
Lesson 1.1: Technologies for

virtualization

Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Introduction

 Virtual comes from the Latin word virtus
 It means “virtue”, “capability”, “potential”

 Different meanings
 Something that could happen
 In computer science it is used to indicate what is not real

 Simulated, emulated and virtual are NOT synonyms

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Definition

 Virtualization
 Activity aiming to create replacements (virtual resources) for

real resources, that have the same functionalities and external
interfaces of their counterpart, but different attributes
(dimension, performance, cost)

 A mechanism through which virtual version of resources,
usually provided physically, are being created

 A technique used to recreate - through software - an
environment that looks like a hardware to the host operating
system

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization

 They are related word but NOT the same thing

 Emulation: we execute a system like it is another system
 It means executing OS, API, functions on a machine which they

have not been developed for
 System A gets inputs from System B, System A produces

outputs of System B

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization

 Why do we use emulation?
 Executing an OS on a not-compatible hardware platform (e.g.,

Microsoft OS on Mac hardware platform)
 Executing an application on a not-compatible device (e.g.,

Windows application on Mac, arcade game systems)
 Reading data written on a memorization device through a

device that we no longer have or that no longer works

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization

 Emulation (hardware): a computer implemented for
executing programs defined for another architecture

 Emulator creates a dump of the software and just
emulates the hardware
 Aiming to replicate the system functioning

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization

 Simulation
 An application allowing to execute old programs, defined for

different platforms, on modern machines
 Replicates the behavior of a system
 It’s like a software emulation
 Has the same goal of an emulator but rewriting the routines of

the program to simulate
 For example «Microsoft Return of Arcade» produced by

Microsoft for PC in the second half of the 90s

 Simulation vs emulation
 Simulation is fast but less precise
 Emulation is precise but slow

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization

 High level emulation
 An intermediate between emulation and simulation
 They recreate the functionalities of an emulated system using

similar or equivalent functions in the emulating system (host)
 Execution time faster than hardware emulation, but less

accuracy
 Nintendo 64 UltraHLE translates CPU functions and graphic

system in equivalent functions of host machine CPUs and
graphic cards

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization

 Virtualization: the technique for using resources and
devices in a functional way, without considering their
physical layout

 Including the division of a single physical computer in
many virtual machines with a dedicated hardware
 Virtual machine is software container with software-based

CPU, RAM, hard disk and network connection
 Transparent: an OS or an application do not distinguish

between a virtual and a physical machine

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Emulation vs Simulation vs Virtualization:

Summary

Main Characteristics

Emulation Emulates the behavior of the real system,

executes unmodified code, accurate and

flexible, expensive

Simulation Approximates the behavior of the real system,

requires rewriting software, cheap and flexible,

accuracy decrease

Virtualization Virtualizes the exact behavior of the real

system, cross-platform, accurate, flexible,

expensive

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtualization

 Compatible with Intel x86 machines

 Each machine has a full and dedicated environment
(encapsulation)

 Each machine is isolated from each other just like physical
separation (isolation)

 Independent from underlying hardware (hardware
independence)

 Created using existing hardware (partitioning)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

A little bit of history

 IBM was the first to develop virtualization on mainframes to
execute processes and applications in a concurrent way
 IBM S/360 Model 67: the first virtualized system (1964)

 A fundamental paper in the sector (Goldberg and Popek) is
from 1974
 Formal requirements for virtualizable third generation architectures

 1980-1990: client-server applications and distributed
computing limit the application of the virtualization

 In the last 20 years the underutilization problem of the 60s
comes back
 Many physical servers, high costs, fault and obsolescence issues
 In 1998 VMware is born, the first virtualization solution for x86

systems

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

A little bit of history

 There exist many types of virtualization
 The Java virtual machine executing Java code
 Volumes exported from a SAN (Storage Area Network)
 System resources from the programs point of view
 The most complex network topologies

 Virtualization strategies evolve from the idea of executing
a system on another one, to tools to maximize resources
usage, to mechanisms to realize models for offering IT
resources as services (next lesson)
 IDC in 2015 shows how client virtualization has become

mature
 Gartner in May 2016 states that server virtualization has

reached its pike, more than 75% of x86 server workload is
virtualized

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

A little bit of history

 One of the most developed sector in the IT world
 Virtualization market

 Data center 8.06 bln $ by 2022 (marketsandmarkets), 3.75 bln $ in
2017

 Desktop 13.45 bln $ by 2022 (marketsandmarkets), 7.83 bln $ in 2017

 Market of 160 bln $ for Cloud computing by 2022, 130 bln$ in
2017
 https://www.statista.com/statistics/510350/worldwide-public-cloud-

computing/

 All the big players have a strategy (IBM, Red Hat, SuSE,
Microsoft, Apple, ...)
 Virtualization adoption is 76% in 2016

 AMD and Intel have CPUs with support for virtualization

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reason for virtualization: issues

 Too many servers, small workloads (<40% usage)

 Old hardware does not work

 Infrastructural requirements are always increasing (many
independent servers)

 Small flexibility in shared environments

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reason for virtualization: issues

 Underutilization of hardware

 High costs and needs
 Maintenance, Leases, Networking, Floor space, Cooling, Power,

Disaster Recovery

 Heterogeneous environments
 Linux, Microsoft, IBM, Apple, SUN

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reason for virtualization: pros

 Consolidation and hardware costs decreasing
 It’s possible to use virtualization to access resources and

manage them efficiently for reducing operation and
management costs, while keeping the necessary
computational power

 It’s possible to use virtualization to let a single server work like
more virtual servers

 Workload optimization
 Virtualization enables dynamically answering to applications’

needs
 It’s possible to use virtualization to increase resource usage,

enabling dynamic sharing of resource pools

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reason for virtualization: pros

 Flexibility and IT responsiveness
 Virtualization allows having a single consolidated view of each

resource of the network, which is easy to access and location-
independent

 Virtualization allows reducing the management of the
environment, providing emulation to support compatibility
and increased interoperability

 Multiple execution environments
 Chosen by the user basing on his needs

 Simplified management
 Single vision of all resources
 Centralized control of the environment

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reason for virtualization: other pros

 Better performance

 Transparency

 Heterogeneity

 Portability

 Interoperability

 Green IT

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reason for virtualization: scenarios

 Server consolidation: many network services offered by
distinct servers are migrated into a single server

 Testing: it is possible to duplicate a test server into a
production one (or vice versa)

 Training: it is possible to provide a complete study
environment, which is hardware-independent

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtualization management

 Analysis and planning

 Adaptation and post-adaptation period

 Virtualized infrastructure maintenance

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Analysis and planning

 Compatibility and support of existing hardware
 License analysis
 Some software restrict the number of instances
 Other ones (e.g., Windows Server 2003 Datacenter Edition) do

not have restrictions

 Migration and deployment planning
 Staff Training
 ROI evaluation

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Adaptation and post-adaptation

 Moving to a virtual machine/network is not hassle free

 Need to evaluate
 Reliability: a single physical machine introduces the need of

disaster recovery solutions
 Performance in a real industrial environment
 Efficiency of the implemented solution
 Security: multitenancy requires control of encapsulation and

message security

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Maintenance

 Scalability: hardware does not grow with infrastructure
growing

 Security of virtual machine and virtualization platform

 Responsibility: roles and privileges

 Evaluation of the virtualization market

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtualization components

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Terminology

 Hypervisor: the system component realizing virtualization
 Allows multiple OS running on the same computer
 Mediates between virtual machine and physical devices
 Mediates hardware requests down to the physical level
 Implements the virtual machine monitor providing virtualized

hardware to virtual machines

 Virtual Machine Monitor (VMM): the application
component realizing virtualization
 A part of the hypervisor
 Keeps track of what happens inside virtual machines
 Redirects to physical resources
 Supports resource sharing between users
 Guarantees virtualization transparency to users

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Terminology

 Guest OS: the virtualized system

 Virtual machine synonym

 Encapsulated system made up of OS and applications

 Uses the hardware abstraction provided by VMM

 Host OS: the real system

 Physical machine (and OS) hosting the virtualized system

 Manages physical hardware

 Can install the hypervisor

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Terminology

 Management Server: virtualization platform

 Made up of set of components for managing virtual machines,
consolidating servers, allocating resources, migrations, high
availability

 Management Console: provides access to the
virtualization management interface

 Allows adding, updating, deleting, configuring virtual machines

 Standalone client standalone or web interface

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Terminology

Management Server: piattaforma di virtualizzazione

Composta da un insieme di componenti per la gestione delle
machine virtuali, consolidamento dei server, allocazione di
risorse, migrazione, high availability

Management Console: fornisce accesso all’interfaccia di
gestione della virtualizzazione

Permette di aggiungere, modificare, cancellare, configurare
machine virtuali

Client standalone o interfaccia web

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Terminology

 Network components: enables developing virtual
networks

 Network devices (switch, router...) completely controlled
through software

 Simulated protocols and network stack in order to replicate
physical ones

 Virtualized storage: provides abstract components of
physical storage

 Accessed through the network or with direct connection

 Data are logically partitioned (they belong to the same
storage)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtualization means…

 The system executed in the virtual environment must
behave exactly as it was executed on an equivalent
physical machine

 The virtualization environment must have full over the
virtual resources

 A statistically relevant percentage of instructions must be
executed without involving virtualization

 This last property is not mandatory, yet it guarantees the
efficiency of the virtual machine

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Where are we?

