the Web point to only 15 percent of 

webpages; 80 percent of citations go to only 38 percent of scientists; 80 

percent of links in Hollywood are connected to 30 percent of actors [4]. 

Typically all quantities obeying the 80/20 rule follow a power law distribution. 

During the 2009 economic crisis power laws have gained a new meaning: the 

Occupy Wall Street Movement highlighted the fact that in the US 1% of the 

population earns a disproportionate 15% of the total US income. This 1% 

effect, a signature of a profound income disparity, is again a natural 

consequence of the power law nature of the income distribution.Copyrig
ht U
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Discrete vs. Continuum formalism 

Network Science: Scale-Free Property

Discrete Formalism 
As node degrees are always positive 

integers, the discrete formalism captures the 

probability  that a node has exactly  k links:

Continuum Formalism 
In analytical calculations it is often convenient to 

assume that the degrees can take up any 

positive real value:

INTERPRETATION:Copyrig
ht U
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The difference between a power law and an exponential distribution

Note the difference for:

small k

k around <k>

large k
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Scale-free networks

A scale-free network

is a network 

whose degree distribution 

follows a power law.
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The difference between a power law and an exponential distribution: hubs

Let us use the WWW to illustrate the properties of the high-k regime. 

The probability to have a node with k~100  is 

•About                        in a Poisson distribution 

•About                       if  pk follows a power law. 

•Consequently, if the WWW  (10^12 nodes) were to be a random network, 

according to the Poisson prediction we would expect 10-18    k>100 degree 

nodes, or none.

•For a power law degree distribution, we expect about         10^8                  

k>100 degree nodes
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Finite scale-free networks
All real networks are finite  let us explore its consequences. 

 We have an expected maximum degree, kmax

Estimating kmax

P(k)dk
kmax

¥

ò »
1

N

kmax = kminN

1

g -1

Why: the probability to have a node larger than kmax should not 

exceed the prob. to have one node, i.e. 1/N fraction of all 

nodes 

P(k)dk
kmax

¥

ò = (g -1)kmin

g -1 k-g dk
kmax

¥

ò =
(g -1)

(-g +1)
kmin

g -1 k-g +1éë ùûkmax

¥

=
kmin

g -1

kmax

g -1
»

1

N

The size of the biggest hub
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Finite scale-free networksThe size of the largest hub

To illustrate the difference in the maximum 

degree of an exponential and a scale-free 

network let us return to the WWW sample 

of Image 4.1, consisting of N ≈ 3 ×
105 nodes. 

As kmin = 1, if the degree distribution were 

to follow an exponential, (4.17) predicts 

that the maximum degree should be kmax ≈ 

13. 

In a scale-free network of similar size 

and γ = 2.1, (4.18) predicts kmax ≈ 95,000, 

a remarkable difference. 

Note that the largest in-degree of the 

WWW map of Image 4.1 is 10,721, which 

is comparable to kmax predicted by a scale-

free network. 

This reinforces our conclusion that in a 

random network hubs are effectivelly

forbidden, while in scale-free networks 

they are naturally present.Copyrig
ht U
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The meaning of scale-free

Section 4
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Definition:

Networks with a power law tail in their degree distribution are called 

‘scale-free networks’ 

Where does the name come from?

Slides after Dante R. Chialvo 

Scale-free networks: Definition

Network Science: Scale-Free PropertyCopyrig
ht U
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• Correlation length diverges at the critical point: the 
whole system is correlated!

• Scale invariance: there is no characteristic scale for 
the fluctuation (scale-free behavior).

• Universality: exponents are independent of the 
system’s details.

CRITICAL PHENOMENA

Network Science: Scale-Free PropertyCopyrig
ht U
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Many degree exponents are smaller 

than 3

 <k2> diverges in the N∞ limit!!!

DIVERGENCE OF THE HIGHER MOMENTS

Network Science: Scale-Free PropertyCopyrig
ht U
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The meaning of scale-free

Copyrig
ht U

niversità
 degli S

tudi d
i M

ilano



The meaning of scale-free

Copyrig
ht U

niversità
 degli S

tudi d
i M

ilano



universality

Section 5
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(Faloutsos, Faloutsos and Faloutsos, 1999)

Nodes: computers, routers 

Links:   physical lines

INTERNET BACKBONE

Network Science: Scale-Free PropertyCopyrig
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( = 3)

(S. Redner, 1998)

P(k) ~k-

1736 PRL papers (1988)

SCIENCE CITATION INDEX

Nodes: papers

Links:   citations

578...

25

H.E. Stanley,...

Network Science: Scale-Free PropertyCopyrig
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SCIENCE COAUTHORSHIP

M: math

NS: neuroscience
Nodes: scientist (authors) 

Links: joint publication

(Newman, 2000, Barabasi et al 2001)

Network Science: Scale-Free PropertyCopyrig
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Nodes: online user  

Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 

112 days, N=59,912 nodes

Pussokram.com online community; 

512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES
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ONLINE COMMUNITIES

Twitter:

Jake Hoffman, Yahoo, 

Facebook

Brian Karrer, Lars Backstrom, Cameron Marlowm 2011Copyrig
ht U
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Organisms from all three 

domains of life are  scale-free!

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Archaea Bacteria Eukaryotes

Meta-P(k)

22

22
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METABOLIC NETWORK

Network Science: Scale-Free PropertyCopyrig
ht U

niversità
 degli S

tudi d
i M

ilano



)exp()(~)( 0
0





k

kk
kkkP


 

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

Prot P(k)

Nodes: proteins                         
Links: physical interactions-binding 

TOPOLOGY OF THE PROTEIN NETWORK
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2,800 Y2H interactions
4,100 binary LC interactions
(HPRD, MINT, BIND, DIP, MIPS)

Rual et al. Nature 2005; Stelze et al. Cell 2005

HUMAN INGTERACTION NETWORK

Network Science: Scale-Free PropertyCopyrig
ht U
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Nodes: actors    

Links: cast jointly

N = 212,250 actors    

k = 28.78

P(k) ~k-

Days of Thunder (1990) 

Far and Away     (1992)  

Eyes Wide Shut  (1999)

=2.3

ACTOR NETWORK
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Nodes: people (Females; Males)

Links:  sexual relationships

Liljeros et al. Nature 2001

4781 Swedes; 18-74; 

59% response rate.

SWEDISH SE-WEB

Network Science: Scale-Free PropertyCopyrig
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Not all networks are scale-free

•Networks appearing in material 

science, like the network describing the 

bonds between the atoms in crystalline 

or amorphous materials, where each 

node has exactly the same degree.

•The neural network of the C.elegans

worm. 

•The power grid, consisting of 

generators and switches connected by 

transmission lines
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PLOTTING POWER LAWS

ADVANCED TOPICS 4.B
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(linear scale)

Network Science: Scale-Free Property

P(k)=Nk/N
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Random network model

First drawback:
The random network model is characterized by a Poisson degree 
distribution, in contrast to power-law distribution as seen in real 
networks. 
In a random networks all vertices are alike, while real networks are 
characterized by a small number of vertices with very large degree 
while most vertices maintain a very low degree. 
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Credits

Albert-László Barabási

Network Science

Chapter 4.1 – 4.5, 4.11, 4.12, 4.13
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Scale Free networks

Examples
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Facebook

• Ugander, Johan & Karrer, Brian & Backstrom, Lars & Marlow, 
Cameron. (2011). The Anatomy of the Facebook Social Graph. 
arXiv preprint. 1111.4503. 

– Degree distribution

Pag 3, Figure 1
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Twitter

• Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 
2014. Information network or social network?: the structure 
of the twitter follow graph. In Proceedings of the 23rd 
International Conference on World Wide Web (WWW '14 
Companion). ACM, New York, NY, USA, 493-498. DOI: 
https://doi.org/10.1145/2567948.2576939

- Degree distribution

Chapter 3.1, Figure 1, Table 1
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Web

• Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar
Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew 
Tomkins, and Janet Wiener. 2000. Graph structure in the 
Web. Comput. Netw. 33, 1-6 (June 2000), 309-320. 
DOI=http://dx.doi.org/10.1016/S1389-1286(00)00083-9

– Degree distribution

Chapter 2.2.1, Figure 1-4
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Mobile communication networks

• Structure and tie strengths in mobile communication networks, 
J. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.
-L. Barabási

Proceedings of the National Academy of Sciences May
2007, 104 (18) 7332- 7336; DOI: 10.1073/pnas.0610245104

- Degree distribution: Figure 1a

• Calling, texting, and moving: multidimensional interactions of mobile 
phone users

Matteo Zignani, Christian Quadri, Sabrina Gaito & Gian Paolo Rossi

Computational Social Networks volume 2, Article number: 13 (2015)

- Degree distribution: Figure 5
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Network Science

Class 5: BA model

Albert-László Barabási
With

Roberta Sinatra and Sean P. Cornelius

www.BarabasiLab.comCopyrig
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Section 1

Hubs represent the most striking difference between a random and a 

scale-free network. Their emergence in many real systems raises 

several fundamental questions:

•Why does the random network model of Erdős and Rényi fail to 

reproduce the hubs and the power laws observed in many real 

networks? 

• Why do so different systems as the WWW or the cell converge to a 

similar scale-free architecture? (Different type of nodes, links, history 

and purpose) 
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To understand why so different systems 

converge to a similar architecture we need to 

first uncover the mechanism responsible for the 

emergence of the scale-free property

Given the major differences between the 

systems that display the scale-free property, 

the explanation must be simple and 

fundamental.
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Why are hubs and power laws absent in 

random networks?

There are two hidden assumptions of the 

Erdios-Renyi model, that are violated in real

networks 
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Growth and preferential attachment

Section 2
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networks expand through the addition of new nodes

Barabási & Albert, Science 286, 509 (1999)

BA MODEL: Growth 

ER model: 

the number of nodes, N, is fixed (static models)

In 1991 the www had a single node, today the Web 

has over a trillion (10^12) documents

The protein interaction network may appear to be 

static, yet it is not. The number of genes in a human 

cell has grown from a few to over 20000 in four billion

years

If we wish to model these networks, we cannot resort 

to a static model. Our modeling approach must 

instead acknowledge that networks are the product of 

a steady growth process.
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New nodes prefer to connect to  the more connected nodes

Rich-gets-richer phenomenon

Barabási & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models 

BA MODEL: Preferential attachment

ER model: links are added randomly to the network
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Barabási & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models 

BA MODEL: Preferential attachment

We are familiar with only a tiny fraction of the trillion or 

more documents available on the WWW.  The nodes we 

know are not entirely random: we all heard about Google 

and Facebook, but we rarely encounter the billions of 

less-prominent nodes that populate the Web. As our 

knowledge is biased towards the more connected nodes, 

we are more likely to link to a hub than to a node with only 

few links.

With more than a million scientific papers published each 

year, no scientist can attempt to read them all. The more 

cited is a paper, the more likely that we will notice it. 

Therefore, our citations are biased towards the more cited 

publications.

The more movies an actor has played in, the higher are 

the chances that he/she will be considered for a new role
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Barabási & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models 

Section 2: Growth and Preferential Sttachment

The random network model differs from real networks in two important 

characteristics: 

Growth: While the random network model assumes that the number of 

nodes is fixed (time invariant), real networks are the result of a growth 

process that continuously increases.

Preferential Attachment: While nodes in random networks randomly choose 

their interaction partner, in real networks new nodes prefer to link to the more 

connected nodes.
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The Barabási-Albert model

Section 3
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Barabási & Albert, Science 286, 509 (1999)

(1) Networks continuously expand by the 

addition of new nodes

WWW :  addition of new documents

GROWTH:  

add a new node at each time step 

with k links that connect the new node 

to k nodes already in the network

PREFERENTIAL ATTACHMENT: 

the probability that a node connects to a node 

with k links is proportional to k.

(2) New nodes prefer to link to highly 

connected nodes.

WWW :  linking to well known sites

Network Science: Evolving Network Models 

Origin of SF networks: Growth and preferential attachment

Π(ki)=ki / ∑jkj

Preferential attachment is a probabilistic 

mechanism: A new node is free to connect 

to any node in the network. However, if a 

new node has a choice between a degree-

two and a degree-four node, it is twice as 

likely that it connects to the degree-four 

node.Copyrig
ht U
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It shows nine subsequent steps of the Barabasi-Albert model.

Empty circles: newly added nodes deciding where to connect their two links using

preferential attachment.

A few nodes gradually turn into hubs
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Barabási-Albert model

The definition of the Barabási-Albert model leaves many mathematical 

details open:

It does not specify the precise initial configuration of the first m0 nodes.

It does not specify whether the k links assigned to a new node are added 

one by one, or simultaneously. This leads to potential mathematical conflicts: 

If the links are truly independent, they could connect to the same node i, 

resulting in multi-links and loops.

The first mathematical model was introduced by Bollobas et al.:

Linearized chord diagram model

•ion of the first m0 nodes.

•It does nol mathematical conflicts: If the links are truly independent, they 

could connect to the same node i, resulting in multi-links.Copyrig
ht U
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Time in networks
As we compare the predictions of the network models with real data, we have to decide how to
measure time in networks. Real networks evolve over rather different time scales:

World Wide Web
The first webpage was created in 1991. Given its trillion documents, the WWW added a node each
millisecond (103 sec)
Cell
The cell is the result of 4 billion years of evolution. With roughly 20,000 genes in a human cell, on
average the cellular network added a node every 200,000 years (~1013 sec).

Given these enormous time-scale differences, it is impossible to use real time to compare the dynamics
of different networks. Therefore, in network theory we use event time, advancing our time-step by one
each time when there is a change in the network topology.
For example, in the Barabási-Albert model the addition of each new node corresponds to a new time
step, hence t=N.
In other models time is also advanced by the arrival of a new link or the deletion of a node. If needed,
we can establish a direct mapping between event time and the physical time.
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Section 4

Red: linear binning

Green: log binning

The degree distribution of a network generated by the Barabási-Albert model. 

The plot shows both the linearly-binned (red symbols) as well as the log-binned 

version (green symbols). The straight line is added to guide the eye and has slope 

-3, corresponding to the resulting network’s degree exponent.Copyrig
ht U
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Do we need both growth and preferential attachment?

YEP

Network Science: Evolving Network Models 

The absens of preferential attachment leads to a growing

network with a stationary but exponential degree distribution

The absense of growth leads to the loss of stationarity, 

forcing the network to converge to a complete graph
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The BA model is only a minimal model.

Founded six years after birth of the World Wide Web, Google was a latecomer to 

search. By the late 1990s Alta Vista and Inktomi, two search engines with an 

early start, have been dominating the search market. Yet Google, the third 

mover, soon not only became the leading search engine, but acquired links at 

such an incredible rate that by 2000 became the most connected node of the 

Web as well [1]. But its status didn’t last: in 2011 Facebook, with an even later 

start, took over as the Web’s biggest hub. Copyrig
ht U
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Social Networks Analysis
Connectivity 



Connectivity
How nodes are connected via a sequence of links in a network

Two nodes are adjacent if they are connected via a link.

Two links are incident, if they share an end-point

An edge in a graph can be traversed when one starts at 

one of its end-nodes, moves along the edge, and stops 

at its other end-node.



Path
Walk: a sequence of incident links visited one after another 

{(v1, v3), (v3, v4), (v4, v5), (v5, v3), (v3, v2)}

Path: a walk where nodes and links are distinct 

{(v1, v3), (v3, v4), (v4, v5)} [Alternatively in simple graph: {v1, v3, v4, v5)}]

Path length: the number of links visited in the path 

v1 v2

v3

v4 v5

A node vi is connected to node vj (or reachable 
from vj) if it is adjacent to it or there exists a 
path from vi to vj. 



Connected graph
A graph is connected, 

if there exists a path 

between any pair of nodes in it 

A graph is disconnected, if it 
is not connected.

[It exists at least a pair of 
nodes which are not
connected]

v1 v2

v3

v4 v5

v1 v2

v3

v4 v5v6



Connected components: intuition

v4 v5 v4 v5 v4 v5

v1 v2

v3

v6

v1 v2

v3

v6

v1 v2

v3

v6

1 connected components 2 connected components 3 connected components

v4
v3 v4 v5 v4 V5

Subgroups of nodes, with no connections



Connected components: definition

1 connected components 2 connected components 3 connected components

A connected component is a subgraph of a network such that
there exists at least one path from each member of that
subgraph to each other member,

and
no other vertex in the network can be added to the subgraph
while preserving this property (maximality) 

v4 v5 v4 v5 v4 v5

v1 v2

v3

v6

v1 v2

v3

v6

v1 v2

v3

v6
v4

v3 v4 v5 v4 V5



Connected component: definition

A connected component is a subgraph of a network such that

It is a node-generated subgraph, i.e. the subsets of vertices and all edges that

are between them

there exists at least one path from each member of that subgraph to each other member, 

There is a path between all pair of vertices in the component

Each node of the component is reachable from any other node of the 

component

no other vertex in the network can be added to the subgraph while preserving this

property

There is no path between a node in the component and any other not in the 

component (maximality)



Connected components in social networks

There is typically a very large component that fills most of the network -
usually more than half and not infrequently over 90% - while the rest of the
network is divided into a large number of small components.

There are some networks for which the largest component fills the entire
network such as
the Internet, communication networks, transportation networks, power grids
In these cases there is always a good specific reason.



Connected Components in social networks

Ugander et al., The Anatomy of the Facebook Social Graph

, 2011.



Connect Components in social networks

Can a network have two or more large components that fill a sizable fraction of
the entire graph?

Usually the answer is no.

The argument is that if a network of n nodes was divided into two large
components of about n/2 nodes each, then there would be n2/4 possible pairs of
nodes such that one node was in one large component and the other node in the
other large component.

It is highly unlikely that not one such pair would be connected.



Connected components in directed networks

a directed graph is strongly connected if there exists a directed path 
between any pair of nodes

a directed graph is weakly connected if there exists a path between any 
pair of nodes, without following the edge directions



Connected components in directed networks

In a directed graph, a strongly connected component is a maximal subset 
of nodes such that each can reach and is reachable from all the others 
along a directed path

In a directed graph, a weakly connected component is a maximal subset 
of nodes such that each can reach and is reachable from all the others 
along an undirected path



Connectivity in directed networks



Connected components in 
real-world directed networks

There is typically one large strongly connected component and a 
selection of small ones.