 Many commercial products

 VMware, Microsoft, Sun, ...

 Open source: Xen,..

 Good hardware support

 Well fitted for 64 bits multi-core processors

 Intel VT (Virtualization Technology) provides native hardware
support to the al Virtual Machine Monitor

 Virtualization is technologically mature

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Most widespread hypervisors

 VMware ESXi

 Xen

 Microsoft Hyper-V

 KVM

 Oracle VM VirtualBox

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some data: more recent

Source: Global

Market Inside

(2019)

Client and Server virtualization

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 An area with growing interest
 Enterprise desktop with centralized security and management
 They encapsulate the OS providing “virtual hardware”
 At the basis of architectures for on demand laboratories

 Servers host virtual desktop machines
 A VMware server can manage more than 1000 virtual

machines
 Virtual desktops used at CS dept. (Crema) as a test

environment for teaching networks and security (each student
has its own virtual network that can be managed remotely)
 Machines eventually available also for external students

 Virtual desktops used also in student labs and classrooms
(each student can download locally its own profile)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Make available a complete desktop environment working
on a datacenter server

 Users connect remotely to the desktop environment from
any PC or thin-client device by using a remote
virtualization protocol (e.g., RDP for Microsoft)

 Useful for remote and temporary workers, for testing and
developing

 The virtual machine executes an unmodified instance of
the OS guaranteeing compatibility with all resources

 Virtually everyone can work remotely

 The management system (vSphere in the VMware suite)
should guarantee load balance, high availability,
scalability and performance

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Pros
 Centralized management and security
 Business Continuity
 Isolation and standard way of managing PCs
 Decreases the need to buy new hardware
 Decreases the time of adding a new image <10 min
 Centralized administration of all desktops, eventually located

anywhere in the world (vCenter in the VMware suite)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual Desktop Penetration

72

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual Desktop Penetration

73

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Single remote desktop

 Shared desktops

 Virtual desktop machines

 Blade physical desktops

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Single remote desktop

 Remote PC management (e.g., pcAnywhere, WebEx, VNC and
Windows Remote Desktop Protocol, TeamViewer)

 Widely used to virtualize the desktop of a server which we
don’t have physical access to

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Shared desktops
 Based upon a server hosting desktop users and applications
 The client can be a standard PC, a notebook, a thin client
 Desktop sharing is widely used because all the computing

power is located on a server and only the monitor, keyboard
and mouse are connected to the network

 This system allows a centralized management of desktops and
their applications, simplifying licensing and making easier to
solve problems, because user applications are located on the
server and not on several machines

 Not rare to find farms of terminal servers hosting hundreds or
even thousands of user desktops

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Blade physical desktops
 Users have their own PC, but the physical hardware is a “blade

PC” located in the datacenter
 Main pros/cons

 Each user has his own PC, instead of sharing resources with other
users on the server

 Terminal servers hosting shared desktops can be influenced by
eventual server faults/problems

 Blades require more maintenance because there could be 100 blade
PCs instead of just one server

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

 Virtual desktop machines

 The opposite of a shared desktop

 A single client - PC or notebook - can host multiple desktops

 Multiple desktops can use different OSes

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual desktop

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual Desktop Infrastructure

 It executes desktop OSes in server rooms

 Server Virtualization or Blade Servers

 A “broker” connects users with virtual desktops

 Centralized management

 Dedicated images to users or a pool of standard images

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

VDI Central Hosting

Image Store

VDI Broker

Virtual Hosts

Gateway

 It requires a continuous
network connection

 OS and applications are
executed on remote hardware

 Eventually possible to locally
download with synchronization
requirements

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

VDI Local Hosting

Image Store

VDI Broker

Gateway

 Centralized image
management

 Desktops are executed
locally on users PCs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Server virtualization

 It encapsulates the OS and presenting a “virtual
hardware”

 It executes several OSes on a single hardware platform

 Consolidation of underused servers

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Server virtualization

 Decreases the total cost of
ownership (TCO)
 System usage increases (servers

actually has less than 10%of usage)
 Reduces hardware (25% of TCO)
 Space, electricity, cooling (50% of

datacenter operating costs)
 Increase server usage
 Simplifies management
 Dynamic provisioning
 Workload management/isolation
 Virtual machine migration
 Reconfiguration

 Better security
 Improves IT financial investment

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Server virtualization

 Creation of multiple instances of logical servers on a
single physical hardware

 All drivers are virtualized, same virtual hardware
independent from physical hardware

 Each virtual machine is completely independent from
each other and is not aware of being virtualized

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Server virtualization

 Efficient hardware utilization

 Efficient staff

 Matching between needs and resources in the long term

 Fast server provision

 Better redundancy

 Hardware maintenance without application unavailability

 System images are simplified

 Disaster Recovery

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Lesson 2.1: Introduction to Cloud

Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

A handful of definitions

 Distributed system

 Parallel system

 Cluster computing

 Meta-computing

 Grid computing

 Peer-to-peer computing

 Global computing

 Internet computing

 Network computing

 Cloud computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

A handful of definitions

 Distributed system

 Parallel system

 Cluster computing

 Meta-computing

 Grid computing

 Peer-to-peer computing

 Global computing

 Internet computing

 Network computing

 Cloud computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

From mainframes to cloud

 Roots of cloud computing

 Hardware: virtualization,
multi-core

 Internet technologies: Web
service, SOA, Web 2.0

 Distributed systems: cluster,
grid

 System management:
autonomic computing, data
center automation

Rajkumar Buyya, Andrzej M. Goscinski, Cloud Computing:

Principles and Paradigms

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Distributed systems

 N autonomous processors (sites): n administrators, n
operating systems, n data/control flows

 A single network

 User view: a single system (virtual)

 «A distributed system is a collection of independent computers
that appear to the users of the system as a single computer»
Distributed Operating Systems, A. Tanenbaum, Prentice Hall,
1994

 Developer view: client-server

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SOA, Web Service, Web 2.0

 Open standard for software integration

 Web services compose applications executed on different
messagging platforms

 Information exchanged between different applications

 Internal applications now distributed to the outside

 Standardized Web service software stack

 Search, selection, and composition mechanisms

 Messagging and packaging

 Security, QoS

 Based on HTTP and XML

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SOA, Web Service, Web 2.0

 Service-Oriented Architecture (SOA)

 Based on the delivery approach proper of Web services

 Implement the concepts of distributed system and computing,
providing a loosely-coupled, standard, and protocol-
independent system

 Provide software resources as a service with public interface

 Enterprise applications in the SOA environment

 Collection of services creating complex business logics

 Used also for consumers and not only for enterprises

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SOA, Web Service, Web 2.0

 Web 2.0
 Made popular by Tim

O'Reilly and Dale
Dougherty at O'Reilly
Media Web 2.0
Conference (end of
2004)

 Term introduced by
Darcy DiNucci in 1999

 The user becomes a
content creator

 Include dynamic web,
blog, forum, social
network, web service…

http://www.oreilly.com/pub/a/web2/archive/wha

t-is-web-20.html

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SOA, Web Service, Web 2.0

 Web 2.0 is based on service composition (Web Mashup)

 Examples are web sites for travel booking including
information from hotels and car rental agencies

 Portions of services integrated using standard protocols,
such as SOAP and REST

 Cloud applications are developed as service compositions
at different layers

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Parallel Systems

 Parallel systems

 1 PC, n nodes: one admin, one operating system

 Memory: distributed vs shared

 Developer view: one machine that executes parallel code

 Different development processes (message passing,
distributed shared memory, data parallelism…)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cluster and network computing

 Cluster computing

 PC are interconnected through a high-performance network

 They form a parallel machine

 Main approaches

 Dedicated network dedicata (Myrinet, SCI, Infiniband, Fiber
Channel...)

 General-purpose network (fast LAN)

 Network computing

 Extend cluster computing to WAN

 A set of distributed PCs and server on MAN/WAN executing
parallel code

 Internet computing (SETI@HOME), P2P, Grid computing...

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Meta computing (beginning of ’90)

 Meta computer = set of distributed resources able to
corrabolatively execute code

 A virtual machine executed on a distributed system

Cluster of PCs

SAN

SAN

Cluster of PCs

LAN

WAN

Supercomputer
Visualization

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Grid computing

 «Coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organisations» (I.
Foster)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Grid computing

 Permit aggregation of distributed resources and transparent
access (e.g., TeraGrid, EGEE)
 Share storage and compute to the aim of executing complex

scientific applications (e.g., climate modeling)

 Rely on Web Service standard protocols
 Distributed resources accessed, allocated, monitored, and

managed as a single virtualized system
 On demand delivery of compute services

 Problems
 No isolation and QoS
 Heterogeneous software configurations (OS, libreries, compiler…)
 Require environments with ad hoc configurations
 Portability

 Possible approach: Virtualization

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Utility Computing

 IT revolution or return to the origin?
 From in-house access to computing resources and services, to

remote access using the Internet

 Similar to what happened for electric power distribution

 Utility computing defined as: «on demand delivery of
infrastructure, applications, and business processes in a
security-rich, shared, scalable, and standard-based
computer environment over the Internet for a fee»

 In utility computing
 Users define requirements in terms of QoS and price willing to

pay

 Service providers define utility in terms of profits

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Autonomic Computing

 Autonomic systems with self-management

 Provide adaptation mechanisms

 Reduce user involvement

 Data center automation
 Application SLA management

 Management of data center capacity

 Proactive disaster recovery

 Automatic provisioning of virtual machines

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

What is a cloud?

 Based on the concepts of utility computing, autonomic
computing, distributed systems

 IT as a service
 Storage, data processing and additional IT services distributed

by external providers

 Applications as “computing utilities”, no need to know the
computing infrastructure beneath

 Pay as you go

 Which infrastructure?
 Basic cloud structure is transparent to users

 Hardware independent

 In general, cluster of servers with open source operating
systems

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud trend

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Key technology: virtualization

Hardware

Operating System

App App App

Traditional stack
Hardware

OS

App App App

Hypervisor

OS OS

Virtualized stack

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

From private data-center to the cloud

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

IT Capability = Commodity

Results
IT Capability

Demand

Control & Supply

+/-

Results
IT Capability

Demand

Control & Supply

+/-

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Is it a good idea?

It’s stupidity. It’s worse than stupidity: it’s a marketing hype
campaign. Somebody is saying this is inevitable — and
whenever you hear somebody saying that, it’s very likely to be
a set of businesses campaigning to make it true.
Richard Stallman, The Guardian, 29/9/2008

The interesting thing about Cloud Computing is that we’ve
redefined Cloud Computing to include everything that we
already do. . . . I don’t understand what we would do
differently in the light of Cloud Computing other than change
the wording of some of our ads.
Larry Ellison, Wall Street Journal, 26/9/2008

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing in a nutshell

 Similar to electric power distribution
 We use electricity without knowing how the generation infrastructure

and distribution network are implemented

 Concept extended to IT
 Functionalities released hiding internal functioning
 Computers integrate distributed components providing processing,

storage, data, software resources

 Cloud computing
 On-demand access to resources
 Pay-as-you-go paradigm
 Infrastructure is seen as a «cloud», where resources are made available

to users and enterprises
 Provide computing, storage, software «as a service»

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Definitions

 Many definitions of cloud computing
 R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, Cloud

computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility, Future Generation Computer
Systems, 25:599-616, 2009.

 L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, A break
in the clouds: Towards a cloud definition, SIGCOMM Computer
Communications Review, 39:50-55, 2009.

 McKinsey & Co., Clearing the Air on Cloud Computing, Technical
Report, 2009.

 M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. Katz, Above the
Clouds: A Berkeley View of Cloud Computing, UC Berkeley Reliable
Adaptive Distributed Systems Laboratory White Paper, 2009

 P. Mell and T. Grance, The NIST Definition of Cloud Computing,
National Institute of Standards and Technology, Information
Technology Laboratory, Technical Report Version 15, 2009

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: NIST definition

 National Institute of Standards and Technology (NIST)
Special Publication 800-145, The NIST Definition of Cloud
Computing, Peter Mell and Timothy Grance

 «Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider interaction. This
cloud model is composed of five essential characteristics,
three service models, and four deployment models.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: NIST definition

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Main characteristics

 On-demand self-service

 A client can procure resources, server time and network
storage on demand and interacting with service providers in an
automatic way

 Broad network access

 Resources available through the net

 Access by means of standard protocols

 Support for all device types and platforms (e.g., mobile phone,
tablet, laptop, workstation)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Main characteristics

 Rapid elasticity

 Ability to scale resources in an elastic way based on real needs

 Scale out, scale in, scale down

 A client has the impression of having infinite resources, though
it is not true

 No waste of resources typical of on-premise systems

 Measured service

 Cloud manages and optimizes resources dynamically, using
metering functionalities (pay per use)

 Resource usage is monitored, controlled, and logged providing
transparency to cloud providers and customers

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Main characteristics

 Resource pooling

 Resources are divided to serve multiple clients using a multi-
tenant model

 Physical and virtual resources are dynamically (re-)assigned on
demand

 Location independence: client does not have control on the
resource location, though it could require a specific location at
different granularities (country, state…)

 Resources include storage, processing, memory, and network
bandwidth

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Additional Characteristics

 Lower costs
 Greater and more efficient use of resources

 Ease of utilization
 No need of hardware and software licenses

 Quality of Service (QoS)
 Address expectations in the contract with the provider

 Reliability
 Provide scalability, load balancing, failover

 More reliable infrastructure than the ones under direct control

 Outsourced IT management
 User manages the business, someone else the computing

infrastructure

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Multi-Tenancy

 A single software instance is shared by different
enterprises/clients (tenants)

 Fundamental aspect of cloud computing

 Users data are virtually isolated, physical isolation not
implemented

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Multi-Tenancy

 Pros

 Reduced costs for the cloud provider

 Dynamic access to shared resources

 Cons

 Users might access data of other users

 No physical separation

 Data backup and restore are more difficult

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Service Models

 Infrastructure as a Service (IaaS)

 Platform as a Service (PaaS)

 Software as a Service (SaaS)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: IaaS

 Users manage the whole processing (CPU), memory,
storage, network, and additional computing resources

 Amazon, Google, Nuvola Italiana

 Users can install and execute generic code including
operating systems and applications

 Users neither manage nor control the cloud
infrastructure, while it controls operating systems,
storage, and installed applications

 No need to control hw with all problems due to aging, fault…

 Users has a limited control of network components (e.g.,
host firewall)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: IaaS

 Provide virtualized resources on demand

 Provide different servers with different operating systems
and an ad hoc stack software

 Amazon provides virtual machines with different
combinations of operating systems

 EC2 Service

 It is similar to having a physical server

 Users can start and stop a VM, install a software, connect
virtual disks

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: PaaS

 Users install and create applications developed using
programming languages, libraries, services, and tools
supported by the provider

 Users keep control on installed platform

 E.g., LAMP (Linux, Apache, MySQL), OwnCloud

 Users do not manage or control the infrastructure
(including network, operating system, server, storage)

 They install neither DB/Apache, nor keep the memory under
control

 Users keep control of installed applications and
environment configurations for application hosting

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: PaaS

 Abstraction layer making the cloud programmable

 Platform installed on the infrastructure
 Platform offers an environment where developers install and

create their applications

 No need of knowing the infrastructure beneath

 Multiple programming models and specialized services (e.g.,
authentication, payment) offered as building blocks

 GoogleAppEngine provides an environment for
development and hosting of web applications
 Supports different languages such as Python and Java