The largest strongly connected component in the Web fills about
a quarter of the network



Credits

Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Social Media Mining: An Introduction
A Textbook by Cambridge University Press
Chapter 2.4

Newman, M.E.J.
Networks: An Introduction.
Oxford University Press. 2010.
Chapters 6.11, 8.1

Albert-László Barabási

Network Science



RANDOM-REAL NETWORKS

CONNECTED COMPONENTS
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Connected components 
in real-world networks

Real-world networks: giant component 
and power-law connected components 
size distribution
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Growing a random network

Starting with N isolated nodes, the links are added gradually
through a random process.

This corresponds to a gradual increase of p, with striking
consequences on the network topology.

To quantify this process, we first inspect how the size of the
largest connected cluster within the network, NG, varies with the
average degree <k>.
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Connected components 
in random networks

4

N_G: number of nodes in the giant component

Two extreme cases:

p=0  disconnected nodes, <k>=0, N_G=1

p=1  fully connected, <k>=N-1, N_G=N

One would expect that the largest component grows 
gradually from N_G=1 to N_G=N
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S=N_G/N
S: fraction of nodes in the largest 
connected component

Size of the giant component
One would expect that the largest 

component grows gradually 
Yet, this is not the case.

N_G/N remains zero for small <k>, indicating 
the lack of a large connected component. 

Once <k> exceeds a critical value, NG/N 
increases, signaling the rapid emergence of a 
large component that we call the giant 
component.

Erdős and Renyi in their classical 1959 paper 
predicted that the condition
for the emergence of the giant component 
is:

<k>=1
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S=N_G/N
S: fraction of nodes in the largest 
connected components

Size of the giant component

In other words, we have a giant component 
if and only if each node has
on average more than one link.

The fact that we need at least one link per 
node to observe a giant component
is not unexpected. Indeed, for a giant 
component to exist, each of
its nodes must be linked to at least one 
other node. 

It is somewhat counterintuitive,
however, that one link is sufficient for its 
emergence.
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Giant component
(Barabasi’s book, Section 3.14 –

Advanced topics 3.C)
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S=N_G/N
S: fraction of nodes in 
the largest connected 
components

Size of the giant component (3.14)
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<k>

disconnected nodes  NETWORK. 

Erdos and Renyi (1959): the condition for the emergence of 
a giant component is <k>=1.
It is evident that one link per node is necessary, but 
counterintuitive that it also sufficient.

Connected components
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I: 

Subcritical

<k> < 1

III: 

Supercritical 

<k> > 1

IV: 

Connected 

<k> >  ln N

II: 

Critical 

<k> = 1

<k>=0.5 <k>=1 <k>=3 <k>=5

N
=

1
0

0

<k>

Four distinct regimes
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I: 

Subcritical

<k> < 1

p < pc=1/N

<k>

The network consists of numerous tiny components, whose size follows the exponential 
distribution. Hence these components have comparable sizes, lacking a clear winner that we 
could designate as a giant component.

No giant component.
Isolated clusters, cluster size distribution is exponential
The largest cluster is a tree, its size ~ ln N. Hence N_G/N is vanishing
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II: 

Critical 

<k> = 1

p=pc=1/N

<k>

At this point the relative size of the largest component is still zero
Unique giant component: NG~ N2/3

contains still a vanishing fraction of all nodes, NG/N~N-1/3

Numerous small components which are trees.

Cluster size distribution: p(s)~s-3/2

A jump in the cluster size:
N=7 109

 ln N~ 22;   N2/3~3,659,250

Copyrig
ht U

niversità
 degli S

tudi d
i M

ila
no



<k>=3

<k>

Unique giant component: NG~ (p-pc)N

Non vanishing

Cluster size distribution: exponential

III: 

Supercritical 

<k> > 1

p > pc=1/N

  

p(s) ~ s-3 /2e-( k -1)s+(s-1)ln k

The giant component contains a finite fraction of the nodes. 

The supercritical regime lasts until all nodes are absorbed by the giant

component.
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IV: 

Connected 

<k> >  ln N

p > (ln N)/N
<k>=5

<k>

Only one cluster: NG=N
GC is dense.
Cluster size distribution: None
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Summary
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Connected components

1

6

Supercritical: not fully connected
Internet: we should have routers that, being disconnected from the giant component, 
are unable to communicate with other routers. 
Power grid: some consumers should not get powered

Fully connected
Social media: no individual disconnected
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Albert-László Barabási
Network Science
Chapter 3.6

Newman, M.E.J.
Networks: An Introduction.
Oxford University Press. 2010.
Chapter 12.5

Reza Zafarani, Mohammad Ali Abbasi, Huan Liu
Social Media Mining: An Introduction
A Textbook by Cambridge University Press
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Connected components

Examples
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Facebook

• Ugander, Johan & Karrer, Brian & Backstrom, Lars & Marlow, 
Cameron. (2011). The Anatomy of the Facebook Social Graph. 
arXiv preprint. 1111.4503. 

– Connected components

Pag 3, Figure 1

Copyrig
ht U

niversità
 degli S

tudi d
i M

ila
no



Twitter

• Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 
2014. Information network or social network?: the structure 
of the twitter follow graph. In Proceedings of the 23rd 
International Conference on World Wide Web (WWW '14 
Companion). ACM, New York, NY, USA, 493-498. DOI: 
https://doi.org/10.1145/2567948.2576939

– Connected components

Chapter 3.2, Figure 2
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Web

• Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar
Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew 
Tomkins, and Janet Wiener. 2000. Graph structure in the 
Web. Comput. Netw. 33, 1-6 (June 2000), 309-320. 
DOI=http://dx.doi.org/10.1016/S1389-1286(00)00083-9

– Connected components

Chapter 2.2.2, 2.2.3, Figure 5,6
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Mobile communication networks

• Structure and tie strengths in mobile communication networks, 
J. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.
-L. Barabási

Proceedings of the National Academy of Sciences May
2007, 104 (18) 7332- 7336; DOI: 10.1073/pnas.0610245104

- Weakly largest connected component: 84%

• Calling, texting, and moving: multidimensional interactions of mobile 
phone users

Matteo Zignani, Christian Quadri, Sabrina Gaito & Gian Paolo Rossi

Computational Social Networks volume 2, Article number: 13 (2015)

- Weakly largest connected component: 90%
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Centrality measures
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One node in the star completely outranks the others, while the other themselves
are interchangeable.

All nodes in the circle are interchangeable.

In the line graph centrality decreases from that for n1, to n2 and n3, and so on up 
to n6 and n7.

Wasserman, Stanley and Katherine
Faust. 1994.
Social Network Analysis: Methods
and Applications.
Cambridge: Cambridge University
Press.

Three artificial graphs that
highlight the differences
among centrality
measures.
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Degree centrality
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Degree Centrality in undirected networks

• The degree centrality ranks nodes with more 
connections higher in terms of centrality

• di is the degree (number of adjacent edges) for 
vertex vi

In this graph degree centrality for vertex v1 is d1 = 
8 and for all others is dj = 1, j  1
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Star: Cd(1)= 6, Cd(other nodes)= 0

Circle: Cd(all nodes)= 2

Line: C2(1)= 2, Cb(2,3)= 2, Cb(4,5)= 2, Cb(6,7)= 1

Wasserman, Stanley and 
Katherine Faust. 1994.
Social Network Analysis: 
Methods and Applications.
Cambridge: Cambridge 
University Press.
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Normalized Degree Centrality

• Normalized by the maximum 
possible degree

• Normalized by the maximum 
degree. Issue: outlier

• Normalized by the degree sum

The degree centrality does not allow for centrality values
to be compared across networks.
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STAR CIRCLE LINE

Node 1 Others All Node 1 Nodes
2,3

Nodes
4,5

Nodes
6,7

Cdegree 6 1 2 2 2 2 1

Cnorm 6/6=1 1/6 2/6 2/6 2/6 2/6 1/6

Cmax 6/6=1 1/6 2/2=1 2/2 2/2 2/2 1/2

Csum 6/12 1/12 2/14 2/12 2/12 2/12 1/12
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Degree Centrality in Directed Graphs

• In directed graphs, we can either use the in-degree, 
the out-degree, or the combination as the degree 
centrality value:

dout
i is the number of outgoing links for vertex vi
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Can the degree centrality fully represent
the different aspects of the concept of centrality?

What about nodes n1 and n4 in the line graph
having the same centrality?

Wasserman, Stanley and 
Katherine Faust. 1994.
Social Network Analysis: 
Methods and Applications.
Cambridge: Cambridge 
University Press.
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Betweenness centrality

Undirected and directed

networks
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Idea
To measure the extent to which a node
lies on paths between other nodes, i.e. 
how much a node falls between others, 
while the degree centrality measures
how well-connected a node is.

Nodes with a high betweenness
centrality have control over information 
flowing in the network.

Example: Internet
Example: Organization networks
Example: Grid networks
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Assumptions
Consider information, rumours, news, etc. 
flowing within a network as they are passed from one person
to another.

Let’s assume that:
- All pair of nodes (connected by a path) exchange the same

amount of information per time unit
- All information flow on the shortest paths

Asymptotically, 

how many information will pass through each node?
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Note

In the next 3 slides the definition of betweenness
centrality and the results of computation on the star, 
circle and line graphs are presented.

For a step by step lesson please refer to the pdf and mp4 
files named Betweeness
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Betweenness Centrality

We define the betweenness centrality as:

The definition holds for both undirected and directed 
networks (rarely used in directed networks)

the number of shortest paths from vertex s to t – also known as 
information pathways.
Note that the path from s to t is different from the path from t to s, 
even in undirected networks. 

the number of shortest paths from s to t that pass through vi
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Normalizing Betweenness Centrality

• In the best case, node vi is on all shortest paths from s to t, 
hence,

Therefore, the maximum value is  2

Normalized betweenness
centrality:
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Star: Cb(1) = 1, Cb(other nodes) = 0

Circle: Cb(all nodes) = 1/5

Line: Cb(1) = 9/15, Cb(2,3) = 8/15, Cb(4,5) = 5/15, Cb(6,7) = 0

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and 

Applications. Cambridge: Cambridge University Press.

Examples

See files named
Examples_betweenness
for a step by step
solution
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Betweenness Centrality Example

Exercize:

See files
Exercize_betweenness
for a step by step
solution
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Betweenness Centrality Example
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Closeness centrality

Undirected and directed networks
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Closeness Centrality
• The intuition is that influential and central nodes can quickly 

reach other nodes

• These nodes should have a smaller average shortest path 
length to other nodes

• We define the closeness centrality as:

Issues: It holds within components, the range of values is small in 
small-world networks.

that is node vi’s average shortest 
path length to other nodes. 
But, with this definition:
Low values for more central nodes, 
high values for less central nodes. 

 consider the inverse.
Now:

Low values for less
central nodes, high values
for more central nodes. 
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Star: Cc(1) = 1, Cc(other nodes) = 6/11 

Circle: Cc(all nodes) = 1/2

Line: Cc(1) = 1/2, Cc(2,3) = 6/13, Cc(4,5) = 3/8, Cc(6,7) = 6/21

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and 

Applications. Cambridge: Cambridge University Press.

Examples

See files named
Examples_closeness

for a step by step
solution
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Example: Compute Closeness Centrality

Exercize

See files named
Exercize_closeness
for a step by step
solution
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Compute Closeness Centrality
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Eigenvector centrality

Katz centrality

Page rank

(cenni)
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Eigenvector Centrality (undirected)

• It is an extension of the degree centrality.

• Not all friends are equivalent. Thus, having more 
friends does not by itself guarantee that someone is 
more important, but having more important friends 
provides a stronger signal.

• Eigenvector centrality tries to generalize degree 
centrality by incorporating the importance of the 
neighbors.
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Eigenvector Centrality (undirected): idea

• Degree centrality: awarding nodes just one point for 
each friend

• Eigenvector centrality: awarding nodes a score 
proportional to the sum of the scores of its friends.
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Eigenvector Centrality (undirected)

• Degree centrality: awarding nodes just one point for 
each friend

• Eigenvector centrality: awarding nodes a score 
proportional to the sum of the scores of its friends.

• For directed graphs, we can use incoming or 
outgoing edges

Ce(vi): the eigenvector 
centrality of node vi

: some fixed constant
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Eigenvector Centrality, cont. (undirected)

• Let                                                                 T



• This means that Ce is an eigenvector of adjacency 
matrix A and  is the corresponding eigenvalue

• Which eigenvalue-eigenvector pair should we 
choose?
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Eigenvector Centrality (undirected)

Therefore, to have positive centrality values, we can compute 

the eigenvalues of A and then select the largest eigenvalue.

The corresponding eigenvector is Ce. 

Based on the Perron-Frobenius theorem, all the components 

of Ce will be positive, and this vector corresponds to 

eigenvector centralities for the graph.
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Eigenvector Centrality: Example

 = (2.68,  -1.74, -1.27,  0.33, 0.00)

Eigenvalues Vector

max = 2.68

Based on 

eigenvector 

centrality, 

node v2 is 

the most 

central 

node.
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Eigenvector Centrality (directed)

It can be computed also for undirected networks but some 

issues arise.

The adjacency matrix is asymmetric  it has two sets of 

eigenvectors, the left eigenvectors and the right eigenvectors. 

Which of the two should be used?

Usually the right eigenvectors because it accounts for the in-

going links.
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Eigenvector Centrality (directed)

A major problem with eigenvector centrality arises when it deals 
with directed graphs

Centrality only passes over outgoing edges and in special cases 
such as when a node is in a weakly connected component 
centrality becomes zero even though the node can have many 
edge connected to it

Node 1 has only utgoing links and 
hence has eigenvector centrality
zero.
Node 2 has one ingoing link, but it
originates at node 1 and hence node
B has centrality zero, too.

1 2

Mathematically, only nodes in a strongly connected components 
of two or more nodes can have non-zero eigenvector centrality.
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Katz Centrality

• To resolve this problem we add a bias term  to the 
centrality values for all nodes
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Katz Centrality, cont.

Bias termControlling term

Rewriting equation in a vector form

vector of all 1’s

Katz centrality:
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Katz Centrality, cont.

• When α=0, the eigenvector centrality is removed and all 

nodes get the same centrality value ᵦ

• As α gets larger the effect of ᵦ is reduced

• For the matrix (I- αAT) to be invertible, we must have 
– det(I- αAT) !=0  

– By rearranging we get det(AT- α-1I)=0

– This is basically the characteristic equation, which first becomes zero when the 
largest eigenvalue equals α-1

• In practice we select α < 1/λ, where λ is the largest 

eigenvalue of AT
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Katz Centrality Example

• The eigenvalues are -1.68, -1.0, 0.35, 3.32

• We assume α=0.25 < 1/3.32 ᵦ=0.2
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PageRank

• Problem with Katz centrality: in directed graphs, once 
a node becomes an authority (high centrality), it 
passes all its centrality along all of its out-links

• This is less desirable since not everyone known by a 
well-known person is well-known

• To mitigate this problem we can divide the value of 
passed centrality by the number of outgoing links, 
i.e., out-degree of that node such that each 
connected neighbor gets a fraction of the source 
node’s centrality
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PageRank, cont.
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PageRank Example

• We assume α=0.95 and ᵦ=0.1
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Credits
Reza Zafarani
Social Media Mining
Chapter 2

M.E.J. Newman
Networks
An Introduction
Oxford university press
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PageRank

Cheick Tidiane Ba



Social Network Analysis

Ranking

• In the web we care about Ranking: we want to 
determinate the importance of a page or a user in a 
network.

• Endogenous Ranking: rank based on a page’s
content. Look at terms in web pages to figure out 
wheter they are relevant for the user’s query.

• Issue: term spamming 
• I can insert a lot of keywords to appear in many

searches, obtaining always a high rank

2Cheick Tidiane Ba



Social Network Analysis

Ranking

• We want an exogenous centrality measure
• Harder to tamper with
• In theory it is harder to have control on multiple web pages

• Exogenous measures can be divided in
• Geometric Centralities
• Spectral Centralities

3Cheick Tidiane Ba



Social Network Analysis

Geometric centralities

• Geometric centralities rely on the concept degree
(number of connected nodes) or distance measures

• You have seen already:
• Degree Centrality
• Betweenness centrality
• Closeness centrality

4Cheick Tidiane Ba



Social Network Analysis

Spectral Ranking

• Spectral rankings are methods based on eigenvectors
• Among them we have:

• Eigenvector centrality
• Katz centrality
• PageRank

• Invented by Larry Page and Sergey Brin, founders of Google
• Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual 

Web Search Engine. In: Seventh International World-Wide Web 
Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

• The first metric used in Google Search and the reason of Google’s
success

• Now is not the only metric, more metrics are considered
• HITS (Hyperlink-Induced Topic Search)

• also known as hubs and authorities

5Cheick Tidiane Ba



Social Network Analysis

PageRank

• Simulation of a user’s web browsing.
• Random Surfer on the web, browses through the 

WWW network.
• The WWW network is described by an adjacency

matrix A, where if 𝒊 −> 𝒋 then  𝑨𝒊,𝒋 = 𝟏

• A transition matrix ഥ𝑨 is obtained by dividing each row
by its sum.

• A row in the transition matrix ഥ𝑨 describes the 
probability of moving from a page i to page j. 
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Social Network Analysis

PageRank – Transition Matrix example

7Cheick Tidiane Ba

𝑨
0 1 2 3 4

0 0.0 1.0 1.0 0.0 1.0

1 0.0 0.0 1.0 0.0 0.0

2 0.0 1.0 0.0 1.0 0.0

3 0.0 1.0 0.0 0.0 1.0

4 1.0 0.0 0.0 0.0 0.0

ഥ𝑨
0 1 2 3 4

0 0.0 0.33 0.33 0.0 0.33

1 0.0 0.0 1.0 0.0 0.0

2 0.0 0.5 0.0 0.5 0.0

3 0.0 0.5 0.0 0.0 0.5

4 1.0 0.0 0.0 0.0 0.0



Social Network Analysis

PageRank

• We are interested in the visits on a certain node
during the random surfing.