 Building blocks: mail service, instant messaging service
(XMPP), and many others

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: SaaS

 Users use the applications of a cloud provider executed on the
cloud infrastructure
 For instance, Gmail, Googledocs, Dropbox, Office365, and many

other…

 Applications accessible by means of different client devices
 For instance, web browser (e.g., web-based email) or program

interface

 Users do not manage or control the cloud infrastructure
(including network, operating system, server, storage), and
application-specific functionalities

 Users can only control a limited number of user-specific
configurations
 They only use tools that are useful for their business

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: SaaS

 Applications are deployed at the top of the cloud stack

 Services are accessible using a browser

 Paradigm shift: from software installed locally to software
installed remotely

 Reduce the effort of the users in the application management,
and simplify development and testing for providers

 Salesforce.com
 Online CRM, on demand access and configuration of applications

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Stack Overview

https://www.rationalsurvivability.com/blog/2009/03/update-

on-the-cloud-ontologytaxonomy-model/

 Cloud Reference
Model

 The lower
portion includes
hardware and
infrastructure
(including
network)

 Each model
inherits the
ability of the
models beneath

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Delivery Models

http://blogs.technet.com/b/yungchou/archive/2010/12/17/cloud-computing-

concepts-for-it-pros-2-3.aspx

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Real Life

https://www.linkedin.c

om/pulse/2014073017

2610-9679881-pizza-

as-a-service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Taxonomy

 http://cloudtaxonomy.opencrowd.com/static/cloudtaxonomy/pdf/cloud_taxonomy_arch.pdf

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Deployment Model

 Private cloud

 Community cloud

 Public cloud

 Hybrid cloud

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Deployment Model

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Private Cloud

 Cloud infrastructure provided for an exclusive use of a
single organization including multiple users (tenants)

 For instance, UNIcloud

 Owned and managed by a single organization, third party,
or a combination of the two

 Can be on premise or off premise

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Community Cloud

 Cloud infrastructure provided for an exclusive use of a
community of users

 Users include organizations that have common goals (e.g.,
mission, security requirements, policies, and compliance
requirements)

 Owned and managed by one or more organizations, third
parties, or a combination of the two

 Can be on premise or off premise

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Public Cloud

 Cloud infrastructure provided to the public

 Owned and managed by a single business, academic,
government organization, or a combination

 On premise for cloud providers, off premise for users

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: Hybrid Cloud

 Cloud infrastructure is a combination of two or more
cloud infrastructure (private, community, or public)

 Each cloud infrastructure remains separated, but are
composed using standard or proprietary technologies

 Allow data and application portability
 Cloud bursting for load balancing between clouds: “Cloud

bursting is an application deployment model in which an
application runs in a private cloud or data center and bursts
into a public cloud when the demand for computing capacity
spikes.”

Examples

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

 Ingredients: CPU,
bandwidth, storage

 Illusion of infinite
resources

 No need to least
buy/useHuge datacenter

System knowledge

Scalable software infrastructure

“Why do it yourself if you can pay someone to

do it for you?”

Offer

•52

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Esempio: Amazon Web Services

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Example: Amazon Web Services

 Elastic Compute Cloud (EC2)

 Hourly rent of virtual machine

 Charge = VM instance/hour

 Additional charges for bandwidth from/to instances

 Simple Storage Service (S3)

 Object storage

 Charge = GB/month

 Additional charges for bandwidth from/to storage

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Amazon EC2

 Amazon EC2 instances

 https://aws.amazon.com/it/ec2/instance-types/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Amazon EC2

 Pricing

 https://aws.
amazon.com/it/
ec2/pricing/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud computing models

 Infrastructure as a Service (IaaS)

 Machine cycles for client applications

 Examples: Amazon EC2, GoGrid, AppNexus

 Platform as a Service (PaaS)

 APIs for application development

 Examples: Google App Engine, CloudFoudry, Heroku

 Software as a Service (SaaS)

 Execution of turn-key applications on behalf of the client

 Examples: Gmail, GoogleDocs, Dropbox

 Others: DaaS, NaaS, IPaaS, SOA-aaS…

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

IaaS

Infrastructure as a Service

PaaS

Platform as a Service

SaaS

Software as a Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

IaaS

Infrastructure as a Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Supply of devices for virtual compute

 Access to administration functions

 Mix of operating systems

 Access control

 Perimeter control

 Routing

 Load balancing

IaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Virtual networks

 Virtual networks are (all or in
part) simulated on physical
servers

 Protocol integrity not
guaranteed

 Interface between physical
and virtual networks is not
standard

62

WHAT YOU SEE...

ISN’T WHAT YOU GET...

IaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

IaaS

Advantages

 Pay per use

 Modular scalability

 Security

 Reliability

 APIs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Examples

 Problem: recurrently execute a batch job without owning a
proper machine for execution

 Solution: use a virtual machine on Amazon EC2

 Problem: activate a temporary Web site (a few days)

 Solution: use a virtual web server on FlexiScale

 Problem: provide employee with a remote storage without
sufficient storage in the enterprise

 Solution: Amazon S3

IaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PaaS

Platform as a Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Supply of virtual “horizontal” services

 Services deployed on demand

 No a priori estimation of amount of requests,
procurement, ...

 No management overhead

PaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Main services

 Libraries, tools and platforms for web development

 Computing platform

 Mainly for developers

PaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Advantages

 Pay per use

 Modular scalability

 Security

 Reliability

 APIs

PaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Example

 Problem: develop a web application or a cloud service without
installing the whole software stack including libreries and tools

 Solution: usare Amazon Elastic Beanstalk, Google App Engine,
Microsoft Azure…

PaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SaaS

Software as a Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Supply of application software

 Mainly for PMI

 No management of hardware/software

 Access via browser

SaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SaaS

Advantages

 Pay per use

 Modular scalability

 Security

 Reliability

 APIs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Example

 Problem: CRM (Customer relationship management)
management is too expensive

 Solution: use a cloud version of the software, such as Salesforce.com

 Problem: the mail server is slow and unreliable

 Solution: use a mail service on cloud, such as Hosted Exchange

SaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

IaaS

Infrastructure as a Service

PaaS

Platform as a Service

SaaS

Software as a Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Common characteristics

 Remotely hosted: data and services are on a
remote infrastructure

 Ubiquitous: data and services available
everywhere

 Commodified: supply model is similar to
utilities – electricity, gas

IaaS

PaaS

SaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Other advantages

 Low costs of maintenance

 Management of peaks of traffic/requests

 Fast application roll-out

IaaS

PaaS

SaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

More Refined Categorization

 Storage-as-a-service

 Database-as-a-service

 Information-as-a-service

 Process-as-a-service

 Application-as-a-service

 Platform-as-a-service

 Integration-as-a-service

 Security-as-a-service

 Management-as-a-service

 Governance-as-a-service

 Testing-as-a-service

 Infrastructure-as-a-service

InfoWorld Cloud Computing Deep Dive

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Everything as a Service

 Utility computing = Infrastructure as a Service (IaaS)

 Why buy machines when you can rent cycles?

 Examples: Amazon’s EC2, Rackspace

 Platform as a Service (PaaS)

 Give me nice API and take care of the maintenance, upgrades,
…

 Example: Google App Engine

 Software as a Service (SaaS)

 Just run it for me!

 Example: Gmail, Salesforce

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Overview

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Overview

 http://www.ashwini
rath.com/cloud/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Overview

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The promise of cloud computing

 Full network reliability

 Zero network latency

 Infinite bandwidth

 Secure network

 No topology change

 Centralized administration

 Zero transport cost

 Homogeneous network and system

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Open challenges

 Security

 Performance monitoring

 Consistent and robust service abstraction

 Meta scheduling

 Energy-efficient load balancing

 Scale management

 SLA & QoS architectures

 Interoperability and portability

 Green IT

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Programmable cloud

 Developers see cloud as a set of semi-finished services
that can be used to develop applications and processes

 Application engine can be inside or outside cloud borders

 Cloud provider provides an API for different languages
and programming environments

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Example: Google App Engine

 Google App Engine manages HTTP(S) requests only

 RPC style: request in, processing, response out

 Application-level configuration: tend to zero

 High scalability

 No fixed limits to number of applications, requests/sec, storage
size

 Simple APIs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud as a supercomputer

 Task with

 Fixed frequency (block resources is useless)

 Huge amount of data

 Need to be resilient to faults and failures

 Examples

 DNA sequencing

 Analysis of revisions/editing on Wikipedia

 Analysis of Web pages using a crawler (Google)

 Image analysis

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Multi-level distribution

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Conclusions

 History of distributed systems

 Cloud computing

 Service model

 Deployment model

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Lesson 2.2: Migration and

Cloudonomics

Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Is the cloud good for your business?