• Given a vector 𝒑𝒕 , that expresses the probability to be 
on a certain page at time t.
• 𝒑𝒕 = (𝒑𝟎, 𝒑𝟏, … , 𝒑𝒏)

• We can simulate a user moving to a new page by 
computing: 𝒑𝒕+𝟏 = 𝒑𝒕 ∗ ഥ𝑨
• This is a Markov chain

• We keep multiplying till 𝒑𝒕+𝟏 doesn’t change too
much with respect to the previous 𝒑𝒕

• The vector 𝒑𝒕 contains the PageRank value for each
page
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Social Network Analysis

PageRank – Computation example

• Start
• 𝑝0 = 0.2 0.2 0.2 0.2 0.2

• Transition matrix ഥ𝑨

• Calculation: 𝒑𝒕+𝟏 = 𝒑𝒕 ∗ ഥ𝑨
• 0.362, 0.483, 0.483, 0.181, 0.302
• 0.294, 0.440, 0.587, 0.235, 0.206
• 0.205, 0.509, 0.538, 0.293, 0.215
• …
• 0.211, 0.490, 0.561, 0.280, 0.210
• 0.210, 0.491, 0.560, 0.281, 0.210
• 0.210, 0.491, 0.561, 0.280, 0.210
• 0.210, 0.491, 0.561, 0.281, 0.210

9Cheick Tidiane Ba
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ഥ𝑨
0 1 2 3 4

0 0.0 0.33 0.33 0.0 0.33

1 0.0 0.0 1.0 0.0 0.0

2 0.0 0.5 0.0 0.5 0.0

3 0.0 0.5 0.0 0.0 0.5

4 1.0 0.0 0.0 0.0 0.0



Social Network Analysis

Issues

• Several theorems and demonstrations from 
eigenvalue theory and markov chain are available in 
the literature.

• They grant us that we can find a ranking vector 𝒑 as
long as we are not considering:
• Isolated components
• Dangling nodes (nodes without outgoing edges)

• These structure are present, we need to address 
them

10Cheick Tidiane Ba



Social Network Analysis

Bowtie

• The Bowtie is still relevant

11Cheick Tidiane Ba

Source: K. Laudon & C. Trever, E-Commerce 

2009 (5th Edition), Prentice Hall.



Social Network Analysis

Bowtie

• In Component
• They have mainly edges 

towards the scc

• SCC: strongly 
connected component

• OUT component
• Reached by other nodes

• Lots of isolated 
components

• Tubes connect In and 
Out components

12Cheick Tidiane Ba



Social Network Analysis

Dangling nodes

• The random surfer on the Internet always ends up 
reaching a dangling node.

• The surfer stops surfing through hyperlinks.

13Cheick Tidiane Ba
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Social Network Analysis

Loops

• The random surfer can get stuck in loops
• Values are higher for the nodes in the loop
• These structure are also called spider traps

14Cheick Tidiane Ba
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Social Network Analysis

Isolated components

• Surfer stuck like in the previous scenarios

15Cheick Tidiane Ba
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Social Network Analysis

Teleport

• The solution is known as teleport or tax
• At each step, the user can:

• Go one of the following pages with probability 𝜶
• Teleport to a random node with probability 𝟏 − 𝜶

• We can express the probability to teleport to a 
certain page as a distribution.
• It is just a vector 𝒗, with sum equal to 1
• Usually a uniform distribution

• The final formula becomes: 
• 𝒑𝒕+𝟏 = 𝜶 ∗ ഥ𝑨𝒑𝒕 + 𝟏 − 𝜶 ∗ 𝒗

16Cheick Tidiane Ba



Social Network Analysis

Teleport – Transition Matrix example

17Cheick Tidiane Ba

ഥ𝑨
0 1 2 3 4 5 6 7 8

0 0.0 0.33 0.00 0.33 0.00 0.0 0.33 0.0 0.0

1 0.0 0.00 0.00 0.00 0.00 0.0 0.00 0.0 0.0

2 0.0 0.00 0.00 0.00 0.00 0.0 1.00 0.0 0.0

3 0.0 0.00 0.00 0.00 0.00 0.0 0.00 1.0 0.0

4 0.0 0.00 0.00 1.00 0.00 0.0 0.00 0.0 0.0

5 0.0 0.00 0.33 0.00 0.33 0.0 0.33 0.0 0.0

6 0.0 0.00 0.50 0.00 0.00 0.5 0.00 0.0 0.0

7 0.0 0.00 0.00 0.00 0.00 0.0 0.00 0.0 1.0

8 0.0 0.00 0.00 1.00 0.00 0.0 0.00 0.0 0.0



Social Network Analysis

Teleport – Computation example

• Basic
• 𝒑𝟎 = [𝟎. 𝟏𝟏, … , 𝟎. 𝟏𝟏]

• Transition matrix ഥ𝑨

• Calculation of 𝒑𝒕+𝟏 = 𝒑𝒕 ∗ ഥ𝑨
• 0.000, 0.040, 0.099, 0.277, 0.040, 

0.059, 0.198, 0.119, 0.119
• 0.000, 0.000, 0.121, 0.161, 0.020, 0.101, 

0.121, 0.282, 0.121
• …
• 0.000, 0.000, 0.000, 0.197, 0.000, 

0.000, 0.000, 0.298, 0.180
• 0.000, 0.000, 0.000, 0.180, 0.000, 

0.000, 0.000, 0.197, 0.298
• 0.000, 0.000, 0.000, 0.298, 0.000, 

0.000, 0.000, 0.180, 0.197

18Cheick Tidiane Ba

• With Teleport
• 𝒑𝟎 = [𝟎. 𝟏𝟏, … , 𝟎. 𝟏𝟏]

• Transition matrix ഥ𝑨
• 𝒗 =[𝟎. 𝟏𝟏, … , 𝟎. 𝟏𝟏]
• 𝜶 = 0.5

• Calculation of
𝒑𝒕+𝟏 = 𝜶 ∗ ഥ𝑨𝒑𝒕 + 𝟏 − 𝜶 ∗ 𝒗
• 0.067, 0.106, 0.165, 0.343, 0.106, 0.126, 0.264, 

0.185, 0.185
• 0.067, 0.082, 0.184, 0.278, 0.095, 0.156, 0.221, 

0.298, 0.191
• …
• 0.067, 0.081, 0.169, 0.297, 0.097, 0.139, 0.221, 

0.260, 0.237
• 0.067, 0.081, 0.169, 0.298, 0.097, 0.139, 0.221, 

0.260, 0.236
• 0.067, 0.081, 0.169, 0.298, 0.097, 0.139, 0.221, 

0.261, 0.236



Social Network Analysis

Loops with teleport
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Social Network Analysis

Dangling nodes with teleport

20Cheick Tidiane Ba

Low High



Social Network Analysis

Isolated components with teleport
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Low High



Social Network Analysis

For the final project

• PageRank can be computed directly in Gephi
• Implemented version deals with the all the issues

22Cheick Tidiane Ba



Social Network Analysis

For the final project

• Methods for Pagerank computation are also available 
in Networkx
• pagerank(G[, alpha, personalization, …])
• pagerank_numpy(G[, alpha, personalization, …])
• pagerank_scipy(G[, alpha, personalization, …])

• Same algorithm, difference in computation times
• Docs available here:

• https://networkx.org/documentation/stable/reference/algorithms/li
nk_analysis.html?highlight=pagerank

23Cheick Tidiane Ba

https://networkx.org/documentation/stable/reference/algorithms/link_analysis.html?highlight=pagerank


Thank you for the attention!

For any question send an email at
cheick.ba@unimi.it



Transitivity

Global and Local

Clustering coefficient

in undirected networks
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Transitivity
Mathematic representation:

– For a transitive relation R: 

Networks:

– the transitive relation R: connected by a link

– If v1, v2 are connected and v2, v3 are connected

v1 v2

v3

v1, v3 are connected

v1 v2

v3
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Transitivity 
Social Networks:

– the transitive relation R: friendship

– If v1, v2 are friends and v2, v3 are friends

v1 v2

v3

v1, v3 are friends

v1 v2

v3

Transitivity is when 

a friend of my friend is my friend
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Transitivity

– Perfect transitivity only occurs in networks where each 
component is a fully connected graph or clique (a subgraph 
in which all nodes are connected to all others)

– Perfect transitivity is a useless concept in social networks as 
it never occurs

v1 v2

v3
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Transitivity

– Partial transitivity is much more useful

– The friend of my friend is not guaranteed to be my friend

– But is far more likely to be my friend than any other node in 
the network.

– v1 is more likely to be friend of v3 than v5

– Is v1 more likely to be friend of v3 than v6?

v1 v2

v3

v6 v4

v5
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Transitivity

– Partial transitivity is much more useful

– The friend of my friend is not guaranteed to be my friend

– But is far more likely to be my friend than any other node in 
the network.

– v1 is more likely to be friend of v3 than v5

– v1 has the same probability to be friend of v3 and v6 

v1 v2

v3

v6 v4

v5
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Global Clustering Coefficient
Measure based on paths

We want to quantify the level of transitivity of a network

We can measure it by counting the paths of length two and 
check whether the third edge exists

1 2

3

A path of length 2 which has the third
link is called closed path as it forms a 
loop of length 3. [Closed paths are 
also called closed triad in social 
networks.]
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Global Clustering Coefficient

Path of length 2 Third edge
213 32
312 23

123 31
321 13

132 21
231 12

1 2

3C=6/6

Note that paths, also
closed paths, have a 
direction in undirected
network, too.
Two paths that
traverse the same links
but in opposite 
direction are counted
separately.
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Global Clustering Coefficient

Path of length 2 Third edge
123 -
321 -

1 2

3

C=0/2=0
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Example

1 2

3

4 5 6

Path of length 2 Third edge
213 312 yes
214 412 no
314 413 no
123 321 yes
125 521 no
325 523 no
132 231 yes
145 541 no
254 452 no
256 652 no
456 654 no

C=6/22=3/11

[Note: you could divide both the numerator and the denominator by 
two, by considering paths in one direction only]
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Global Clustering Coefficient
Measure based on triples

If we have a path {1,2,3} (and {3,2,1}) of length 2, it is also true to 
say that nodes 1 and 3 have a common neighbour: node 2.
If the triad {1,2,3} is closed, nodes 1 and 3 are themselves friends.

The clustering coefficient can be thought as the 
fraction of pairs of people with a common friend 

who are themselves friend.

1 2

3

1 2

3
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Clustering coefficient

a friend of my friend is my 
friend

pairs of people with a common 
friend who are themselves friend.

1 2

3
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Global Clustering Coefficient
Measure based on triplets

The clustering coefficient can be thought as the fraction of pairs of people with 
a common friend who are themselves friend.

We can also define the global clustering coefficient based on the concept of 
(connected) triplets of nodes. 

A connected triplet consists of three nodes {v1, v2, v3}, that are connected by 
the two links (v1, v2) and (v2, v3). The third link (v1, v3) can be present (closed 
triplet) or not (open triplet). 

1 2

3

1 2

3
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Global Clustering Coefficient
Measure based on triples

Triplets (open)
{2,1,3} [with links (2,1) and (1,3)]

1 2

3

1 2

3

Triplets (closed)
{2,1,3} [with links (2,1) and (1,3)]

{1,2,3} [with links (1,2) and (2,3)]

{1,3,2} [with links (1,3) and (3,2)]
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Global Clustering Coefficient
Measure based on triples

The global clustering coefficient is the number of 
closed triplets over the total number of triplets (both 
open and closed): 

number of closed triplets

total number of triplets
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Global Clustering Coefficient
Measure based on triples

Triplets (open)
213

C=0/2=0

1 2

3

1 2

3

Triplets (closed)
213
123
132

C=3/3=1
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Example

1 2

3

4 5 6

Triplets Closed?
213 yes
214 no
314 no
123 yes
125 no
325 no
132 yes
145 no
254 no
256 no
456 no

C=3/11
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Global Clustering Coefficient
Measure based on triangles

A triangle consists of six paths.
213, 312, 123, 321, 132, 231
A triangle consists of three triples, one centered on each of the 
nodes. 
213, 123, 231

1 2

3
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Global Clustering Coefficient
Measure based on triangles
The global clustering coefficient is the number of 
closed paths of length 2 (or 6 x triangles) over the 
total number of paths of length 2

6 ∗ number of triangles

number of paths of length 2

The global clustering coefficient is the number of 
closed triplets (or 3 x triangles) over the total number 
of triplets

3 ∗ number of triangles

number of triplets
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Example

1 2

3

4 5 6

Path of length 2 Triangles
213 312 123
214 412
314 413
123 321
125 521
325 523
132 231
145 541
254 452
256 652
456 654 

C=1*6/22=3/11
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Exercize

1 3

5

2
4

6

7
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Exercize

1 3

5

2
4

C=12/32=3/8

6

7

Path of length 2 Third edge
213 312 yes
215 512 no
315 513 yes
123 321 yes
132 231 yes
134 431 no
135 531 yes
234 432 no
235 532 no
435 534 no
153 351 yes
156 651 no
157 751 no 
356 653 no
357 753 no
657 756 noCopyrig

ht U
niversità

 degli S
tudi d

i M
ila

no



Exercize

1 3

5

2
4

Triplets Closed?
213 yes

215 no

315 yes

123 yes

132 yes

134 no

135 yes

234 no

235 no

435 no

153 yes

156 no

157 no 

356 no

357 no

657 no

C=6/16=3/8

6

7
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Exercize

1 3

5

2
4

Number of triangles: 2

C=6/16=3/8

6

7

C = 
6 ∗number of triangles

number of paths of length 2

C = 
3 ∗number of triangles
number of triplets

C = 6*2/32=12/32=3/8

C = 3*2/16=6/16=3/8
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tudi d
i M

ila
no



Local Clustering Coefficient
• Local clustering coefficient measures transitivity at the node 

level

• Commonly employed for undirected graphs, it computes how 
strongly neighbors of a node v (nodes adjacent to v) are 
themselves connected

In an undirected graph, the 
denominator can be rewritten as:
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Local Clustering Coefficient: 
Example

• Thin lines depict connections to neighbors
• Dashed lines are the missing connections among neighbors
• Solid lines indicate connected neighbors 

– When none of neighbors are connected C=0
– When all neighbors are connected C=1
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Example

1 2

3

4 5 6

C=6/22=3/11

Node Pairs of 
friends

Open or 
closed
triad

Clustering 
coeff

1 23 closed c=1/3

24 open

34 open

2 13 closed c=1/3

15 open

35 open

3 12 closed c=1/1

4 15 open c=0

5 24 open c=0/3=0

26 open

46 open

6 - - -
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niversità
 degli S
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Example

The clustering coefficient 
distribution therefore is:

c Frequency 

0 2/5 
1/3 2/5 
1 1/5 

The mean clustering 
coefficient is: 1/3 

Node Pairs of 
friends

Open or 
closed
triad

Clustering 
coeff

1 23 closed c=1/3

24 open

34 open

2 13 closed c=1/3

15 open

35 open

3 12 closed c=1/1

4 15 open c=0

5 24 open c=0/3=0

26 open

46 open

6 - - -
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Average and Global 
clustering coefficient

For the previous example, the average clustering is 1/3 
while the global clustering is 3/11. 

These two common measures of clustering can differ. Here 
the average clustering is higher than the overall clustering, 
it can also go the other way. 

Moreover, it is possible to generate networks where the 
two measures can produce very different numbers for the 
same network. 
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Exercize

1 3

5

2
4

6

7
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Exercize

1 3

5

2
4

Pairs of neighbours Connected?
213 yes

215 no

315 yes c(1)=2/3

123 yes c(2)=1/1

132 yes

134 no

135 yes

234 no

235 no

435 no c(3)=2/6

153 yes

156 no

157 no 

356 no

357 no

657 no c(5)=1/6

6

7
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Li represents the number of links between the ki neighbors of node i.

Since edges are independent and have the same probability p, 

< Li >@ p
ki (ki -1)

2

•The clustering coefficient of random graphs is small.

•C is independent of a node’s degree k.

Ci º
2 < Li >

ki (ki -1)

Clustering coefficient
in random network
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C decreases with the system size N.

C is independent of a node’s 
degree k.

Network Science: Random Graphs 

Comparing the average clustering 
coeff. of real networks with the 

prediction for random networks

The random network model does 
not capture the clustering of real 
networks. 
Instead real networks have a much 
higher clustering coefficient than 
expected for a random network of 
similar N and L.
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Clustering coefficient

Random networks Real networks

A much higher clustering coefficient 
than expected for a random network of 
similar N and L.

Independent of N

High-degree nodes tend to have a 
smaller clustering coefficient than low-
degree nodes. 

The clustering coefficient of random 

graphs is small.

For fixed degree C decreases with 

the system size N.

C is independent of a node’s 

degree k.
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Clustering coefficient

A clustering coefficient is a measure of the degree to which 
nodes in a graph tend to cluster together. Evidence suggests 

that in most real-world networks, and in particular social 
networks, nodes tend to create tightly knit groups 

characterized by a relatively high density of ties; this likelihood 
tends to be greater than the average probability of a tie 

randomly established between two nodes. 
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Clustering Coefficient
• In real-world networks, friendships are highly 

transitive, i.e., friends of an individual are 
often friends with one another

– These friendships form triads -> high average 
[local] clustering coefficient

• In May 2011, Facebook had an average 
clustering coefficient of 0.5 for individuals 
who had 2 friends.
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Transitivity

Global and Local

clustering coefficient

in undirected networks



Transitivity
Mathematic representation:

– For a transitive relation R: 

Networks:

– the transitive relation R: connected by a link

– If v1, v2 are connected and v2, v3 are connected

v1 v2

v3

v1, v3 are connected

v1 v2

v3



Transitivity 
Social Networks:

– the transitive relation R: friendship

– If v1, v2 are friends and v2, v3 are friends

v1 v2

v3

v1, v3 are friends

v1 v2

v3

Transitivity is when 

a friend of my friend is my friend



Transitivity

– Perfect transitivity only occurs in networks where each 
component is a fully connected graph or clique (a subgraph 
in which all nodes are connected to all others)

– Perfect transitivity is a useless concept in social networks as 
it never occurs

v1 v2

v3



Transitivity

– Partial transitivity is much more useful

– The friend of my friend is not guaranteed to be my friend

– But is far more likely to be my friend than any other node in 
the network.

– v1 is more likely to be friend of v3 than v5

– Is v1 more likely to be friend of v3 than v6?

v1 v2

v3

v6 v4

v5



Transitivity

– Partial transitivity is much more useful

– The friend of my friend is not guaranteed to be my friend

– But is far more likely to be my friend than any other node in 
the network.