 The analysis of the characteristics and advantages of the
cloud with respect to on-premise systems can tell
whether the cloud is good for our business

 Before taking a decision

 Where is headed our business?

 What are we trying to achieve?

 Which are the goals of our business?

 The replies to these questions give an end goal

 Without end goals and priorities it is difficult to understand
whether the cloud is good or not

2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

End goals

3

Strategic Financial Customer

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

End goals

 Know where the drawbacks are and additional business
functionalities are needed

 Identify the challenges to be faces

 Define the means to address the challenges

4

Strategic Financial Customer

Key drivers for improvement

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Performance assessment

 These activities provide a performance assessment of a
business

 This assessment provides a clear idea on the fact that the
cloud could help a specific business

 Upon identifying goals, targets, and key results, we need
to understand whether the cloud can support them

5

Cloud Migration

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Key questions

 When and how we should migrate an application to the
cloud?

 Which part or component of an IT application can/must
be migrated to the cloud and which ones not?

 Which kind of customers will benefit from IT migration to
the cloud? Which benefits for business?

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The promise of cloud computing

 Reduced complexity of systems and their management
 Easy and uniform cloud abstractions
 Cloudonomics: cost savings and economic aspects

introduced by the cloud and related trade-offs

 E.g., seasonal IT load

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The promise of cloud computing

 Full network reliability

 Zero network latency

 Infinite bandwidth

 Secure network

 No topology change

 Centralized administration

 Zero transport cost

 Homogeneous network and system

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The promise of cloud computing

 Security

 Performance monitoring

 Consistent and robust service abstraction

 Meta scheduling

 Energy-efficient load balancing

 Scale management

 SLA & QoS architectures

 Interoperability and portability

 Green IT

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Why migrate

 On-demand resourcing

 Scalability

 Economy of scale

 Flexibility and elasticity

 Growth

 Utility based metering

 Shared infrastructure

 High availability

 Security

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

On-demand resourcing

On premise Cloud

 Adding additional resources,
computation, storage, network,
requires a long purchasing
process
 Contacting the supplier

 Obtaining a price

 Ordering the hardware

 Installing, configuring,
cabling the hardware in a
data center

 Process requiring weeks, even
though days/hours can be too
much in some cases

 Risk of losing customers

 An allocation process almost
immediate

 Can allocate where and
when is needed
 If I have a CPU usage spike I

can power on a new server in
seconds

 On-premises issues are
solved with an almost
immediate access to
resources that are being
selected and configuring by
choosing through a series of
options

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Scalability

On premise Cloud

 Not supported

 Scalability in on-premises
systems requires significant
financial resources and
space in the data center

 Scalability in the cloud offers
scaling up and scaling out
resources depending on
requirements and requests
of services and applications
 Scaling up and scaling down

allow modifying the power of
an instance

 Scaling in and scaling out add
or remove the number of
instances

 Scalability is possible
because the cloud supports
the concept of on-demand
resourcing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Economy of scale

On premise Cloud

 Traditional hosting costs are
much higher for unit of
resource

 Resource sharing among
tenants and the huge
amount of resources
provided by a public cloud
allow offering computing,
storage and network at very
low prices

 The more you buy, the
cheaper it becomes

 Cloud resources are much
more economical than the
same ones on on-premise
infrastructure

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Flexibility and elasticity

On premise Cloud

 Difficult to manage spikes

 Resources must be planned
in advance to be able to
handle spikes

 If planning is wrong then
problems with customers
and loss of reputation

 Cloud computing offers
huge flexibility and
elasticity

 It’s possible to choose
how many resources
without establishing the
needed power in advance

 The infrastructure can
adapt, like an accordion

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Growth

On premise Cloud

 In traditional systems the
business growth could
require

 Buying a new office

 Hiring new workers

 Waiting for months

 Almost immediate
support for every growth
profile

 Limits to the grow are
reduced compared to
classical environments

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Utility based metering

On premise Cloud

 Servers are kept on
24/7/365

 Electricity and cooling costs,
wear out...

 Pay-per-use

 Pay for what I use and
nothing more

 Turning off servers when
they are not needed

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Shared infrastructure

On premise Cloud

 Not supported

 Each user has its own
dedicated hardware

 Hosts are virtualized
 Different tenants share the

same resources
 Reducing hardware, cooling,

space…
 It’s possible to have dedicated

hosts or instances
 Dedicated instances, same

host, the instance is executed
on a dedicated hardware
(specific core)

 Dedicated host, all dedicated to
a tenant

 Allows deciding where instances
should be executed, managing
licensing…

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

High availability

On premise Cloud

 Supporting on-premises high
availability requires higher
costs and competence often
not affordable to medium
sized companies

 Often medium sized
companies do not have
replicated sites and do not
have advanced disaster
recovery programs

 Native support for
replicating resources and
services

 Replicas among several
zones and geographical
regions

 Important to understand
which part of the resilience
depend on the vendor and
which part on the user

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Security

On premise Cloud

 Mostly security

 Almost no assurance,
compliance, certification

 Provides infrastructures
often already certificated
and compliant to standard

 For example: PCI DSS, ISO,
HIPAA, SOX

Migration and cloudonomics

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Migration and cloudonomics

 Cloudonomics

 Economic rationale for using cloud technologies

 Important to increment company ROI

 Dilemma for IT manager, SW architect, decision-maker

 At which costs I migrate to the cloud?

 The cloud can satisfy company strategies?

 Which is the Total Cost of Ownership with respect to
private data center solutions?

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Migration

 5 level of migration
 application

 code

 design

 architecture

 usage

 Migration levels are applied to the different IaaS, PaaS, SaaS levels
 specific use cases only for IaaS and PaaS

 only one for SaaS (using applications in the cloud)



 P = application

 P’c = application after cloud migration (hybrid cloud)

 P’l= part of the application executed locally

 P’OFC= part of the application optimized for the cloud

23

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Migration: 7-steps model

 A structured approach migration-oriented

 Cloud Migration Assessment

 Isolate the dependencies

 Map the messaging & the environment

 Re-architect and implement the lost functionalities

 Leverage cloud functionalities & features

 Test the migration

 Iterate and optimize

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Economics 101

 The cloud is compensated though

 Economies of scales on physical resources

 Virtualization = better usage of physical
resources = low costs

 Update are automated

 Application roll-out is faster = chance of
revenue

IaaS

PaaS

SaaS

25

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloudonomics

 Depending on cutting costs in terms of

 IT capital expense (CapEx): costs for providing a service (e.g.,
purchasing a printer)

 IT operational expense (OpEx): costs for allowing the working of
the service (e.g., toner, papers, electricity)

 With the cloud CapEx are moved toward OpEx, reducing risks by
moving them to cloud provider

 Long term benefits

 Seasonal offload and highly variable (opportunistic migration)

 Total offload (full migration to the cloud)

 The migration is profitable if medium costs are lower in the
cloud and migration costs do not impact on profits

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloudonomics

 Other cloudonomics factors

 Licenses

 SLA compliance

 Costs for cloud service

 Elastic storage

 Elastic compute

 Elastic bandwidth

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Law of Cloudonomics

 Joe Wienman di AT&T Global Services defines the 10 laws
of Cloudonomics
1. Utility services cost less even though they cost more

2. On-demand trumps forecasting

3. The peak of the sum is never greater than the sum of the peaks

4. Aggregate demand is smoother than individual

5. Average unit costs are reduced by distributing fixed costs over more
units of output

6. Superiority in numbers is the most important factor in the result of a
combat (Clausewitz)

7. Space-time is a continuum (Einstein/Minkowski)

8. Dispersion is the inverse square of latency

9. Don’t put all your eggs in one basket

10. An object at rest tends to stay at rest (Newton)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Law of Cloudonomics

 Law 1: Utility services cost less even though they cost more

 The cost for a time unit is higher

 On demand access to utility reduces the total costs

 Law 2: On-demand trumps forecasting

 Capability of allocation and de-allocazione almost immediate

 Forecasts are often wrong, being able of reacting immediately
allows a huge profit

 Law 3: The peak of the sum is never greater than the sum of
the peaks

 Companies install resources to handle spikes

 The amount of resources is the sum of the spikes

 The cloud installs less resources (resource reallocation)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Law of Cloudonomics

 Law 4: Aggregate demand is smoother than individual
 The aggregation of requests of different customers tends to

reduce variations
 Cloud obtains the best efficiency

 Law 5: Average unit costs are reduced by distributing fixed
costs over more units of output
 Fixed costs are better distributed
 Cost per unit is decreased in several contexts: storage,

bandwidth…

 Law 6: Superiority in numbers is the most important factor in
the result of a combat (Clausewitz)
 Typical military strategy
 Numerical superiority can win battles
 A DoS attack is harder in the cloud

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Law of Cloudonomics

 Law 7: Space-time is a continuum (Einstein/Minkowski)

 Advantage comes from a faster decision-making that can
fastly react to variations in the environment

 Cloud scalability allows a faster decision-making

 Law 8: Dispersion is the inverse square of latency

 Reducing latency is fundamental for many applications

 Reducing latency of an half requires 4 times more
computational nodes

 Easier in the cloud

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Law of Cloudonomics

 Law 9: Don’t put all your eggs in one basket

 Better reliability

 Replica on distributed data centers

 Law 10: An object at rest tends to stay at rest (Newton)

 Company data centers are installed in company sites

 Cloud sites where they are installed where it is more
advantageous

 E.g., closer to a backbone network with low cost access to
energy, cooling...