– v1 is more likely to be friend of v3 than v5

– v1 has the same probability to be friend of v3 and v6 

v1 v2

v3

v6 v4

v5



Global Clustering Coefficient
Measure based on paths

We want to quantify the level of transitivity of a network

We can measure it by counting the paths of length two and 
check whether the third edge exists

1 2

3

A path of length 2 which has the third
link is called closed path as it forms a 
loop of length 3. [Closed paths are 
also called closed triad in social 
networks.]



Global Clustering Coefficient

Path of length 2 Third edge
213 32
312 23

123 31
321 13

132 21
231 12

1 2

3C=6/6

Note that paths, also
closed paths, have a 
direction in undirected
network, too.
Two paths that
traverse the same links
but in opposite 
direction are counted
separately.



Global Clustering Coefficient

Path of length 2 Third edge
123 -
321 -

1 2

3

C=0/2=0



Example

1 2

3

4 5 6

Path of length 2 Third edge
213 312 yes
214 412 no
314 413 no
123 321 yes
125 521 no
325 523 no
132 231 yes
145 541 no
254 452 no
256 652 no
456 654 no

C=6/22=3/11

[Note: you could divide both the numerator and the denominator by 
two, by considering paths in one direction only]



Global Clustering Coefficient
Measure based on triples

If we have a path {1,2,3} (and {3,2,1}) of length 2, it is also true to 
say that nodes 1 and 3 have a common neighbour: node 2.
If the triad {1,2,3} is closed, nodes 1 and 3 are themselves friends.

The clustering coefficient can be thought as the 
fraction of pairs of people with a common friend 

who are themselves friend.

1 2

3

1 2

3



Clustering coefficient

a friend of my friend is my 
friend

pairs of people with a common 
friend who are themselves friend.

1 2

3



Global Clustering Coefficient
Measure based on triplets

The clustering coefficient can be thought as the fraction of pairs of people with 
a common friend who are themselves friend.

We can also define the global clustering coefficient based on the concept of 
(connected) triplets of nodes. 

A connected triplet consists of three nodes {v1, v2, v3}, that are connected by 
the two links (v1, v2) and (v2, v3). The third link (v1, v3) can be present (closed 
triplet) or not (open triplet). 

1 2

3

1 2

3



Global Clustering Coefficient
Measure based on triples

Triplets (open)
{2,1,3} [with links (2,1) and (1,3)]

1 2

3

1 2

3

Triplets (closed)
{2,1,3} [with links (2,1) and (1,3)]

{1,2,3} [with links (1,2) and (2,3)]

{1,3,2} [with links (1,3) and (3,2)]



Global Clustering Coefficient
Measure based on triples

The global clustering coefficient is the number of 
closed triplets over the total number of triplets (both 
open and closed): 

number of closed triplets

total number of triplets



Global Clustering Coefficient
Measure based on triples

Triplets (open)
213

C=0/2=0

1 2

3

1 2

3

Triplets (closed)
213
123
132

C=3/3=1



Example

1 2

3

4 5 6

Triplets Closed?
213 yes
214 no
314 no
123 yes
125 no
325 no
132 yes
145 no
254 no
256 no
456 no

C=3/11



Global Clustering Coefficient
Measure based on triangles

A triangle consists of six paths.
213, 312, 123, 321, 132, 231
A triangle consists of three triples, one centered on each of the 
nodes. 
213, 123, 231

1 2

3



Global Clustering Coefficient
Measure based on triangles
The global clustering coefficient is the number of 
closed paths of length 2 (or 6 x triangles) over the 
total number of paths of length 2

6 ∗ number of triangles

number of paths of length 2

The global clustering coefficient is the number of 
closed triplets (or 3 x triangles) over the total number 
of triplets

3 ∗ number of triangles

number of triplets



Example

1 2

3

4 5 6

Path of length 2 Triangles
213 312 123
214 412
314 413
123 321
125 521
325 523
132 231
145 541
254 452
256 652
456 654 

C=1*6/22=3/11



Exercize

1 3

5

2
4

6

7



Local Clustering Coefficient
• Local clustering coefficient measures transitivity at the node 

level

• Commonly employed for undirected graphs, it computes how 
strongly neighbors of a node v (nodes adjacent to v) are 
themselves connected

In an undirected graph, the 
denominator can be rewritten as:



Local Clustering Coefficient: 
Example

• Thin lines depict connections to neighbors
• Dashed lines are the missing connections among neighbors
• Solid lines indicate connected neighbors 

– When none of neighbors are connected C=0
– When all neighbors are connected C=1



Example

1 2

3

4 5 6

C=6/22=3/11

Node Pairs of 
friends

Open or 
closed
triad

Clustering 
coeff

1 23 closed c=1/3

24 open

34 open

2 13 closed c=1/3

15 open

35 open

3 12 closed c=1/1

4 15 open c=0

5 24 open c=0/3=0

26 open

46 open

6 - - -



Example

The clustering coefficient 
distribution therefore is:

c Frequency 

0 2/5 
1/3 2/5 
1 1/5 

The mean clustering 
coefficient is: 1/3 

Node Pairs of 
friends

Open or 
closed
triad

Clustering 
coeff

1 23 closed c=1/3

24 open

34 open

2 13 closed c=1/3

15 open

35 open

3 12 closed c=1/1

4 15 open c=0

5 24 open c=0/3=0

26 open

46 open

6 - - -



Average and Global 
clustering coefficient

For the previous example, the average clustering is 1/3 
while the global clustering is 3/11. 

These two common measures of clustering can differ. Here 
the average clustering is higher than the overall clustering, 
it can also go the other way. 

Moreover, it is possible to generate networks where the 
two measures can produce very different numbers for the 
same network. 



Exercize

1 3

5

2
4

6

7



Li represents the number of links between the ki neighbors of node i.

Since edges are independent and have the same probability p, 

< Li >@ p
ki (ki -1)

2

•The clustering coefficient of random graphs is small.

•C is independent of a node’s degree k.

Ci º
2 < Li >

ki (ki -1)

Clustering coefficient
in random network



C decreases with the system size N.

C is independent of a node’s 
degree k.

Network Science: Random Graphs 

Comparing the average clustering 
coeff. of real networks with the 

prediction for random networks

The random network model does 
not capture the clustering of real 
networks. 
Instead real networks have a much 
higher clustering coefficient than 
expected for a random network of 
similar N and L.



Clustering coefficient

Random networks Real networks

A much higher clustering coefficient 
than expected for a random network of 
similar N and L.

Independent of N

High-degree nodes tend to have a 
smaller clustering coefficient than low-
degree nodes. 

The clustering coefficient of random 

graphs is small.

For fixed degree C decreases with 

the system size N.

C is independent of a node’s 

degree k.



Clustering coefficient

A clustering coefficient is a measure of the degree to which 
nodes in a graph tend to cluster together. Evidence suggests 

that in most real-world networks, and in particular social 
networks, nodes tend to create tightly knit groups 

characterized by a relatively high density of ties; this likelihood 
tends to be greater than the average probability of a tie 

randomly established between two nodes. 



Clustering Coefficient
• In real-world networks, friendships are highly 

transitive, i.e., friends of an individual are 
often friends with one another

– These friendships form triads -> high average 
[local] clustering coefficient

• In May 2011, Facebook had an average 
clustering coefficient of 0.5 for individuals 
who had 2 friends.
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Strong and weak ties

Bridging the local and the global

The strength of weak ties



Granovetter’s paper

• Mark Granovetter (born October 20, 1943): an American 
sociologist and professor at Stanford University. 

• 1969: submitted his paper to the American Sociological 
Review—rejected! 

• 1972, submitted a shortened version to the American 
Journal of Sociology—published in 1973 (Granovetter, 
1973). 

• According to Current Contents, by 1986, the Weak Ties 
paper had become a citation classic, being one of the 
most cited papers in sociology



Granovetter’s paper
Bridging the local and the global

“A fundamental weakness of current sociological theory is that it does not

relate micro-level interactions to macro-level patterns in any convincing

way. Large-scale statistical, as well as qualitative, studies offer a good

deal of insight into such macro phenomena as social mobility, community

organization, and political structure. At the micro level, a large and increasing

body of data and theory offers useful and illuminating ideas about what

transpires within the confines of the small group. But how interaction in

small groups aggregates to form large-scale patterns eludes us in most cases.

I will argue, in this paper, that the analysis of processes in interpersonal

networks provides the most fruitful micro-macro bridge. In one way or

another, it is through these networks that small-scale interaction becomes

translated into large-scale patterns, and that these, in turn, feed back into

small groups.»



THE STRENGTH OF TIES

“Most intuitive notions of the "strength" of an interpersonal tie should 

be satisfied by the following definition: 

the strength of a tie is a (probably linear) combination of the amount of 

time, the emotional intensity, the intimacy (mutual confiding), and the 

reciprocal services which characterize the tie.

Each of these is somewhat independent of the other, though the

set is obviously highly intracorrelated. 

Discussion of operational measures of weights attaching to each of 

the four elements is postponed to future empirical studies.

It is sufficient for the present purpose if most of us can agree, on a 

rough intuitive basis, whether a given tie is strong, weak, or absent.»



Granovetter’s experiment
• Granovetter interviewed people about how they discovered 

their jobs 

• Most people did so through personal contacts, often 
described as acquaintances and not close friends 

WHY?

• Basic intuition: close friends are part of triad closures and 
would know what you know and would know others who 
would know what you know

• ”It is the distant acquaintances who are actually to thank for 
crucial information leading to your new job, rather than your 
close friends!” 



From dyads to small structures
Triadic closure

“The hypothesis which enables us to relate dyadic ties to larger
structures is: 

The stronger the tie between A and B, the larger the proportion
of individuals to whom they will both be tied, that is, connected
by a weak or strong tie. 

This overlap in their friendship circles is predicted to be least when their tie 
is absent, most when it is strong, and intermediate when it is weak.”

Motivations: amount of time spent together, similarity



From dyads to small structures
Triadic closure

“The theory of cognitive balance, as formulated by Heider (1958) and

especially by Newcomb (1961, pp. 4-23), also predicts this result. 

If strong ties A-B and A-C exist, and if B and C are aware of one another, 
anything short of a positive tie would introduce a "psychological strain" into 
the situation since C will want his own feelings to be congruent with those of

his good friend, A, and similarly, for B and his friend, A. 

Where the ties are weak, however, such consistency is psychologically less 
crucial.”



Bridging local to global

“To derive implications for large networks of 
relations, it is necessary to frame the basic 
hypothesis more precisely. 
This can be done by investigating the possible 
triads consisting of strong, weak, or absent ties 
among A, B, and any arbitrarily chosen friend 
of either or both”



Strong triadic closure
A more extreme version of the triadic closure

Strong Triadic Closure Property (Granovetter): 

If a node A has two strong links (to B and C) then a link (strong 
or weak) must exist between B and C. 

s

s

A

C

B

Forbidden triad



Bridge
Let us now introduce another important concept: 
bridges
Edge between A and B is a bridge if, when deleted, it 
would make A and B lie in 2 different components 

HF

DB

GE

AC

Bridges are presumably extremely rare in real social 
networks.



Local bridge
An edge is a local bridge if its endpoints have no friends in 

common – If deleting the edge would increase the distance of 

the endpoints to a value more than 2. 

HF

DB

GE

AC

I L

M N

Span:5



Local bridge
An edge is a local bridge if its endpoints have no friends in 

common – If deleting the edge would increase the distance of 

the endpoints to a value more than 2. 

HF

DB

GE

AC

I L

M N

Triangle 

not a local 

bridge



Bridges are weak ties
If node A satisfies the STCP and is involved in at least two strong ties, then any local 
bridge it is involved in must be a weak tie.

Proof by contradiction (AB is strong and is a bridge)
“Consider the strong tie A-B: if A has another strong tie to C, then forbidding 
the triad of figure 1 implies that a tie exists between C and B, so that the path 
A-C-B exists between A and B; hence, A-B is not a bridge. 

s

s

A

C

B
Weak ties suffer no such 
restriction, though they are 
certainly not automatically 
bridges. 
What is important, rather, is 
that all bridges are weak 
ties.”



The strength of weak ties

Intuitively speaking, this means that whatever is to be diffused 
can reach a larger number of people, and traverse greater social 
distance (i.e., path length), when passed through weak ties 
rather than strong.

If one tells a rumor to all his close friends, and they do likewise, 
many will hear the rumor a second and third time, since those 
linked by strong ties tend to share friends.



Almost local bridge

Since a very small fraction of the links in social networks are local 
bridges, it makes sense to soften this definition

We define the neighborhood overlap of an edge connecting A and 
B to be the ratio:

number of nodes who are neighbors of both A and B
_________________________________________________

number of nodes who are neighbors of at least one of A or B

where in the denominator we don't count A or B themselves



Almost local bridge
Neighborhood overlap:

HF

DB

GE

AC

O(A,B)=0



Almost local bridge

Neighborhood overlap:

O(A,B)=1/9

HF

DB

GE

AC

I L

M N
edges with very 
small neighborhood 
overlap are almost"
local bridges.



Almost local bridge

Neighborhood overlap:

O(A,B)=0
HF

DB

GE

AC

I L

M N
Local bridge are 
almost local
bridges



Case-study: 
mobile phone networks

Networks, Crowds, and Markets: 
Reasoning About a Highly Connected 
World
David Easley e Jon Kleinberg
Cambridge University Press, 2010
Chapter 3

Structure and tie strengths in mobile 
communication networks
JP Onnela, J Saramäki, J Hyvönen, G Szabó, 
D Lazer, K Kaski, J Kertész, A-L Barabási
Proceedings of the National Academy of 
Sciences 104 (18), 7332, 2007

Strength: 
aggregated duration



Case-study: Facebook
Three categories of links based on usage over a one-month observation period.

• A link represents reciprocal (mutual) communication, if the user both sent 
messages to the friend at the other end of the link, and also received 
messages from them during the observation period.

• A link represents one-way communication if the user sent one or more 
messages to the friend at the other end of the link (whether or not these 
messages were reciprocated).

• A link represents a maintained relationship if the user followed information 
about the friend at the other end of the link, whether or not actual 
communication took place;

Networks, Crowds, and Markets: Reasoning About a Highly Connected World
David Easley e Jon Kleinberg - Cambridge University Press, 2010 - Chapter 3

Facebook:
Cameron Marlow
http://overstated.net/2009/03/09/maintained-relationships-on-facebook

http://overstated.net/2009/03/09/maintained-relationships-on-facebook


Case-study: Facebook

“The stark contrast between reciprocal and passive networks shows the effect of 
technologies such as News Feed. If these people were required to talk on the phone to each 
other, we might see something like the reciprocal network, where everyone is connected to 
a small number of individuals. Moving to an environment where everyone is passively 
engaged with each other, some event, such as a new baby or engagement can propagate 
very quickly through this highly connected network."

Passive engagment:
even for users who report very 
large numbers of friends on 
their profile pages (on the order 
of 500), the number with whom 
they actually communicate is 
generally between 10 and 20, 
and the number they follow 
even passively (e.g. by reading 
about them) is under 50



Case-study: Facebook



Case-study: Twitter

Networks, Crowds, and Markets: Reasoning About a Highly Connected World
David Easley e Jon Kleinberg - Cambridge University Press, 2010 - Chapter 3

Huberman, Bernardo A. and Romero, Daniel M. and Wu, Fang, Social Networks 
that Matter: Twitter Under the Microscope (December 5, 2008).

Even for users who maintain 
very large numbers of weak 
ties on-line, the number of 
strong ties remains relatively 
modest, in this case 
stabilizing at a value below 
50 even for users with
over 1000 followees.



Strong and weak ties in 
social networks

Mobile communication networks:
Structure and tie strengths in mobile communication networks

JP Onnela, J Saramäki, J Hyvönen, G Szabó, D Lazer, K Kaski, J Kertész, A-L 

Barabási

Proceedings of the National Academy of Sciences 104 (18), 7332, 2007

Facebook:
Cameron Marlow

http://overstated.net/2009/03/09/maintained-relationships-on-facebook

Twitter:
Huberman, Bernardo A. and Romero, Daniel M. and Wu, Fang, Social 

Networks that Matter: Twitter Under the Microscope (December 5, 2008). 

Available at 

SSRN: https://ssrn.com/abstract=1313405 or http://dx.doi.org/10.2139/ssrn.13

13405

http://overstated.net/2009/03/09/maintained-relationships-on-facebook
https://ssrn.com/abstract=1313405
http://dx.doi.org/10.2139/ssrn.1313405
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Six degree of separation

Small-world networks

Small-world model



Six degree of separation

The small-world phenomenon



Stanley Milgram’s experiment (1960)

• Random people from Nebraska 
were asked to send a letter (via 
intermediaries) to a stock broker 
in Boston

• S/he could only send to someone 
with whom they were on a first-
name basis

Among the letters that reached the 
target, the average path length was 
six.



Stanley Milgram’s experiment
(1960)

Source: Barabasi’s book



Facebook: four degree «of separation

In May 2011, the average path length between individuals in the Facebook graph 
was 4.7. (4.3 for individuals in the US)

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. 2012. Four degrees of separation. 
In Proceedings of the 4th Annual ACM Web Science Conference (WebSci ’12). Association for Computing Machinery, 
New York, NY, USA, 33–42. DOI:https://doi.org/10.1145/2380718.2380723

“We decided to extend our 
experiments in two directions: 
regional and temporal. We thus 
analyse the entire Facebook graph 
(fb), the SA subgraph (us), the 
Italian subgraph (it) and the 
Swedish (se) subgraph. We also 
analysed a combination of the 
Italian and Swedish graph (itse) to 
check whether combining two 
regional but distant networks could 
significantly change the average 
distance, in the same spirit as in the 
original Milgram’s”



Average distance in social networks



The small-world model



Short paths

Suppose each of us knows more than 100 
other people on a first-name basis (in fact, 
for most people, the number is significantly 
larger). Then, taking into account the fact 
that each of your friends has at least 100 
friends other than you, you could in principle 
be two steps away from over 100 * 100 = 
10000 people. Taking into account the 100 
friends of these people brings us to more 
than 100 * 100 *100 = 1000000 people who 
in principle could be three steps away. 

Should we be surprised by the fact that the paths between random pairs 
of people in social networks are so short?

In other words, the numbers are growing by powers of 100 with each step,
bringing us to 100 million after four steps, and 10 billion after five steps.



Random graph: diameter
Random graphs tend to have a tree-like topology with almost 
constant node degrees.