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Costi del Cloud Computing

 Cloud supports scalability and elasticity
 Result: you pay only what you consume

 But how much does the cloud really cost?
 How much does X cost in X years when there is a more or less

constant growth of usage?
 If I expect to grow Y% every year, how much does it cost if I

instead grow Z% every year?
 If I launch a new product with traffic spikes, how much does it

cost?

 We need to forecast cost trends (models of costs)
 Modelling servers, storage, database, data transfer, support

costs, elasticity and growth patterns

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud computing costs: growth patterns

 They influence cloud costs

 Three types

 Constant Growth

 Seasonal Growth

 Lifecycle Growth

 Patterns are not mutually exclusive, they can happen at
the same time

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud computing costs: growth patterns

 Constant Growth
 The number of users grows every month
 The number of servers grows proportionally to handle requests
 Corner case: fixed number of users, constant grow of storage

utilization

 Seasonal Growth
 Both growths and shrinkages are expected during the year
 For example, web applications providing services satisfying

seasonal customers (Christmas tickets…)

 Lifecycle Growth
 Companies observing temporary growths during the launch of

new products and commercial activities
 Higher spikes lasting only few weeks/months and then they

stabilize to lower rates

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Growth patterns: permanent vs temporary

 Permanent Pattern
 The pattern lasts: when applied the number of resources to use changes
 For example, storage unit initially using 100 GB per month and then

incremented of 5 GB each month

 Temporary Patterns
 The pattern has a time duration: at the end of the window the resource

usage comes back to the original value
 For example, 20 web servers used to support customers each month, they

double when there are sales

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Growth patterns: operators

 Different growth patterns

 Add (+), Subtract (-), Increase by (%), Decrease by (%), e
Set to (=)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PlanforCloud: Forecasting the Cost of Your

Growth

 5 steps

 Modelling the required cloud resources

 Generating a report of costs

 Creating a new pattern

 Applying the new pattern

 Generating a new report of costs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PlanforCloud: Forecasting the Cost of Your

Growth

 Modelling the required cloud resources

 Can be defined from scratch or imported from AWS or
Rightscale deployment

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PlanforCloud: Forecasting the Cost of Your

Growth

 Modelling the required cloud resources

 Adding resources

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PlanforCloud: Forecasting the Cost of Your

Growth

 Generating a report of costs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PlanforCloud: Forecasting the Cost of Your

Growth

 Creating a new pattern

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

PlanforCloud: Forecasting the Cost of Your

Growth

 Generate a new cost report

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Utilization cost estimation of a product for its life cycle

 Important for deciding whether to migrate to the cloud or
not

 Some providers supply TCO comparisons between clouds
and traditional IT infrastructures

 AWS https://awstcocalculator.com/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service-Level Agreement (SLA)

 Establish agreements between the cloud provider and
users

 Uptime (availability) of the service

 Response time or latency

 Component reliability

 Responsibility of each party

 Warranties

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Licenses

 Based upon EULA (End User License Agreement) for
traditional software

 Establish whether the software is

 Property of the user

 Can be installed on one or more machines

 Allows one or more connections

 Has to follow vendor regulations

 In the cloud

 Software license is associated with the user account

 Subscription or usage model

 Licensing modes are continuously evolving

Costs and licenses

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud costs: IaaS

 Based upon the pay-per-use concept (usage model)

 I buy computing, storage, network resources and I pay for
what I use

 Amount of traffic generated

 Number of CPU cycles used

 Amount of storage used

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Amazon EC2

 EC2 instances

 https://aws.amazon.com/en/ec2/instance-types/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Amazon EC2

 Pricing

 https://aws.
amazon.com/en/
ec2/pricing/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Amazon S3

 Pricing

 https://aws.
amazon.com/
en/s3/pricing/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud costs: SaaS

 Based mostly upon the subscription model

 I pay a monthly/annual fee and I use the service

 There often exist two versions: a free one and a not-free
one

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Office365 (SaaS)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Office365 (SaaS)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud costs: PaaS

 Sometimes based upon a mix of usage and subscription
model

 E.g., OpenShift https://www.openshift.com/pricing/plan-
comparison.html

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenShift (PaaS)

 Based mostly upon the concept of subscription model

 Requires a monthly/annual fee to use the service

 There often exist two versions: a free one and a not-free
one

Comparison among

heterogeneous cloud providers

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Total Cost of Ownership (TCO) developed by Gartner in 1987 and
used to compute all the costs of an IT equipment life cycle, its
purchase, installation, management and disposal

 How to choose whether to migrate to the cloud and to which
provider

 Need to estimate usage costs of product for its life cycle

 By comparing several offerings and deployment modes

 Many providers supply comparisons between TCO in the cloud
and in traditional IT infrastructure
 Try to google “Cloud Cost Calculator” you will find many

solutions to compute your cloud migration costs

 Many of these solutions compare also the costs of different
providers

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Different cloud providers with different calculators

 Google Cloud Platform Pricing Calculator

 Microsoft Azure Cloud Calculator

 AWS Cloud Cost Calculator

 Rackspace Cloud Calculator

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Google Cloud Platform Pricing Calculator

 https://cloud.google.com/products/calculator/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Microsoft Azure Cloud Calculator

 https://azure.microsoft.com/en-us/pricing/calculator/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 AWS Cloud Cost Calculator

 https://calculator.s3.amazonaws.com/index.html

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Rackspace Cloud Calculator

 https://www.rackspace.com/calculator

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Total Cost of Ownership (TCO)

 Rackspace provides an environment to manage multiple
clouds

 Including AWS, Azure, Openstack

 Rackspace has recently proposed a comparison work
among AWS, Azure and Google costs

 AWS vs Azure vs Google Cloud Pricing: Compute Instances

 http://www.rightscale.com/blog/cloud-cost-analysis/aws-
vs-azure-vs-google-cloud-pricing-compute-instances

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Comparison among cloud offerings

 Public Cloud Cost Comparison Calculator

 Compares the costs of several cloud providers

 An independent third party

 Allows having an objective evaluation

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Comparison among cloud offerings

 Unigma calculator

 https://calculator.unigma.com/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Comparison among cloud offerings

 Cloud cost calculator

 https://www.scalyr.com/cloud/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Comparison among cloud offerings

 Cloudorado

 Cloud Computing Comparison Engine

 https://www.cloudorado.com/

 Not only it compares costs, but also non functional
aspects: certification, supported standard, security …

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service-Level Agreement (SLA)

 They establish agreements between the cloud provider
and users

 Uptime (availability) of the servizio

 Response time or latency

 Component availability

 Responsibility of each party

 Warranties

 They collect a set of metrics useful to evaluate different
cloud providers at the moment of migrating to the cloud

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Lesson 2.3: IaaS – OpenStack

(READ-ONLY)

Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: IaaS

 A user manages the entire processing (CPU), memory,
storage, network, and additional computational resources
 Amazon, Google, Nuvola Italiana

 A user can install and execute generic code, including
operating systems and applications

 A user does not manage or control the cloud
infrastructure, while she controls operating systems,
storage, and installed applications
 No need to check hardware and manage failures, faults,
obsolescence…

 A user has a limited control of network components (e.g.,
host firewall)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cloud Computing: IaaS