  

dmax =
logN

log k
  

N =1+ k + k
2

+ ...+ k
dmax =

k
dmax +1

-1

k -1
» k

dmax



Small World

  

< d >=
logN

log k

Small world phenomena: the property that the average
path length or the diameter depends logarithmically on
the system size.
”Small”means that ⟨d⟩ is proportional to log N

In most networks this offers a better approximation to 
the average distance between two randomly chosen 
nodes, ⟨d⟩, than to dmax .



Given the huge differences in scope, size, and average degree, the agreement is excellent.



Do social networks 
deviate from this model?

“The difficulty already manifests itself with 
the second step, where we conclude that 
there may be more than 10000 people 
within two steps of you.
As we've seen, social networks abound in 
triangles (sets of three people who mutually
know each other) and in particular, many of 
your 100 friends will know each other. As a
result, when we think about the nodes you 
can reach by following edges from your 
friends, many of these edges go from one 
friend to another, not to the rest of world. 
The number 10000 came from assuming 
that each of your 100 friends was linked to 
100 new people; and without this, the 
number of friends you could reach in two 
steps could be much smaller.”



Watts – Strogatz model (1998)

Can we make up a simple model 
that exhibits both of the

features we've been discussing: 
many closed triads, but also very 

short paths?

Documentary: https://www.cornell.edu/video/emergence-of-network-science
Start: six-degree of separation
Minutes 12-16: small-world model

https://www.cornell.edu/video/emergence-of-network-science


Watts – Strogatz model (1998)

Regular lattice + rewiring

Triangles
+

Weak ties

High clustering
+

Short paths



As in many network generating 
algorithms
• Disallow self-edges
• Disallow multiple edges

regular ring lattice 
of degree c:
nodes are 
connected to their 
previous c/2 and 
following c/2 
neighbors. 



Case-studies
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• Measuring stability based 
on an observed network

Balance and Status
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Social Balance Theory

• Social balance theory discusses consistency in 
friend/foe relationships among individuals. 
Informally, social balance theory says friend/foe 
relationships are consistent when 

• In the network

– Positive edges demonstrate friendships (wij=1)

– Negative edges demonstrate being enemies (wij=-1)

• Triangle of nodes i, j, and k, is balanced, if and only if

– wij denotes the value of the edge between nodes i and j
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Social Balance Theory: Possible Combinations

For any cycle if the multiplication of edge values become 
positive, then the cycle is socially balanced
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Social Status Theory

• Status defines how prestigious an individual is 
ranked within a society

• Social status theory measures how consistent 
individuals are in assigning status to their 
neighbors
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Social Status Theory: Example

• A directed ‘+’ edge from node X to node Y shows 
that Y has a higher status than X and a ‘-’ one 
shows vice versa

Unstable configuration Stable configuration
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Exercize 

 

 

1. Consider an undirected network with 10 nodes and 5 links. Model it with an Erdos-

Renyi random network G(N, p).  

2. Consider a directed network with 10 nodes and 5 links. Model it with an Erdos-

Renyi random network G(N, p).  

3. Consider an undirected network with 10 nodes and an average degree equal to 1. 

Model it with an Erdos-Renyi random network G(N, p).  

4. Consider a directed network with 10 nodes and mean in-degree and out-degree equal 

to 1. Model it with an Erdos-Renyi random network G(N, p).  

5. Consider an undirected network with 10 nodes and density equal to 0.1. Model it 

with an Erdos-Renyi random network G(N, p).  

6. Consider a directed network with 10 nodes and density equal to 0.1. Model it with 

an Erdos-Renyi random network G(N, p).  
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Social Forces

• Social forces connect individuals in different ways

• Among connected individuals, one often observes high 
social similarity or assortativity

– This similarity is exhibited by similar behavior, similar interests, 
similar activities, and shared attributes such as language, among 
others.

– In networks with assortativity, similar nodes are connected to 
one another more often than dissimilar nodes.

– In social networks, a high similarity between friends is observed

• Friendship networks are examples of assortative
networks
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Why connected people are similar?

• Influence
• Influence is the process by which an individual (the 

influential) affects another individual such that the 
influenced individual becomes more similar to the 
influential figure. 

• If most of one’s friends switch to a mobile company, he might be 
influenced by his friends and switch to the company as well.

• Homophily 
– It is realized when similar individuals become friends due to 

their high similarity.
• Two musicians are more likely to become friends.

• Confounding
– Confounding is environment’s effect on making individuals 

similar
• Two individuals living in the same city are more likely to become 

friends than two random individuals
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Influence, Homophily, and Confounding

Homophily
Similar individuals 
become friends

Influence

Friends become 
similar



5Social Media Mining Measures and Metrics 5Social Media Mining Influence and Homophily

Source of Assortativity in Networks

Both influence and 
homophily generate 
similarity in social 
networks but in 
different ways

• Homophily
selects similar 
nodes and links 
them together

• Influence makes 
the connected 
nodes similar to 
each other
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Assortativity: An Example

The city's draft tobacco control strategy says more than 
60% of under-16s in Plymouth smoke regularly
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Smoking Behavior In a Group of Friends: why is 
happening?

• Smoker friends influence their 
non-smoker friends

• Smokers become friends

• There are lots of places that 
people can smoke

Influence

Homophily 

Confounding 
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Our goal in this chapter?

• How can we measure assortativity?

• How can we measure influence or homophily?

[

• How can we model influence or homophily? NO

• How can we distinguish the two? NO

]
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Measuring Assortativity
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Nominal attributes

Measuring Assortativity



11Social Media Mining Measures and Metrics 11Social Media Mining Influence and Homophily

Measuring Assortativity for Nominal Attributes

• Where nominal attributes are assigned to nodes 
(language), we can use edges that are between 
nodes of the same type (i.e., attribute value) to 
measure assortativity of the network

– Node attributes could be nationality, race, sex, etc. 

Kronecker delta function

t(vi) denotes type of vertex vi
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Assortativity Significance

• Assortativity significance measures the difference 
between the measured assortativity and its expected 
assortativity

– The higher this value, the more significant the assortativity 
observed

• Example

– Consider a school where half the population is white and 
half the population is Hispanic. It is expected for 50% of the 
connections to be between members of different races. If all 
connections in this school were between members of 
different races, then we have a significant finding
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Assortativity Significance: Measuring

The expected assortativity in the whole 
graph

Assortativity 

This measure is called modularity
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Normalized Modularity

The maximum happens when all vertices of the same type are connected 
to one another
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Modularity: Matrix Form

• Let                       denote the indicator matrix and 
let k denote the number of types

• The  Kronecker delta function can be 
reformulated using the indicator matrix

• Therefore, 
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Normalized Modularity: Matrix Form

Let Modularity matrix be:

Is the degree vector

Then, modularity can be reformulated as
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Modularity Example

the number of edges between nodes of the same color is less than the expected
number of edges between them
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Ordinal attributes

Measuring Assortativity
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Measuring Assortativity for Ordinal Attributes

• A common measure for analyzing the 
relationship between ordinal values is 
covariance. 

• It describes how two variables change together. 

• In our case we are interested in how values of 
nodes that are connected via edges are 
correlated. 
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Covariance Variables

• We construct two variables XL and XR, where for 
any edge (vi; vj) we assume that xi is observed 
from variable XL and xj is observed from variable 
XR.

• In other words, XL represents the ordinal values 
associated with the left node of the edges and XR 

represents the values associated with the right 
node of the edges

• Our problem is therefore reduced to computing 
the covariance between variables XL and XR
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Covariance Variables: Example

• XL : (18, 21, 21, 20)

• XR : (21, 18, 20, 21)



B

A C

18 21

20

List of 
edges:
((A, C),
(C, A), 
(C, B),
(B, C))
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Covariance

For two given column variables XL and XR the covariance is

E(XL) is the mean of the variable and E(XL XR) is the mean of 
the multiplication
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Covariance
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Normalizing Covariance

Pearson correlation P(X,Y) is the normalized 
version of covariance

In our case:
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Correlation Example
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• Measuring Influence

• Modeling Influence

Social Influence
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Social Influence: Definition

• the act or power of producing an effect without 
apparent exertion of force or direct exercise of 
command



28Social Media Mining Measures and Metrics 28Social Media Mining Influence and Homophily

Measuring the Influence
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Measuring Influence

• Measuring influence is assigning a number to each 
node that represents the influential power of that 
node

• The influence can be measured either based on 
prediction or observation



30Social Media Mining Measures and Metrics 30Social Media Mining Influence and Homophily

Prediction-based Measurement 

• In prediction-based measurement, we assume that an 
individual’s attribute or the way she is situated in the 
network predicts how influential she will be.

• For instance, we can assume that the gregariousness 
(e.g., number of friends) of an individual is correlated 
with how influential she will be. Therefore, it is 
natural to use any of the centrality measures 
discussed in Chapter 3 for prediction-based influence 
measurements.

• An example:
– On Twitter, in-degree (number of followers) is a benchmark 

for measuring influence commonly used
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Observation-based Measurement 

• In observation-based we quantify influence of an 
individual by measuring the amount of influence 
attributed to the individual

– When an individual is the role model

• Influence measure: size of the audience that has been 
influenced

– When an individual spreads information:

• Influence measure: the size of the cascade, the population 
affected, the rate at which the population gets influenced

– When an individual increases values: 

• Influence measure: the increase (or rate  of increase) in the 
value of an item or action
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• Measuring Social Influence on 
Blogosphere

• Measuring Social Influence on Twitter

Case Studies for Measuring 
Influence in Social Media
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Measuring Social Influence on Blogosphere

• The goal of measuring influence in blogosphere 
is to figure out most influential bloggers on the 
blogosphere

• Due to limited time an individual has, following 
the influentials is often a good heuristic of 
filtering what’s uninteresting

• One common measure for quantifying influence 
of bloggers is to use indegree centrality

• Due to the sparsity of in-links, more detailed 
analysis is required to measure influence in 
blogosphere
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iFinder: A System to measure influence on 
blogsphore
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Social Gestures 

• Recognition
– Recognition for a blogpost is the number of the links that point to 

the blogpost (in-links). 
• Let Ip denotes the set of in-links that point to blogpost p.

• Activity Generation
– Activity generated by a blogpost is the number of comments that p 

receives. 
• cp denotes the number of comments that blogpost p receives.

• Novelty
– The blogpost’s novelty is inversely correlated with the number of 

references a blogpost employs. In particular the more citations a 
blogpost has it is considered less novel. 
• Op denotes the set of out-links for blogpost p.

• Eloquence
– Eloquence is estimated by the length of the blogpost. Given the 

unformal nature of blogs and the bloggers tendency to write short 
blogposts, longer blogposts are believed to be more eloquent. So the 
length of a blogpost lp can be employed as a measure of eloquence
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Measuring Social Influence on Twitter

• In Twitter, users have an option of following 
individuals, which allows users to receive tweets 
from the person being followed

• Intuitively, one can think of the number of 
followers as a measure of influence (in-degree 
centrality)
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Measuring Social Influence on Twitter: 
Measures

• Indegree
– The number of users following a person on Twitter

– Indegree denotes the “audience size” of an individual.

• Number of Mentions
– The number of times an individual is mentioned in a 

tweet, by  including @username in a tweet. 

– The number of mentions suggests the “ability in 
engaging others in conversation”

• Number of Retweets: 
– Tweeter users have the opportunity to forward tweets 

to a broader audience via the retweet capability. 

– The number of retweets indicates individual’s ability 
in generating content that is worth being passed on.
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Measuring Social Influence on Twitter: 
Measures

• Each one of these measures by itself can be used to 
identify influential users in Twitter. 

• This can be performed by utilizing the measure for each 
individual and then ranking individuals based on their 
measured influence value. 

• Contrary to public belief, number of followers is 
considered an inaccurate measure compared to the other 
two. 

• We can rank individuals on twitter independently based 
on these three measures. 

• To see if they are correlated or redundant, we can 
compare ranks of an individuals across three measures 
using rank correlation measures.
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• Spearman’s rank correlation is the Pearsons
correlation coefficient for ordinal variables that 
represent ranks (i.e., takes values between 1. . . 
n); hence, the value is in range [-1,1]. 

• Popular users (users with high in-degree) do not 
necessarily have high ranks in terms of number 
of retweets or mentions.
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How similar are two nodes in a 
network?
• Neighbourhood
• Attributes
• Contents

Network Similarity
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Structural Equivalence

• In structural equivalence, we look at the 
neighborhood shared by two nodes; the size of 
this neighborhood defines how similar two 
nodes are.

For instance, two brothers have in 
common sisters, mother, father, 

grandparents, etc. This shows that they 
are similar, whereas two random male or 

female individuals do not have much in 
common and are not similar.
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Structural Equivalence: Definitions

Vertex similarity

• Range: [0,1]
• In general, the definition of neighborhood N(v) excludes the 

node itself v. 
– Nodes that are connected and do not share a neighbor will be 

assigned zero similarity
– This can be rectified by assuming nodes to be included in their 

neighborhoods

Jaccard Similarity:

Cosine Similarity:
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Similarity: Example



9Social Media Mining Measures and Metrics 9Social Media Mining Network Measures

Regular Equivalence

• In regular equivalence, we do not look at 
neighborhoods shared between individuals, but 
how neighborhoods themselves are similar

For instance, athletes are similar not 
because they know each other in person, 
but since they know similar individuals, 
such as coaches, trainers, other players, 

etc.
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• vi, vj are similar when their neighbors vk and vl are 
similar

• The equation (left figure) is hard to solve since it is self 
referential so we relax our definition using the right 
figure.

• vi is similar to vj when vj is similar to vi’s neighbors vk

Regular Equivalence
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Regular Equivalence

• vi is similar to vj is similar when vj is similar to 
vi’s neighbors vk

• In vector format
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Regular Equivalence

• vi is similar to vj is similar when vj is similar to 
vi’s neighbors vk

• In vector format

A vertex is highly similar 
to itself, we guarantee this 
by adding an identity 
matrix to the equation
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Regular Equivalence: Example

• Any row/column of this matrix shows the similarity to other vertices

• We can see that vertex 1 is most similar (other than itself) to vertices 2 
and 3

• Nodes 2 and 3 have the highest similarity

The largest eigenvalue of A is 2.43

Set  α = 0.4 < 1/2.43
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Social Network Analysis

What is a crawler

• A Web crawler, sometimes called a spider or 
spiderbot and often shortened to crawler, is an 
Internet bot that systematically browses the World 
Wide Web, typically for the purpose of Web indexing 
(web spidering).

• We make the distintion between
• Crawling: the activity of dowload of web pages, while

visiting the web
• Web scraping: extracting data from websites. 
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Social Network Analysis

Why we care

• Data is key for machine learning and business 
decisions

• It is important to understand the issues behind data 
retrieval, 

• As data scientists we may need to address those
issues and configure scraping tools to obtain data
• Understanding concepts helps us deal with those tools
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Basic organization of a large-
scale, distributed web crawler
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Social Network Analysis

The web is enormous

• The web is a network
• Large scale
• Reconstruction of the 

structure depends on 
where we start 
decides the result
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Social Network Analysis

URLs classification

• Seed: set of urls
• Frontier: URLs available but that have not been

visited yet.
• From the seed set
• Found in pages we have already visited

• Visited URLs:  dowloaded pages that have been
analyzed and processed.

• Unknown URLs: everything else
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Social Network Analysis

What does the crawler do

• The crawler loads the seed set in the frontier set. 
• While there are URLs left:

1. Pick URL in the frontier
2. Connect and download a page
3. Processing of the page (URLs extraction, 

summary)
4. Move the URL from the frontier to the set of 

Visited URLs
5. Filter extracted URLs: 

• remove the already visited links
• new URLS are added to the frontier
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Social Network Analysis

The system
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Social Network Analysis

The system
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Social Network Analysis

Download - Algorithmic issues

• We are dealing with a graph
• While there a lot visiting algorithms for graphs they

can’t be applied
• The issue is that they require to know a priori how

many nodes are available and which ones.
• In the crawling process we have important choices to 

make. 
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Social Network Analysis

Download - Algorithmic issues

• First choice: policy
• the way we choose an url in frontier.

• The policy influences the crawling order and the 
obtained structure

• The policy can prioritize different aspects and could
be changed with time.

• Examples of policy:
• Content-based

• The basis of Scraping processes for specific content
• Priority to most frequent urls
• Priority to long urls

• We want to visit the sub pages first (sort of a depth first visit)
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Social Network Analysis

Download - Algorithmic issues

• Where we start is just as important as how we choose
the next page

• The seed set must be chosen carefully
• What we want for the seed

• Limited set
• In the main component
• Content driven selection

• Theme focus
• General purpose needs more variety
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Social Network Analysis

Download - Resource issues

• The Frontier grows rapidly, much more quickly than
the number of visited wesites

• The growth could be exponential
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Social Network Analysis

Download - Resource issues

• We need Resources
• Ram
• Storage (Disk or Cloud)

• The resources available may not be enough
• The crawler may need to stop downloading: the 

programmer should include a procedure to perform a 
Graceful Degradation
• When RAM is full,  rely on Storage
• When Disk is about to be full, stop and don’t compromise 

the operative sytsem

15Cheick Tidiane Ba
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Social Network Analysis 16

Politeness
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Social Network Analysis

The system
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Social Network Analysis

Politeness

• We should not exceed with the amount of time  
dedicated to dowloads from a  single site or server.

• While we may have a lot resources, shall i use them
all

• The issue is that we can create issues for those we
handle the websites or servers.
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Social Network Analysis

Why do i care about Politeness

• Some hosting sites make clients pay based on the 
transmitted data or bytes
• Unexpected costs

• Some hosting services may have a limit on traffic
• We may be slowing down other legit users or blocking

them out completely

• Some pages require a lot CPU work to be loaded.
• Again some hosts may have high costs for this kind of 

resource.
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Social Network Analysis

Why do i care about Politeness

• Crawlers are automatic and unsupervised. They visit 
sites without approval

• Story time: you may accidentally destroy a database
• A testing link to an http delete command was hidden in a 

crawled page
• Visiting that URL deleted an entire database
• Only protection is an accurate log system

20Cheick Tidiane Ba
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Social Network Analysis

What are the consequences

• The consequences
• Potentially Ban by IP
• Legal issues

• Mechanisms so that sites can signal that they wish for 
crawler to limit to certain sections or URLs or that 
they may not be crawled at all

• One of them is the “robots.txt” files

21Cheick Tidiane Ba
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Social Network Analysis

Robots.txt

• File used by websites to indicate which parts of the 
website can be visited by a crawler, if any.