 Provide on demand virtualized resources

 Provide different server with different operating systems
and an ad hoc software stack

 Amazon provides virtual machines with different
operating systems

 EC2 Service

 It is similar to a physical server

 Users can start and stop a VM, install software, connect virtual
disks

OpenStack

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack – History

 July 2010: Rackspace and NASA start an initiative called
OpenStack
 Aim to foster the adoption of a cloud computing solution for

service offer by enterprises

 October 2010: first version - OpenStack Austin
 Integrate NASA Nebula platform and Rackspace Cloud Files

 2011: Ubuntu Linux developers adopt Openstack towards
the release of the second version Bexar
 Complete support from the third version Cactus

 Available also for Debian release

 2012: Debian 7.0 includes OpenStack Essex, RedHat
distributes OpenStack based on Essex release

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack – History

 2013: RedHat provides commercial support to OpenStack
Grizzly

 July 2013: NASA leaves the project

 Due to lack of technical progresses and other factors

 Concentrate on the use of public clouds

 August 2013: Avaya decides to use OpenStack to create an
end-to-end virtual network infrastructure

 May 2014: HP releases HP Helion based on OpenStack
IceHouse

 Last release: Train

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack

 Open source software for private and public cloud creation

 Cloud operating system that controls a pool of resources: compute, storage, networking
 Administrator manages resources using the dashboard

 Users access resources through a web interface

 https://docs.openstack.org/train/admin/

 https://releases.openstack.org/train/index.html

 https://www.openstack.org/software/start/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack

 Open source software for private and public cloud creation

 Cloud operating system that controls a pool of resources: compute, storage, networking
 Administrator manages resources using the dashboard

 Users access resources through a web interface

 https://docs.openstack.org/train/admin/

 https://releases.openstack.org/train/index.html

 https://www.openstack.org/software/start/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack

 Provide users with a trustworthy and configurable cloud
solution

 Simple to implement, provide scalability and extensibility,
provide many advanced functionalities

 Interconnected services implement different components
of the cloud infrastructure

 Can be accessed through APIs or dashboard

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Dashboard

 Implement a GUI to access, retrieve, and automatize cloud
resources

 Permit to deliver third-party services like billing and
monitoring

 Extensible web application to control compute, storage
and networking resources

 Provide an overview on the cloud dimension and status

 Permit to create users and projects, assign users to projects
and limit the use of resources

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Compute

 OpenStack supports providers in the release of computing
resources on demand

 Resources accessed through APIs or web interface

 Developed for horizontal scaling

 Provide a flexible architecture

 Open source

 Can be integrated with third parties and legacy systems

 Manage and automate resource distribution and support
virtualization techniques

 Xen, KVM

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Compute

 Functionalities

 Manage virtualized resources

 Support for LAN (DHCP, IPv6)

 Authentication and API usage

 Synchronous and distributed architecture

 VM image management (also live)

 Floating IP

 Security group

 RBAC

 Projects and quota

 …

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Storage

 Support both Object Storage and Block Storage

 Object Storage provides storage with optimized costs and
ability to scale out
 Storage platform fully distributed, can be accessed through APIs, can

be integrated with applications or used for storage

 It is not a traditional file system, it stores data in objects

 OpenStack manages replica and supports horizontal scalability

 Block Storage permits to connect block devices to compute
instances to achieve greater performance and intengrates with
enterprise storage platforms
 Manage creation, mounting and unmounting of block storage

 File divided in fixed data blocks

 Integrated with OpenStack compute and dashboard

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Storage

 Functionalities

 Based on common hardware

 Scalability support

 Unlimited storage

 Replica support

 No central DB

 Can be integrated with compute

 Support S3 APIs

 Snapshot and backup per block volume

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Networking

 Datacenter network contains an ever increasing number of
servers, network equipments, storage systems, and security
appliances
 These devices are divided in VMs and virtual networks

 IP address, routing configurations, security rules grew exponentially

 Traditional approaches to network management do not provide
automatic and scalable support

 Users require more control and flexibility

 OpenStack Networking is scalable, based on APIs and
“pluggable”
 Manage network and IP address

 Ensure no bottleneck or limitations in a cloud deployment

 Users create their own network, control traffic and connect servers
and devices

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Shared Service (excerpt)

 Identity Service

 Image Service

 Telemetry Service

 Orchestration Service

 Database Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Services

 Complete list
https://www.openstack.org/software/project-navigator

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux_OpenStack_Platform/2/html/Getting_Started_Guide/ch

01.html

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

OpenStack Services

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Mapping services/projects

 Dashboard -> Horizon

 Compute -> Nova

 Networking -> Neutron

 Object storage -> Swift

 Block storage -> Cinder

 Identity -> Keystone

 Image -> Glance

 Telemetry -> Ceilometer

 Orchestration -> Heat

 Database -> Trove

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Horizon – Dashboard

 Modular web application based on Django (web framework
based on python language)

 Dashboard can be accessed by clients and APIs of any
OpenStack services

 Admin endpoints provide admin functionalities through the
dashboard

 Permit to execute all operations for the management of the
infrastructure and account

 A few clicks to deploy/undeploy a VM, create volumes, manage
security

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Compute – Nova

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Compute – Nova

 Fundamental service of OpenStack infrastructure

 Manage the entire lifecycle of the VM instances in the
virtualized environment

 Creation, coordination, deletion of VMs

 Interact with the identity service for authentication, with
the image service to access disk and server images, and
dashboard to provide admin and user interface

 Horizontal scalability on standard hardware and retrieve
images needed for instance creation

 Nova-network demon used for network management

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Networking – Neutron

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Networking – Neutron

 Networking service (neutron-server)

 Permit to create and implement in the virtual network
devices and interface managed by other OpenStack
services

 Plug-in: full flexibility, permit to manage and interconnext
different network devices and software

 Interact with compute service to provide a network
infrastructure and support network access to the
instances

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Networking – Neutron

 Main operations: port plug and unplug, net and subnet
creation, IP addressing

 Plug-in and agents differ on the basis of the provider and
technologies used to implement the cloud environment

 Evolution of nova-network
 More functionalities

 More difficult to manage

 Nova-network and Neutron are two different
implementations of the Networking-as-a-Service
paradigm for OpenStack

 Neutron manages a great number of plug-ins supporting
complex configurations

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Storage concept

 On-instance / ephemeral

 Provide space from zero

 Associated with VM

 Can be accessed when the VM is active

 Support flavor-based restrictions

 Block Storage

 Object Storage

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Block storage (cinder)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Block storage (cinder)

 Add persistent storage to a VM

 Data maintained until the VM is canceled

 Provide an infrastructure to manage volumes and volume
snapshots

 Interact with OpenStack Compute

 Can be accessed by VMs

 Mounted through OpenStack Block Storage controlled
protocol (e.g., iSCSI)

 Storage dimension depends on the needs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Some additional services

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Object storage (swift)

 Multi-tenant object storage system

 Used to store data and images of VMs

 Data maintained until the VM is canceled

 Can be accessed everywhere

 Manage big amount of data and can scale using RESTful
HTTP API

 Provide abstractions to store methods, non storage itself

 Can be executed independently from Compute Nova

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Identity – Keystone

 Two main functions

 Track users and corresponding privileges

 Provide a list of services available with API endpoint

 At service installation time, for identity management, any
services in the OpenStack infrastructure is registered

 At this point, the identity service knows active services and
where they are located in the network

 Keystone generates authorization tokens for users

 Using keystone APIs, a user submits its credentials and
retrieves the authentication token

 Maintain a table with users and privileges

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Identity – Keystone

This image refers to OpenStack Kilo

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Image – Glance

 Important for IaaS

 Accept requests for disk images or server images, VMs, or
metadata corresponding to images of end users or
OpenStack Compute components

 Support storage of disk images and server images on
different types of repositories including OpenStack Object
Storage

 Support caching, replication to provide consistency and
availability, auditing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Telemetry – Ceilometer

 Collect metering data from OpenStack services

 CPU, network usage

 Useful to calculate the bill (pay-as-you-go)

 Collect events and metering data monitoring notifications
sent by services

 Publish data through data store and message queue

 Raise alarms when collected data violates predefined
rules

 Contain: compute-agent, central-agent, notification-
agent, collector, alarm evaluator, alarm notifier, API
server

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Orchestration – Heat

 Provide a template-based orchestration
 Permit to describe and automatize the infrastructure deployment