• It doesn’t have legal value, it can be ignored
• But it avoids us issues with website managers
• The file must be downloaded the first time we access 

the website. Then checked periodically (e.g. 6 hours), 
looking for updates.

• Example:
• https://www.nytimes.com/robots.txt
• https://www.facebook.com/robots.txt
• https://corriere.it/robots.txt
• https://www.reddit.com/robots.txt
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Social Network Analysis

Example: Facebook

• We can notice that except for all the big of IT that
have some specified rules, for everyone else all is
forbidden
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Social Network Analysis

Example: Corriere.it

• User-agent: * 
• Rules applied to everyone, 

even browsers.

• Notes:
• More disorganized

compared to big websites
• We can find sitemaps

• Urls that specify the 
structure of the website

• Some pages are not
reachable following links in 
the pages

• Usually are links generated
through javascript.
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Social Network Analysis

Crawl delay

• An option that specifies a waiting time is crawl-delay  
• This options specificies an amout of time in seconds 

that the crawler should wait before making 
consecutives connections

• E.g. 
• crawl-delay:2

25Cheick Tidiane Ba
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Social Network Analysis

How a crawler can prevent issues

• Option 1: limit the time of a request between each
request.

• Even if it not specified by a robots.txt file
• In practical terms a sleep()

26Cheick Tidiane Ba
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Social Network Analysis

How a crawler can prevent issues

• Option 2: limit the fraction of time of dowload
compared to the time passed not dowloading. 

• Given:
• a fraction of time p 
• maximum download time s e.g (1s)

• We want that the proportion of download time and 
non-download time to be equal to p

• Caveats:
• We need to monitor s
• Slow resources could require a bigger s time, so we need to 

adjust.
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Page Processing and Storage
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Social Network Analysis

The system
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Social Network Analysis

Content processing

• Given a new page, we may want to:
• 1) extract new URLs
• 2) Save the content

• Apply some processing functions
• Usually compressed before saving in a DB. 

• For this large-scale data, usually a distributed database, e.g. Mongo
or Google’s Bigtable
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Social Network Analysis

Content processing

• Potential processing steps include
• Remove dates
• Delete markup, html tags or attributes
• Remove links  
• Remove headers
• Remove or execute javascript code (if we want to save the 

dynamic content of a page,  we need to be careful about
code with infine loops or broken code (sometimes we have
traps)

• We may not be interested in the entire page
• Extract the interesting values and bundle them up, in a file 

or json structure
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Social Network Analysis

Duplicate pages

• Delete duplicate pages to save storage space
• Some pages are exact duplicates non memorizzare 

pagine che non cambiano di molto
• google.com, google.it

• Some pages are quasi-duplicates, as they update 
small parts like dates or random ids
• nytimes.com, nyt.com

• Some websites are crawler traps
• They generate random links to trap crawlers
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Social Network Analysis

When can we check for duplicates

• We can check at two different moments in time
1. After storage 

• Save all the pages, clear duplicates after the crawling
process

2. Before storage
• We need to identify potential duplicates before saving

them
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Social Network Analysis

Bloom filters

• Data structure for the detection of quasi duplicates
• Compact representation of big sets of elements
• Characterized by

• Rapid answer
• Memory efficient

• Probabilistic data structure
• The price for efficiency

• What we can do:
• Add elements to the list of seen elements
• And ask if we have seen a certain element already

34Cheick Tidiane Ba
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Social Network Analysis

Bloom filters

• Bit Vector
• Compact space
• We can keep it in RAM for efficient checks
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Social Network Analysis

Bloom filters

• It tells us that the element either definitely is not in 
the set or may be in the set.

• Asking if in an element is contained, can yield 2 
results:
• false: definitely is not in the set
• true: may be in the set

• The accuracy/ probability of error of the answer
depends on the amount on the number of elements
we plan to save (insert)
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Social Network Analysis

Bloom Filter example

• Given a Bloom filter of 15 bits
• A set of URLs X
• Two hash function h1, h2
• I want to add the following web page summary: «the 

fox is on the table»
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Social Network Analysis

Bloom Filter example

• I want to our set the summary x e.g. «the fox is on the 
table»

• Apply each hash function
• E.g. h1(x) = 10; h2(x) = 13

• Set the bits in position 10 and 13 to 1
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Social Network Analysis

Bloom Filter example

• I want to check if the summary x e.g. «the fox is on 
the table»

• Apply each hash function
• E.g. h1(x) = 10; h2(x) = 13

• Check the bit values bit values in positions 10 an
• The AND combination of the bit values can be 1 (true) or 0 

false
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Social Network Analysis

Bloom Filter example

• Reminder: asking if in an element is contained, can 
yield 2 results:
• False (0) : definitely is not in the set
• True (1): may be in the set

• The AND combination of the bits can be 1 or 0
• If all those values are set to 1 in the bit vector, it might 

be because another element or some combination of 
other elements could have set the same bits
• So I say that may be in the set, we don’t know for sure

• if atleast 1 of those values are set to 0, you know that 
the element isn't in the set
• We know for sure
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Social Network Analysis

Why bloom filters

• The filter is useful as it limits the access to Storage.
• Avoid access to slower storage like and HDD 
• Particulary effective if we have enough bits to obtain often

negative answers
• Allows us to deal with large sets, without checking them

directly
• Important for big elements like URLs

• This data structure offers us graceful degradation ( 
when full we always check the disk) 

• Key property: we can influence the probability of 
error by knowing how many elements i may have to 
save
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Social Network Analysis

Graceful degradation

• The filter fills up as we add new elements
• Adding «the cat is on the table»

• h1(x) = 14, h2(x) = 7

• With time we have more false positives
• We obtain 1 but we didn’t actually see the element before

• As it fills up, we’ll check the disk more often
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Social Network Analysis

Proability of error

• A mathematical analysis show us that we can choose
a proper number of hash functions

• The choice depends on the number of bits m,  and the 
probability of error we aim to obtain

• So we can decide the right amount of bits required
• The analysis gives us the probability to observe a  

positive answer, (false or true) after n inserts
• This probability is a majoration of the probability of a 

false positive.
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Social Network Analysis 44

Recap
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Social Network Analysis

The system
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Social Network Analysis

Next lesson

• Quick recap
• Bloom Analysis
• Frontier data structure
• Load management for distributed crawling systems
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Social Network Analysis

References

• http://vigna.di.unimi.it/algoweb/
• https://llimllib.github.io/bloomfilter-tutorial/ (bloom 

filter demo)
• Burton H. Bloom. Space-time trade-offs in hash 

coding with allowable errors. Communications of the 
ACM, 13(7):422–426, 1970

• https://www.cs.princeton.edu/courses/archive/spring
02/cs493/lec6.pdf (Bloom filter analysis, section 3.1)
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Thank you for the attention!

For any question send an email at
cheick.ba@unimi.it
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SOURCES

2

Books:
Barabasi, Network Science, Chapter 9 

Zafarani, Social Media Mining, Chapter 6 (particularly the introductive part)
Newman, Networks 

Papers:
Santo Fortunato, Darko Hric, Community detection in networks: A user guide, Physics 
Reports, Volume 659, 11 November 2016, Pages 1-44, ISSN 0370-1573, 
https://doi.org/10.1016/j.physrep.2016.09.002. 
(http://www.sciencedirect.com/science/article/pii/S0370157316302964)

Santo Fortunato, Community detection in graphs, Physics Reports, Volume 486, Issues 
3–5, February 2010, Pages 75-174, ISSN 0370-1573, 
https://doi.org/10.1016/j.physrep.2009.11.002. 
(http://www.sciencedirect.com/science/article/pii/S0370157309002841)
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Communities

3

Why to study communities?

- individuals often form groups based on their interests and we are 
interested in identifying these groups. Consider the importance of 
finding groups with similar reading tastes by an online book seller 
for recommendation purposes. 

- groups provide a clear global view of user interactions, whereas a 
local-view of individual behavior is often noisy and ad hoc 
(mesoscale).

- some behaviors are only observable in a group setting and not on 
an individual level. This is because the individual’s behavior can 
fluctuate, but group collective behavior is more robust to change.
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Communities

4

• Two types of communities:

– Explicit Groups: formed by user subscriptions

– Implicit Groups: implicitly formed by social 
interactions 

• (individuals calling Canada from the United 
States need not be friends) -> the phone 
operator considers them one community for 
marketing purposes

• We may see group, cluster, cohesive subgroup, or 
module in different contexts instead of “community”
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Examples of explicit social media community

5

• Facebook
– Facebook has groups and communities. In both, users 

can post messages and images, can comment on 
other messages, can like posts, and can view activities 
of other users

• Google+
– Circles in Google+ represent communities

• Twitter
– Communities form as lists. Users join lists to receive 

information in the form of tweets

• LinkedIn
– LinkedIn provides Groups and Associations. Users can 

join professional groups where they can post and 
share information related to the groupCopyrig

ht U
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6

COMMUNITY DETECTION

DISCOVERING 
IMPLICIT COMMUNITIES

COMPUTE SETS OF NODES BASED 
ON THEIR CONNECTIVITY

Hypothesis:
The network community structure is 

encoded in its wiring diagram
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Real networks have community structure

7

A simple graph with three communities, 
enclosed by the dashed circles

Source: S. Fortunato / Physics Reports 486 (2010) 75–174

Real networks are 
not random.
Weak ties seem to 
bridge groups of 
tightly coupled 
nodes 
(communities)
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Example: scientist collaboration network

8

• Collaboration network 
between scientists 
working at the Santa 
Fe Institute. Edges are 
placed between

scientists that have 
published at least one 
paper together.

The colors indicate high 
level communities and 
correspond to research 
divisions of the institute

Source: S. Fortunato / Physics Reports 486 (2010) 75–174Copyrig
ht U
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Example: Zachary’s Karate Club

10

Zachary observed 34 
members of a karate club 
over two years. Edges 
connect individuals who 
were observed to interact 
outside the activities of the 
club. 

During the course of observation, the club members split
into two groups because of the disagreement between the
administrator of the club and the club’s instructor (nodes: 1
and 34), and the members of one group left to start their
own clubCopyrig
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Disjoint communities

11

Separating networks into disjoint subsets seems 
to make sense when communities are somehow 
“adversarial”
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Communities

12

Disjoint communities (i.e., groups of friends who 
don’t know each other) e.g. my American friends 
and my Australian friends 

Overlapping communities (i.e., groups with some 
intersection) e.g. my friends and my girlfriend’s 
friends 
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Defining communities

13

There is no unique definition of community

Intuition: 

There are more links inside a community than links 
connected with the rest of the network

Hypothesis: 

a community is a locally dense connected 
subgraph in a network
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Hypotheses

14

Connectedness Hypothesis: 
A community corresponds to 

a connected subgraph.

Density Hypothesis: 
Communities correspond to 
locally dense neighborhoods 

of a network. 

All members of a 
community must 
be reached 
through other 
members of the 
same community 

Nodes of the same
communityhas
higher probability
of linking to other
members of the 
same community 
than to nodes
outside it
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Local definition: maximum cliques

15

One of the first paper on community defined a community as
a group of individuals whose members all know each other

• It is a connected subgraph with maximal link density

• Triangles are frequent; larger cliques are rare. 

• Finding the cliques of a network is computationally rather 
demanding, being a so-called NP-complete problem.

• Too restrictive: communities do not necessarily correspond to 
complete subgraphs, as many of their nodes do not link directly 
to each other. 

• Relaxing cliques

– n-clique, n-clan, n-club, k-plex

– k-core: maximal subgraph that each vertex is adjacent to at 
least k other vertices in the subgraphCopyrig

ht U
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Almost loca definitions

16

Graph 𝐺, a connected subgraph 𝐶 and node i
The internal degree ki

int of node i is the number of links that
connect i to other nodes in C.
The external degree ki

ext is the number of links that connect i to
the rest of the network.
If ki

ext=0, each neighbor of i is within C, hence C is a good
community for node i. If ki

int=0, then node i should be assigned
to a different community

𝑘𝑖
𝑖𝑛𝑡, 𝑘𝑖

𝑒𝑥𝑡: internal and external degrees of 𝑖 ∈ 𝐶

𝑘𝑖𝑛𝑡
𝐶 , 𝑘𝑒𝑥𝑡

𝐶 : internal and external degrees of 𝐶
Sum of the Internal and external degrees of all 𝑣 ∈ 𝐶
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Almost local definitions

17

strong community:
each node has more links within the 
community than with the rest of the graph. 

weak community:
the total internal degree of the subgraph
exceeds its total external degree, 

Clique Strong community Weak community
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Almost local definitions

18

Clique strong community  weak

Is the converse true? No

Clique Strong community Weak community
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Partitions

19

Definition:
We call a partition a division of a network into an arbitrary 
number of groups, such that each node belongs to one and 
only one group.

Community detection: 
the number and size of the communities are unknown at 
the beginning.

Partition detection:
division of a network into groups of nodes, so that each 
node belongs to one group. 
the number and size of the communities are known at the 
beginning.Copyrig
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Partitions

20

How many ways can we partition 
a network into communities? 

The number of 
possible partitions is
given by the Bell 
number and grows
faster than
exponentially

Brute-force approaches that aim to identify
communities by inspecting all possible

partitions are computationally infeasibleCopyrig
ht U
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Global definition: modularity

21

Randomly wired networks lack an inherent community 
structure

By comparing the link density of a community with the 
link density obtained for the same group of nodes for a 
randomly rewired network, we could decide if the 
original community corresponds to a dense subgraph, 
or its connectivity pattern emerged by chance.
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Global definition: modularity

22

Systematic deviations from a random configuration 
allow us to define a quantity called modularity

It measures the quality of each partition. 

It allows us to decide if a particular community 
partition is better than some other one.

Modularity optimization offers a novel approach to 
community detection.
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Global definition: modularity

23

Global definition: with respect to the whole 
graph

– Null model: A random graph where some 
structure properties are matched with the 
original graph

– Intuition: a subgraph is a community if the 
number of internal links exceeds the expectation 
over all realizations of the null model
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Modularity

24

Modularity measures the difference between the 
network’s real wiring diagram (Aij) and the expected 
number of links between i and j if the network is 
randomly wired (pij)

Definition: 𝑄 =
1

2𝑚
σ𝑖𝑗 𝐴𝑖𝑗 − 𝑝𝑖𝑗 𝛿(𝐶𝑖 , 𝐶𝑗)

• 𝑝𝑖𝑗: expected number of links between i and j in the 

null model

• random graph: 𝑝𝑖𝑗 = 𝑝, ∀𝑖, 𝑗
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Modularity

25

Modularity is the fraction of the links that fall 
within the given groups minus the expected such 
fraction if links were distributed at random

Higher Modularity Implies Better Partition
The higher is M for a partition, the better is the 

corresponding community structure
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Modularity

26

– Range: [−
1

2
, 1)

– if we treat the whole graph as one community 𝑄 = 0

– if each vertex is one community 𝑄 < 0
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Maximal Modularity Hypothesis

27

• Optimal partition:
maximizes the modularity.

• Sub-optimal  but positive 
modularity.

• Negative Modularity: if we 
assign each node to a 
different community.

• Zero modularity: Assigning all 
nodes to the same 
community, we obtain , 
independent of the network 
structure. 

• Modularity is size dependent.

Copyrig
ht U

niversità
 degli S

tudi d
i M

ila
no



Modularity-based community detection methods

28

• Modularity maximization
For a given network the partition with maximum 

modularity corresponds to the optimal community 
structure

• Finding the best value for Q is NP hard

• Hence we use heuristics
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Modularity maximization: greedy algorithm

29

Greedy techniques [Newman], iteratively joins nodes if the move increases the 
partition’s modularity. 

• 1. Start with all nodes as isolated that is assign each node to a community of its 
own, e.g. start with  “communities”.

• 2. Inspect each pair of communities connected by at least one link and 
compute the modularity variation (on the full network) obtained if we merge 
these two communities.

• 3. Identify the community pair for which ΔM  is the largest and merge them. 

• 4. Repeat Step 2 and 3 until all nodes are merged into a single community.

• 5. Record  M for each step and select the partition for which the modularity is 
maximal.

• Issues:  limit resolution and modularity maximaCopyrig
ht U
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Modularity maximization: resolution limit

30

The community structure of the collaboration network of physicists. The greedy algorithm 
predicts four large communities, each composed primarily of physicists of similar interest. 
These four large communities (together containing 77% of all nodes) coexist with 600 
smaller communities, resulting in an overall modularity M=0.713.
Identifying Subcommunities
We can identify subcommunities by applying the greedy algorithm to each community, 
treating them as separate networks. This procedure splits the condensed matter 
community into many smaller subcommunities, increasing the modularity of the partition 
to M=0.807.
Research Groups
One of these smaller communities is further partitioned, revealing individual researchers 
and the research groups they belong to.Copyrig
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Modularity maxima

31

All algorithms based on 
maximal modularity rely on 
the assumption that a 
network with a clear 
community structure has an 
optimal partition with a 
maximal M. 
In practice we hope 
that Mmax is easy to find and 
that the communities 
predicted by all other 
partitions are distinguishable 
from those corresponding 
to Mmax. 
Yet, this optimal partition is 
difficult to identify among a 
large number of close to 
optimal partitions.
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Modularity maximization: fast modularity

32

The greedy algorithm is neither particularly fast nor particularly 
successful at maximizing M.
Scalability: Due to the sparsity of the adjacency matrix, the update 
of the matrix  involves a large number of useless operations. 

The use of data structures for sparse matrices can decrease the 
complexity of the computational algorithm to O(Nlog2N)

See:
Clauset, Aaron, Fast Modularity" Community Structure Inference
Algorithm.
http://www. cs. unm. edu/~ aaron/research/fastmodularity. 
htm (2012).
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Modularity maximization: Louvain algorithm

Louvain method: Finding communities in large 
networks

The modularity optimization algorithm achieves a
computational complexity of 0(L).

Hence it allows us to identify communities in networks
with millions of nodes.

Fast unfolding of communities in large networks,
Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre,
Journal of Statistical Mechanics: Theory and Experiment 2008 (10), P10008 (12pp)
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Louvain algorithm: weighted network of N nodes

34

“Our algorithm is divided in two phases that are repeated iteratively. 
Phase 1
• First, we assign a different community to each node of the network. So, in this 

initial partition there are as many communities as there are nodes. 
• Then, for each node i we consider the neighbors j of i and we evaluate the gain 

of modularity that would take place by removing i from its community and by 
placing it in the community of j. The node i is then placed in the community for 
which this gain is maximum (in case of a tie we use a breaking rule), but only if 
this gain is positive. If no positive gain is possible, i stays in its original 
community. 

• This process is applied repeatedly and sequentially for all nodes until no further 
improvement can be achieved and the first phase is then complete. Let us insist 
on the fact that a node may be, and often is, considered several times. 

• This first phase stops when a local maxima of the modularity is attained, i.e., 
when no individual move can improve the modularity. 

One should also note that the output of the algorithm depends on the order in 
which the nodes are considered. Preliminary results on several test cases seem to 
indicate that the ordering of the nodes does not have a significant influence on the 
modularity that is obtained.“
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Louvain algorithm: weighted network of N nodes

35

Our algorithm is divided in two phases that are repeated iteratively. 

Phase 2
We construct a new network whose nodes are the communities
identified during phase I.
The weight of the link between two nodes is the sum of the weight of
the links between the nodes in the corresponding communities. Links
between nodes of the same community lead to weighted self-loops.

Once phase 2 is completed, we repeat phases 1 - 2, calling their
combination a pass.
The number of communities decreases with each pass.
The passes are repeated until there are no more changes and
maximum modularity is attained.
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Louvain algorithm

36
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Some studies that use the Louvain method

37

Twitter social network (2.4M nodes 38M links, Twitter)

Divide and Conquer: Partitioning Online Social Networks

Josep M. Pujol, Vijay Erramilli, Pablo Rodriguez

arXiv 0905.4918, 2010

LinkedIn social network (21M nodes, LinkedIn)

Mapping search relevance to social networks

Jonathan Haynes, Igor Perisic

Proceedings of the 3rd Workshop on Social Network Mining and Analysis, 2010

Audio sharing networks (Freesound)

Community structure in audio clip sharing

Gerard Roma, Perfecto Herrera

International Conference on Intelligent Networking and Collaborative Systems, INCoS 2010

Mobile phone networks (4M nodes, 100M links)

Tracking the Evolution of Communities in Dynamic Social Networks

Greene, D.; Doyle, D.; Cunningham, P.;

International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2010

Flickr 1.8M/22M, LiveJournal 5.3M/77M, YouTube 1.1M/4.5M

Real World Routing Using Virtual World Information

Pan Hui, Sastry N.

International Conference on Computational Science and Engineering, 2009

Citation network (6M nodes, ISI database)

Subject clustering analysis based on ISI category classification

Lin Zhang, Xinhai Liu, Frizo Janssens, Liming Liang and Wolfgang Glänzel

Journal of Informetrics, Volume 4, Issue 2, April 2010

Retail transaction data network

Market basket analysis with networks

Troy Raeder, Nitesh V. Chawla

Social Network Analysis and Mining, 2010

Human brain functional networks

Hierarchical Modularity in Human Brain Functional Networks

David Meunier, Renaud Lambiotte, Alex Fornito, Karen D. Ersche and Edward T. Bullmore

Neuroinformatics, 3: 37, 2009

Copyrig
ht U

niversità
 degli S

tudi d
i M

ila
no



Overlapping communities

38

Clique finder
http://cfinder.org

Uncovering the
overlapping community
structure of complex
networks in nature and
society 
G. Palla, I. Derényi,
I. Farkas, and T. Vicsek:
Nature 435, 814–818 (2005)
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Overlapping communities

39Palla, Derenyi, Farkas, Vicsek. Nature (2005).
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Overlapping communities: clique percolation

40

• Two k-cliques (complete subgraphs of k 
nodes) are considered adjacent if they 
share k-1 nodes

• A k-clique community is the largest 
connected subgraph obtained by the 
union of all adjacent k–cliques

• Other k-cliques that can not be reached 
from a particular k-clique correspond to 
other k-clique-communities

Palla, Derenyi, Farkas, Vicsek. Nature (2005).
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CPM

41

• Other k-cliques that can not 
be reached from a particular -
clique correspond to other -
clique-communities
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CPM: 4-clique

42

d.
k=4 community structure of a small network, consisting of complete four node subgraphs 
that share at least three nodes. Orange nodes belong to multiple communities.
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CPM

43

CFinder algorithm
The main steps of the CFinder algorithm. 
Starting from the network shown in the figure, 
our goal is to identify all cliques. All five k=3 
cliques present in the network are highlighted.
The overlap matrix O of the k=3 cliques. This 
matrix is viewed as an adjacency matrix of a 
network whose nodes are the cliques of the 
original network. 
The matrix indicates that we have two 
connected components, one consisting of 
cliques (1,2) and the other of cliques (3, 4, 5). 
The connected components of this network 
map into the communities of the original 
network.
The two clique communities predicted by the 
adjacency matrix.
The two clique communities shown in (c), 
mapped on the original network.
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Example

44

bright:

• community containing light-
related, glow or dark;

• community capturing 
different colors (yellow, 
brown)

• community consisting of 
astronomical terms (sun, 
ray).

• community linked to 
intelligence (gifted, 
brilliant).
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Example: mobile call

45

Communities extracted from the call pattern of 
the consumers of the largest Belgian mobile 
phone company. The network has about two 
million mobile phone users. The nodes 
correspond to communities, the size of each 
node being proportional to the number of 
individuals in the corresponding community. 
The color of each community on a red–green 
scale represents the language spoken in the 
particular community, red for French and 
green for Dutch. Only communities of more 
than 100 individuals are shown. The 
community that connects the two main 
clusters consists of several smaller 
communities with less obvious language 
separation, capturing the culturally mixed 
Brussels, the country’s capital.
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Communities: size

46

Numerous
small 
communities
coexist with 
a few
very large 
ones.
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Crawling – Part 2

Cheick Tidiane Ba
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Social Network Analysis

What is a crawler

• A Web crawler, sometimes called a spider or 
spiderbot and often shortened to crawler, is an 
Internet bot that systematically browses the World 
Wide Web, typically for the purpose of Web indexing 
(web spidering).

• We make the distinction between
• Crawling: the activity of dowload of web pages, while

visiting the web
• Web scraping: extracting data from websites. 

2Cheick Tidiane Ba
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Social Network Analysis

Why we care

• Data is key for machine learning and business 
decisions

• It is important to understand the issues behind data 
retrieval, 

• As data scientists we may need to address those
issues and configure scraping tools to obtain data
• Understanding concepts helps us deal with those tools

3Cheick Tidiane Ba
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Social Network Analysis 4

Basic organization of a large-
scale, distributed web crawler
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Social Network Analysis

Recap

5Cheick Tidiane Ba

SeedFrontier

UrlWeb 
Page

Urls Unexplored

Already
Visited

Content or 
Summary

1. Pick URL 
from the 
frontier

2. Connect and 
download a page

3. Processing of the page

4. Clear Visited URLs from Frontier

5. Filter extracted URLs
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Social Network Analysis

Recap

• Policy: the way we choose an url in frontier
• Seed set must be chosen carefully Where we start is 

just as important as how we choose the next page
• Resource issues: Frontier grows rapidly (exponential) 

Ram or Storage (Disk or Cloud)
• Graceful Degradation: property that describes the 

ability to deal with this issues

6Cheick Tidiane Ba
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Social Network Analysis

Recap

• Politeness: Issues dowloads from a  single site or 
server.
• robots.txt
• limit the time of a request between each request.
• limit the time of a request between each request.

7Cheick Tidiane Ba
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Social Network Analysis

Recap

• Content processing
• 1) extract new URLs 
• 2) Save content

• Avoid duplicate pages to save storage space
• Bloom filters Probabilistic data structure

• Characterized by
• Rapid answer
• Memory efficient

• Track seen elements
• Add elements to the list of seen elements
• And ask if we have seen a certain element already

8Cheick Tidiane Ba
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Social Network Analysis 9

Bloom Filters - Analysis
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Social Network Analysis

Bloom Filter example

• Given a Bloom filter of 15 bits
• A set of URLs X
• Two hash function h1, h2
• I want to add the following web page summary: «the 

fox is on the table»

10Cheick Tidiane Ba
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Social Network Analysis

Bloom Filter example

• I want to our set the summary x e.g. «the fox is on the 
table»

• Apply each hash function
• E.g. h1(x) = 10; h2(x) = 13

• Set the bits in position 10 and 13 to 1
• Adding «the cat is on the table»

• h1(x) = 14, h2(x) = 7

11Cheick Tidiane Ba
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Social Network Analysis

Bloom Filter example

• I want to check if the summary x e.g. «the fox is on 
the table»

• Apply each hash function
• E.g. h1(x) = 10; h2(x) = 13

• Check the bit values bit values in positions 10 an
• The AND combination of the bit values can be 1 (true) or 0 

false

12Cheick Tidiane Ba
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Social Network Analysis

Analysis

• Given:
• m = number of bits in bit vector
• d = number of hash function
• n = insert operations

• Find the probability of a  (false or true) positive after n 
insert operations

• Probability that a certain bit b is set to 1 after one 
insert operations is: 1

𝑚

• Probability that a certain bit b is set to 0 after one 
insert operations is the complementary event:
• 1 −

1

𝑚

13Cheick Tidiane Ba
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Social Network Analysis

Analysis

• Probability that a certain bit b is set to 0 after one 
insert operations is:
• 1 −

1

𝑚

• Probability that a certain bit b is set to 0 after n insert
operations is
• (1 −

1

𝑚
)𝑑

• Probability that a certain bit b is set to 0 after n insert
operations is
• (1 −

1

𝑚
)𝑑𝑛

14Cheick Tidiane Ba
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Social Network Analysis

Analysis

• Positive: we check d bits and find all 1s
• (1 − (1 −

1

𝑚
)𝑑𝑛)𝑑

• Property:
• 1 +

𝛼

𝑛

𝑛
→ 𝑒𝛼 𝑓𝑜𝑟 𝑛 → ∞

• In our case we have (1 − (1 −
1

𝑚
)𝑑𝑛)𝑑

• (1 − (1 −
1

𝑚
)𝑑𝑛)𝑑 ≈ (1 − 𝑒

𝑑𝑛

𝑚 )𝑑

15Cheick Tidiane Ba
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Social Network Analysis

Analysis

• If we consider 𝑝 = 𝑒−𝑛𝑑/𝑚 we can express 𝑑 = −
𝑚

𝑛
ln 𝑝

• We need to minimize:
• 1 − 𝑝

−
𝑚

𝑛
ln 𝑝

= 𝑒
−

𝑚

𝑛
ln 𝑝 ln(1−𝑝)

• To minimize we need the first derivative:

• −
𝑚

𝑛
𝑒
−

𝑚

𝑛
ln 𝑝 ln 1−𝑝

(
ln 1−𝑝

𝑝
−

ln 𝑝

1−𝑝
)

• The first derivative is zero when:
• 1 − 𝑝 ln(1 − 𝑝) = 𝑝 ln 𝑝

• A solution is for sure when 1 − 𝑝 = 𝑝

• So, 𝑝 =
1

2

• It can be proven it’s the only one (See References)

16Cheick Tidiane Ba
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Social Network Analysis

Analysis

• Given 𝑝 =
1

2
, and the previous equation 𝑑 = −

𝑚

𝑛
ln 𝑝

• The probability of (false) positives is minimized for 
𝑑 ≈ 𝑚 ln2/𝑛

17Cheick Tidiane Ba
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Social Network Analysis

Analysis

• The conclusion of the analysis is that given:
• m = number of bits in bit vector
• d = number of hash function
• n = insert operations

• The probability of (false) positives is minimized for 
𝑑 ≈ 𝑚 ln2/𝑛

• In this case the probabilty of a (false) positive is 2−𝑑

• This means that we can exponentially improve the 
probability of error by increasing the number of hash
functions d or working on the number of bit m

• The proportion is given by 𝑚 ≈ 𝑑𝑛/ln 2 ≈ 1,44 𝑑𝑛

18Cheick Tidiane Ba
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Social Network Analysis 19

Frontier
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Social Network Analysis

The system

20Cheick Tidiane Ba

SeedFrontier

Url
Web 
Page

URLs Unexplored

Already
Visited

Content or 
Summary

DB / Disk / Cloud

Filtering and 
queue
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Social Network Analysis

What we need

• We want to :
• Filter URLs
• Clear Visited URLs from Frontier
• Add new URLs to the Frontier
• Implement a Policy

• When it comes to duplicates, we could use the Bloom 
Filter

• While good in theory, we have other data structures 
that are more suited for the frontier

• Not just duplicates but also act as a queue for the 
Frontier

21Cheick Tidiane Ba
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Social Network Analysis

Sieve

• The Sieve is a data structure that accepts URLs that
may need a visit as input. Then it emits, sometimes as
blocks, URLs ready for the visit. 

• Each URL that is inserted in the Sieve can be emitted
only once, no matter how many times is inserted.

• The Sieve has the properties of a dictionary, a priority
queue.

• It represents at the same time the frontier, the visited
set and the queue of urls to be visited. Combined in 
one structure, performance is better.

22Cheick Tidiane Ba
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Social Network Analysis

Sieve in Mercator [HN99]

• Data structure that returns URLs
• Characteristics:

• Return urls in FIFO (first in first out) order. It’s the 
equivalent of a policy for breadth first visit

• Costant Memory Space: remind that the frontier grows
exponentially, our data structure can’t risk

• Probabilistic: we are not going to work with URLs; instead
we’ll work with Signatures, output of hash functions
applied to the URLS

23Cheick Tidiane Ba

Copyrig
ht U

niversità degli S
tudi di M

ilano



Social Network Analysis

Working with Signatures

• Crawler work with Signatures
• Value obtained by applying an hash function to a 

URL, obtaining a value of with k bits.
• We expect collisions. They are dependent on the 

number of bits k.
• If we indicate U as the set of unknown nodes with n 

the number of bits, a collision estimate is n^2/2U.
• The first collision will happen after O(√n) 
• With an hash function that generates signatures of 

64 bits, we’ll have 100 collision every billion: 
acceptable.

24Cheick Tidiane Ba
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Social Network Analysis

Sieve

• The Sieve is formed by
• S vector in central memory that contains the 

signatures. Ex: 64 bits. Fixed dimension n, starts 
empty and gets filled

• Z file on disk that will contain all the signatures we
meet over 

• A auxiliary file, on disk, empty at beginning.
• O output file, in which we store the new urls

25Cheick Tidiane Ba
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Social Network Analysis

Adding URLs

26Cheick Tidiane Ba

S A

Z

Z’

O

u

Url uSignature(u)
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Social Network Analysis

Adding URLs

• Given an URL u, we compute it signature/hash h(u).
• The URL u is added to A
• The signature is stored in S

• S will fill up as we add more and more urls. 
• We need to do a Flush

27Cheick Tidiane Ba

S 0 1 1 2 1

A A B B C B
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Social Network Analysis

Adding URLs

28Cheick Tidiane Ba

S A

Z

Z’

O

u

Url uSignature(u)

Copyrig
ht U

niversità degli S
tudi di M

ilano



Social Network Analysis

Flush - Sorting

• 1a) Sorting of S. 
• Indirect sorting: sorting with an external auxiliary array, so 

that we can mantain both the original and the sorted
sequence

• Stable sorting: Sorting that respects the insert order of 
duplicates.

• 1b) Remove duplicates signatures in S
• We mark them as useless, we consider only the first one. 

We can because the sorting is stable

29Cheick Tidiane Ba

Copyrig
ht U

niversità degli S
tudi di M

ilano



Social Network Analysis

Indirect sorting

• Sorting with an external auxiliary array, so that we
can mantain both the original and the sorted
sequence

• Example: 
• S:   b a c e d g -> abcdeg
• V :  0 1 2 3 4 5 -> 1 0 2 4 3 5 

30Cheick Tidiane Ba
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Social Network Analysis

Stable sorting

• Sorting that respects the insert order of duplicates.
• Example of not stable: 

• b a c e d e -> a b c d e e
• 0 1 2 3 4 5 -> 1 0 2 4 5 3   
• Not stable because the first appearence of e comes after.  

31Cheick Tidiane Ba
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Social Network Analysis

Flush - Sorting

32Cheick Tidiane Ba

S A

Z

Z’

O

u

Url uSignature(u)

1. Sorting

In S we have signatures; the corresponding URLs are in the 
auxiliary file A
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Social Network Analysis

Flush - Fusion

• We need to generate:
• O : List of URLs to be visited
• We need to know the signatures that are in S but they are 

not yet in Z ( == Visited set). 

• 2) Fusion of Z with the signatures in S 
• Save the temporary result in a new file Z’, 
• During the fusion we keep track of the signatures in S that

that are not in Z. 
• Efficient (linear time) as Z and S are sorted. 

33Cheick Tidiane Ba
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Social Network Analysis

Flush - Fusion

34Cheick Tidiane Ba

S A

Z

Z’

O

u

Url uSignature(u)

2. Fusion

1. Sorting

Z’ contains all the URLs we have met
Result of Z + S
We are tracking new URLs in S not
in Z
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Social Network Analysis

Flush – new URLs

• To produce the urls to be visited, for output O
• 3) Scan A and S in parallel, and for every signature 

marked as new in S: emit the URL in output file O. 
• The scan of A is sequential, since S in sorted like A that’s why

we used and indirect sorting.

• 4) Replace Z with Z’; clear S and A.

35Cheick Tidiane Ba
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Social Network Analysis

Flush – new URLs

36Cheick Tidiane Ba

S A

Z

Z’

O

u

Url uSignature(u)

2. Fusion

1. Sorting

4.Replace

3. Emit
new URLs

Z’ contains all the URLs we have met
Result of Z + S
We are tracking new URLs in S not
in Z
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Social Network Analysis

Adding URLs

37Cheick Tidiane Ba

S 0 1 1 2 1

A A B B C B

S

A

Z

O

Z’
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Social Network Analysis

Flush - Sorting

38Cheick Tidiane Ba

S 0 1 1 2 1

A A B B C B

S 0 1 1 1 2

A A B B B C

Z

O

Z’
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Social Network Analysis

Flush - Fusion

39Cheick Tidiane Ba

S 0 1 1 2 1

A A B B C B

S 0 1 1 1 2

A A B B B C

Z

O

Z’ 0,1,2
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Social Network Analysis

Flush - Emit New URLs

40Cheick Tidiane Ba

S 0 1 1 2 1

A A B B C B

S 0 1 1 1 2

A A B B B C

Z

O A,B,C

Z’ 0,1,2
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Social Network Analysis

Flush – Replace Z

41Cheick Tidiane Ba

S 0 1 1 2 1

A A B B C B

S 0 1 1 1 2

A A B B B C

Z 0,1,2

O A,B,C

Z’ 0,1,2
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Social Network Analysis

Flush - Clear

42Cheick Tidiane Ba

S

A

S

A

Z 0,1,2

O A,B,C

Z’
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Social Network Analysis

Adding more URLs

43Cheick Tidiane Ba

S

A

Z 0,1,2

O

Z’

S 1 1 0 3 5

A B B A D F
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Social Network Analysis

Flush - Sorting

44Cheick Tidiane Ba

S 0 1 1 3 5

A A B B D F

Z 0,1,2

O

Z’

S 1 1 0 3 5

A B B A D F
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Social Network Analysis

Flush – Emit New URLs

45Cheick Tidiane Ba

S 0 1 1 3 5

A A B B D F

Z 0,1,2

O D,F

Z’ 0,1,2,3,5

S 1 1 0 3 5

A B B A D F

Copyrig
ht U

niversità degli S
tudi di M

ilano



Social Network Analysis

Flush – Replace Z

46Cheick Tidiane Ba

S 1 1 0 3 5

A B B A D F

S 0 1 1 3 5

A A B B D F

Z 0,1,2,3,5

O D,F

Z’ 0,1,2,3,5
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Social Network Analysis

Flush – Clear

47Cheick Tidiane Ba

S

A

Z 0,1,2,3,5

O D,F

Z’

S

A
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Social Network Analysis

Observations

• Z after the Flush contains again all the signatures of 
URLs we never visited.

• In O we have all the URLs which signature was not in 
Z and (barring collisions) all the unvisited urls.

• The Urls in O are emitted in FIFO order
• The marking procedure and the fusion can be done at

the same time

48Cheick Tidiane Ba
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Conclusion
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Social Network Analysis

The system
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Thank you for the attention!

For any question send an email at
cheick.ba@unimi.it
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2Social Media Mining Measures and Metrics 2Social Media Mining Information Diffusion

Definition

• In February 2013, during the third quarter of Super Bowl 
XLVII, a power outage stopped the game for 34 minutes. 

• Oreo, a sandwich cookie company, tweeted during the 
outage: “Power out? No Problem, You can still dunk it in 
the dark”. 

• The tweet caught on almost immediately, reaching nearly 
15,000 retweets and 20,000 likes on Facebook in less 
than 2 days.

• A simple tweet diffused into a large population of 
individuals. 

• It helped the company gain fame with minimum budget 
in an environment where companies spent as much as 4 
million dollars to run a 30 second ad during the super 
bowl.

• This is an example of Information Diffusion.Copyrig
ht U
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3Social Media Mining Measures and Metrics 3Social Media Mining Information Diffusion

• Information diffusion is studied in a plethora of 
sciences. 

• Our focus is on techniques that can model 
information diffusion.

• Information diffusion: process by which a piece 
of information (knowledge) is spread and 
reaches individuals through interactions.
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Information Diffusion

A diffusion process involves three elements:

• Sender(s). A sender or a small set of senders that 
initiate the information diffusion process;

• Receiver(s). A receiver or a set of receivers that 
receive diffused information. Commonly, the set of 
receivers is much larger than the set of senders and 
can overlap with the set of senders; 

• Medium. This is the medium through which the 
diffusion takes place. For example, when a rumor is 
spreading, the medium can be the personal 
communication between individuals
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Information Diffusion Types

We define the process of interfering with information diffusion

by expediting, delaying, or even stopping diffusion as 

Intervention
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Information diffusion types

Herd behavior takes place when individuals observe the 
actions of all others and act in an aligned form with them. 

Information cascade describes the process of diffusion 
when individuals merely observe their immediate neighbors.

In information cascades and herd behavior, the network
of individuals is observable; 

In herding, individuals decide
based on global information (global dependence); 

In information cascades decisions are made based on 
knowledge of immediate neighbors

(local dependence)Copyrig
ht U
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Information diffusion types

Diffusion of innovations provides a bird’s-eye view of how an
innovation (e.g., a product, music video, or fad) spreads through a
population. It assumes that interactions among individuals are
unobservable and that the sole available information is the rate at which
products are being adopted throughout a certain period of time. This
information is particularly interesting for companies performing market
research, where the sole available information is the rate at which their
products are being bought. These companies have no access to interactions
among individuals.

Epidemic models are similar to diffusion of innovations models, with
the difference that the innovation’s analog is a pathogen and adoption is
replaced by infection.
Another difference is that in epidemic models, individuals do not decide
whether to become infected or not and infection is considered a random
natural process, as long as the individual is exposed to the pathogen.
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Information Diffusion Types

We define the process of interfering with information diffusion

by expediting, delaying, or even stopping diffusion as 

Intervention
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• Network is observable 

• Only public information is 
available

Herd Behavior
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Herd Behavior

Herd behavior describes when a group of 
individuals performs actions that are highly 
correlated without any plans

Main Components of Herd Behavior

– A method to transfer behavior among individuals or 
to observe their behavior

– A connection between individuals

Examples of Herd Behavior

– Flocks, herds of animals, and humans during sporting 
events, demonstrations, and religious gatherings
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Herd Behavior Example

• Consider people participating in an online auction. 

• In this case, individuals can observe the behavior of others by 
monitoring the bids that are being placed on different items. 

• Individuals are connected via the auction’s site where they can 
not only observe the bidding behaviors of others, but can also 
often view profiles of others to get a feel for their reputation 
and expertise. 

• In these online auctions, it is common to observe individuals 
participating actively in auctions, where the item being sold 
might otherwise be considered unpopular. 

• This is due to individuals trusting others and assuming that 
the high number of bids that the item has received is a strong 
signal of its value. In this case, Herd Behavior has taken place.
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Herd Behavior: Popular Restaurant Experiment 

• Assume you are on a trip in a metropolitan area 
that you are less familiar with. 

• Planning for dinner, you find restaurant A with 
excellent reviews online and decide to go there. 

• When arriving at A, you see A is almost empty 
and restaurant B, which is next door and serves 
the same cuisine, almost full. 

• Deciding to go to B, based on the belief that 
other diners have also had the chance of going to 
A, is an example of herd behavior
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• In this example, when B is getting more and more 
crowded, herding is taking place. 

• Herding happens because we consider crowd 
intelligence trustworthy.

• We assume that there must be private information 
not known to us, but known to the crowd, that 
resulted in the crowd preferring restaurant B over 
A. 

• In other words, we assume that, given this private 
information, we would have also chosen B over A.
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Herd behavior

In general, when designing a herding experiment, 
the following four conditions need to be satisfied:
1. There needs to be a decision made. 

In this example, the decision involves going 
to a restaurant.

2. Decisions need to be in sequential order.
3. Decisions are not mindless, and people have 

private information that helps them decide.
4. No message passing is possible. 

Individuals do not know the private 
information of others, but can infer what 
others know from what they observe from 
their behavior.Copyrig

ht U
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Conformity pressure: Solomom Asch’s 
Experiment

• In one experiment, he asked groups of students 
to participate in a vision test where they were 
shown two cards, one with a single line 
segment and one with 3 lines, and the 
participants were required to match line 
segments with the same length.

• Each participant was put into a group where all 
other group members were collaborators with 
Asch. These collaborators were introduced as 
participants to the subject. 
– Asch found that in control groups with no pressure 

to conform, only 3% of the subjects provided an 
incorrect answer.

– However, when participants were surrounded by 
individuals providing an incorrect answer, up to 
32% of the responses were incorrect.
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Herd Behavior: Milgram’s Experiment

• Stanley Milgram asked one person to stand still on a 
busy street corner in New York City and stare straight 
up at the sky. 
– About 4%  of all passersby stopped to look up.

• When 5 people stand on the sidewalk and look 
straight up at the sky, 20% of all passersby stopped to 
look up.

• Finally, when a group of 18 people look up 
simultaneously, almost 50% of all passersby stopped 
to look up.
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Herding: Elevator Example

http://www.youtube.com/watch?v=zNNz0yzHcw
g
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Network Observability in Herb Behavior

In herd behavior, individuals make decisions by 
observing all other individuals’ decisions 

• In general, herd behavior’s network is close to a 
complete graph where nodes can observe at least 
most other nodes and they can observe public 
information

– For example, they can see the crowd
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Designing a Herd Behavior Experiment (NO)

• There needs to be a decision made. 
– In our example, it is going to a restaurant

• Decisions need to be in sequential order;

• Decisions are not mindless and people have 
private information that helps them decide; and

• No message passing is possible. Individuals 
don’t know the private information of others, but 
can infer what others know from what is 
observed from their behavior.
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Herding: Urn Experiment (NO)

• There is an urn in a large class with three marbles in it

• During the experiment, each student comes to the urn, picks 
one marble, and checks its color in private. 

• The student predicts majority blue or red, writes her 
prediction on the blackboard, and puts the marble back in the 
urn. 

• Students can’t see the color of the marble taken out and can 
only see the predictions made by different students regarding 
the majority color on the board

B B R R R B

50% 50%
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Urn Experiment: First and Second Student(NO)

• First Student:

– Board: -

• Observed: B  Guess: B

-or-

• Observed: R Guess: R

• Second Student:

– Board: B

• Observed: B  Guess: B

-or-

• Observed: R Guess: R/B (flip a coin)
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Urn Experiment: Third Student (NO)

• If board: B, R

– Observed: B  Guess: B, or

– Observed: R Guess: R

• If board: B, B

– Observed: B  Guess: B, or

– Observed: R  Guess: B (Herding Behavior)

The forth student and onward

– Board: B,B,B

– Observed: B/R  Guess: B
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Bayes’s Rule in the Herding Experiment (NO)

Each student tries to estimate the conditional 
probability that the urn is majority-blue or 
majority-red, given what she has seen or heard

– She would guess majority-blue if:

– From the setup of the experiment we know:

Pr[majority-blue | what she has seen or heard] > 1/2

Pr[majority-blue] = Pr[majority-red]=1/2

Pr[blue|majority-blue] = Pr[red|majority-red]=2/3
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Bayes’s Rule in the Herding Experiment (NO)

• So the first student should guess “blue” when she 
sees “blue”

• The same calculation holds for the second student

Pr[majority-blue|blue] = Pr[blue|majority-blue] * Pr[majority-blue] / Pr[blue] 

Pr[blue] = Pr[blue|majority-blue] * Pr[majority-blue] 
+ Pr[blue|majority-red ] * Pr[majority-red  ]  
= 2/3 * 1/2 + 1/3 * 1/2 = 1/2

Pr[majority-blue|blue] = (2/3 * ½)/(1/2)
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Bayes’s Rule in the Herding Experiment: Third 
Student (NO)

Pr[majority-blue|blue, blue, red] = 
Pr[blue, blue, red|majority-blue] * Pr[majority-blue] /

Pr[blue, blue, red]

Pr[blue, blue, red|majority-blue] = 2/3 * 2/3 * 1/3 = 4/27

Pr[blue, blue, red] = Pr[blue, blue, red|majority-blue] * Pr[majority-blue
+ Pr[blue, blue, red|majority-red ] * Pr[majority-red  ]  
= (2/3 * 2/3 * 1/3) * 1/2 + (1/3 * 1/3 * 2/3) * 1/2 = 1/9

Pr[majority-blue|blue, blue, red] = (4/27 * 1/2) / (1/9) = 2/3

• So the third student should guess “blue” even when she sees “red”
• All future students will have the same information as the third student 
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Urn Experiment (NO)
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Herding Intervention (NO)

In herding, the society only has access to public 
information. 
Herding may be intervened by releasing private 
information which was not accessible before

The little boy in “The Emperor’s New 
Clothes” story intervenes the herd by 
shouting “he's got no clothes on”
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Herding Intervention (NO)

Milgram Experiment: To intervene the herding 
effect, we need one person to tell the herd that there 
is nothing in the sky
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How Does Intervention Work? (NO)

• When a new piece of private information releases, the 
herd reevaluate their guesses and this may create 
completely new results

• The Emperor’s New Clothes
– When the boy gives his private observation, other people 

compare it with their observation and confirm it
– This piece of information may change others guess and ends the 

herding effect

• In general, intervention is possible by providing private 
information to individuals not previously available. 
Consider an urn experiment where individuals decide on 
majority red over time. Either 
– 1) a private message to individuals informing them that the urn 

is majority blue or 
– 2) writing the observations next to predictions on the board 

stops the herding and changes decisions.
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• In the presence of a 
network

• Only local information is 
available

Information Cascade
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Information Cascade

• In social media, individuals commonly repost content posted by 
others in the network. This content is often received via immediate 
neighbors (friends). 

• An Information Cascade occurs as information propagates through 
friends

• An information cascade is defined as a piece of information or 
decision being cascaded among a set of individuals, where 
– 1) individuals are connected by a network and 
– 2) individuals are only observing decisions of their immediate neighbors 

(friends). 

• Therefore, cascade users have less information available to them 
compared to herding users, where almost all information about 
decisions are available.

In cascading, local information is available to the users, but in herding the 
information about the population is available. 
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Underlying Assumptions for Cascade Models

• The network is represented using a directed graph. 
Nodes are actors and links depict the communication 
channels between them. A node can only influence nodes 
that it is connected to;

• Decisions are binary - nodes can be either active or 
inactive. An active nodes means that the node decided to 
adopt the behavior, innovation, or decision;

• A node, once activated, can activate its neighboring 
nodes; 

• Activation is a progressive process, where nodes change 
from inactive to active, but not vice versa 1.
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Independent Cascade Model (ICM)

• Independent Cascade Model is a sender 
centric model of cascade

– In this model each node has one chance to activate its 
neighbors

• Considering nodes that are active as senders and 
nodes that are being activated as receivers, 

– The linear threshold model concentrates on the 
receiver (to be discussed later).

– The independent cascade model concentrates on the 
sender

Copyrig
ht U

niversità
 degli S

tudi d
i M

ila
no



34Social Media Mining Measures and Metrics 34Social Media Mining Information Diffusion

Independent Cascade Model (ICM)

• In Independent Cascade Model, the node that is 
activated at time t, has one chance, at time step t 
+ 1, to activate its neighbors

• Let v be an active node at time t, for any 
neighbor w of it, there’s a probability pvw that 
node w gets activated at time t + 1. 

• A node v activated at time t has a single chance 
of activating its neighbors and that activation 
can only happen at t + 1

• We start with a set of active nodes and we 
continue until no further activation is possible.
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ICM Algorithm

Node activation in ICM is a probabilistic 
process.
Thus, we might get different results for 
different runs.
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Independent Cascade Model: An Example

pvw probability that node w gets activated

Step 3: v1 can’t activate v3

as it was activated at step 1

Random number generated at time t+1

After five steps, five nodes get 
activated and the ICM 
procedure converges.
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Maximizing 
the Spread of Cascades
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Spread maximization

Consider a network of users and a company that is marketing a
product.
The company is trying to advertise its product in the network.
The company has a limited budget; therefore, not all users can
be targeted.
However, when users find the product interesting, they can
talk with their friends (immediate neighbors) and market the
product.
Their neighbors, in turn, will talk about it with their neighbors,
and as this process progresses, the news about the product is
spread to a population of nodes in the network.
The company plans on selecting a set of initial users such
that the size of the final population talking about the product
is maximized.
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Maximizing the spread of cascades

• Maximizing the Spread of Cascades is the 
problem of finding a small set of nodes in a 
social network such that their aggregated spread 
in the network is maximized

• Applications
– Product marketing

– Influence
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Problem Setting

• Given
– A limited budget for initial advertising (e.g., give away 

free samples of product)

– Estimating spread between individuals

• Goal
– To trigger a large spread (e.g., further adoptions of a 

product)

• Question
– Which set of individuals should be targeted at the very 

beginning?
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Problem Statement

• Spread of node set S: f(S)

– An expected number of active nodes, if set S is the 
initial active set

• Problem:

– Given a parameter k (budget), find a k-node set S to 
maximize f(S)

– A constrained optimization problem with f(S) as the 
objective function
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f(S): Properties

• Non-negative (obviously)

• Monotone: 

• Submodular:

– Let N be a finite set

– A set function is  submodular iff

: 2Nf 

, \ ,

( ) ( ) ( ) ( )

S T N v N T

f S v f S f T v f T

    

    

( ) ( )f S v f S 
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Some Facts Regarding this Problem

• Bad News

– For a submodular function monotone non-negative f, finding 
a k-element set S for which f(S) is maximized is an NP-hard 
optimization problem

– It is NP-hard to determine the optimum for influence 
maximization for both independent cascade model and 
linear threshold model (to be introduced in next chapter).

• Good News
– We can use Greedy Algorithm

• Start with an empty set S
• For k iterations:

Add node v to S that maximizes f(S +v) - f(S).

– How good (or bad) it is?
• Theorem: The greedy algorithm is a (1 – 1/e) approximation.
• The resulting set S activates at least (1- 1/e) > 63% of the number 

of nodes that any k set S could activate (optimum).
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Cascade Maximization: A Greedy approach

Maximizing the cascade is a NP-hard problem but it 
is proved that the greedy approaches gives a solution 
that is at least 63 % of the optimal.

Given a network and a parameter k, which k nodes 
should be selected to be in the activation set B in 
order to maximize the cascade in terms of the total 
number of active nodes?

• Let σ(B) denote the expected number of nodes that 
can be activated by B, the optimization problem 
can be formulated as follows:
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Cascade Maximization: A Greedy Approach

The Algorithm
– Start with B = Ø

– Evaluate σ(v) for each node, and pick the node with 
maximum σ as the first node v1 to form B = {v1}

– Select a node which will increase σ(B) most if the 
node is included in B. 

• Essentially, we greedily find a node v 
∈ V \B such that
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Example

1- 6 = 5

5 / 3 = 1 with remainder 2 Copyrig
ht U
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Example

6 - 4 = 2

2 / 3 = 0 with remainder 2 

6 - 5 = 1

1 / 3 = 0 with remainder 1 
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