 Execution of calls to OpenStack API to generate executable cloud
applications

 The template language permits to
 Specify configurations of compute, storage and network

 Specify post-deployment activities to automate the provisioning of
infrastructure, services, and applications

 Create many types of OpenStack resources: instances, floating IPs,
volumes, security groups and users

 Heat permits developers to directly integrate the orchestration
module of by means of custom plug-in
 Provide high availability and nested stack

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The network

 Four networks
 Management network

 Dedicated to internal communications
between processes

 Exchange of information between
OpenStack and system (MySQL,
KVM) services

 Isolated and secure, only for accesses from
services composing the infrastructure

 Data network
 Communications at ISO/OSI level 3

 Isolated and secure
 Mapped on a physical network available on Neutron or Nova-Network

 External network
 Provide OpenStack services to external users
 Access to instances of the external network

 API network
 Dedicated to direct messages to the public APIs of the services

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Conceptual Architecture

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Logical Architecture

• API REST-based communication

• Service interaction

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Logical Architecture

 All services authenticate using the Identity service

 Services interact through public APIs
 Unique exception for privileged admin commands

 OpenStack services composed by different processes
 All services have an API process waiting for requests, pre-processing

requests and distributing them to the entity responsible

 Communications between processes happens with an
Advanced Message Queuing Protocol (AMQP) message broker;
service status stored in a database
 Different options: RabbitMQ, Qpid, MySQL, MariaDB, and SQLite

 Access to OpenStack through a web interface (implemented
from dashboard service), client from command line, and API
request with browser plug-in or curl

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Conclusions

 Main characteristics of OpenStack IaaS

 Overview of OpenStack components

 OpenStack architecture

Lesson 2.4: OpenStack – Lab.

Claudio Ardagna– Università degli Studi di Milano

Cloud and Distributed Computing

Introduction to Computer

Networks (READ-ONLY)

Cloud and Distributed Computing Claudio Ardagna

Introduction

 Last centuries characterized by different revolutions

 18°: mechanical systems, industrial revolution

 19°: steam engines

 20°: IT

 Collection and storage

 Analysis

 Distribution

Cloud and Distributed Computing Claudio Ardagna

Introduction

 20th century
 Phone system worldwide

 Radio and TV

 Computer and internet

 Satellite communications

 Mobile network

 21st century
 Smartphone and app

 Web applications

 Cloud computing

 Big data

 IoT

Cloud and Distributed Computing Claudio Ardagna

Computer Networks

 Mainframe - terminals

 Computational power in a single machine

 Access through a terminal

 Computer networks

 Autonomous and interconnected processors

 Internet

 Network of networks

 Distributed and decentralized topology

Cloud and Distributed Computing Claudio Ardagna

Computer Networks

 Used by enterprises for

 Resource sharing

 Reliability

 Cost reduction

 Scalability

 People communication

 Used by users to

 Access remote infomation

 Communicate with other users

 Entertainment and social networking

Cloud and Distributed Computing Claudio Ardagna

Computer Networks

 Communication system depends by

 The nature of the application

 The number of machines involved

 The physical distance

 Let us consider two machines

 Same room: point-to-point communication

 Different locations: public lines (PSTN - Public Switched
Telephone Network)

Cloud and Distributed Computing Claudio Ardagna

Computer Networks – Dimensional Scale

 Local Area Network (LAN)

 Metropolitan Area Network (MAN)

 Wide Area Network (WAN)

Distance between

processors

Environment Network type

10m Room LAN

100m Building LAN

1km Campus LAN

10km City MAN

100km Country WAN

1000km Continent WAN

10.000km Planet Internet (WAN)

Cloud and Distributed Computing Claudio Ardagna

Local Area Network (LAN)

 Managed by single organizarion

 Cover some km

 Do not reside on public property (bulding, campus)

 Connect PC or workstation

Cloud and Distributed Computing Claudio Ardagna

Metropolitan Area Network (MAN)

 Cover a metropolitan area

 Public line (pay per use)

 Larger than LAN

Service Center

Residential users

RING

Enterprise

Mixed Users

Cloud and Distributed Computing Claudio Ardagna

Wide Area Network (WAN)

 Cover entire nations, continents, planet

 Composed of

 PCs, Server

 Communication subnet (router and communication lines)

Communi-

cation lines

Cloud and Distributed Computing Claudio Ardagna

Internet

 Network of networks (LAN, MAN,
WAN)

 Distributed network, similar to a
WAN…

 …but different

 Connect heterogeneous networks

 Need of special components
(gateway)

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI

 Mid 70s the IT industry realized the advantages of open
systems

 International Standard Organization (ISO) defined the
standard regulating the global structure of a complete
subsystem of communication

 Known as ISO reference model for the interconnection of open
systems (OSI - Open System Interconnection)

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI

 A complex communication system

 An unstructured implementation based on a «single program»
is not simple to test and modify

 For this reason ISO adopted a layered model

 The communication system can be divided in layers, each
one executing a specific predefined function

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI

 ISO/OSI layers can be classified in two categories

 Functions dependent on the network (Media layers)
(Physical, Data link, Network)

 Function focused on the application (Host layers)
(Transport, Session, Presentation, Application)

ISO/OSI

Application

Presentation

Session

Transport

Network

Datalink

Physical

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI

 The function of each layer is defined as a set of rules and
agreements used to communicate with the corresponding
remote layer (protocol)

 Each layer provides services to the upper layer and uses
the services by the lower layer

Cloud and Distributed Computing Claudio Ardagna

Protocol

 The communication between entities requires
cooperation, that is, collaboration to achieve a common
goal
 Communications are regolated using protocols

 Protocol: set of rules and agreements followed byentities,
located on different nodes, that want to communicate to
carry out a common work
 These rules have the goal of ensure an efficient and reliable

cooperation for node communication, the execution of
services that consider the characteristics of a typical
distributed system (limited bandwidth, latency, communication
errors, …)

Cloud and Distributed Computing Claudio Ardagna

Protocol

 Syntax: set and structure of the commands and
responses, message format

 Semantics: meaning of the commands, actions, responses
to be used during message exchange

 Timing: definition of the possible timeline for the sending
of commands and messages, as well as responses

Cloud and Distributed Computing Claudio Ardagna

Protocol

 Every protocol ha an «internal» interface towards upper
and lower layers, and an «external» interface towards the
corresponding layer of another node

Cloud and Distributed Computing Claudio Ardagna

Protocol

 Service interface (“internal”): operation and services
offered to upper layer

 Peer-to-peer interface (“external”): messages exchanged
with the corresponding layer (peer) on the other node

Level 3 Level 3

Level 2 Level 2

Peer-to-peer

interface

Service

interface

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI

 Define a model of the structure of a communication
system

 Specific standards can be defined for each layer

 Not necessary to have one and only one standard for each
layer

 A set of standards can be associated with each layer, each one
providing differentfunctionalities

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI

Sender Receiver

Application

Presentation

Session

Transport

Network

Physical

Application

Presentation

Session

Transport

Network

Physical

Application Protocol

Presentation Protocol

Session Protocol

Transport Protocol

Network Protocol

Physical Protocol

Data-link Protocol Data

Data

Data

Data

Data

Data

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI: Application

 Provide an interface towards the user, with a set of
distributed services on the network

 Access to services happens by means of a call to
primitives similar to system calls for the local system

 The behavior of the communication subsystem is
transparent

 Protocols: HTTP, SMTP, FTP, SNMP, Telnet, DNS

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI: Transport

 Interface between higher and lower layers

 Provide a system for message transportation independent
from the type of network at the lower layers

 Integrity control (reliable transmission)

 Ordering of received packets

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI: Transport

 Transport

 No errors

 Sequence

 No loss

 No duplicates

 Quality of service

 Protocols: TCP, UDP

Cloud and Distributed Computing Claudio Ardagna

Standard ISO-OSI: Network

 It is responsible of opening and ending a connection

 Include functionalities like: routing on the network,
addressing and flow control

 When internet is considered, this layer is responsible to
put together different networks (internetworking)

 Protocols: IP, ICMP, IPsec, ARP, RIP, OSPF

Cloud and Distributed Computing Claudio Ardagna

Simplified OSI

 To make it more suitable to a real network scenario

 At the end of the 80s, OSI trend was towards layers
reduction due to the widespread diffusion of the Internet

Cloud and Distributed Computing Claudio Ardagna

Interface Reduction

 ISO/OSI model has 7 layers, and 6 interfaces between
layers

 Each interface has a set of precise responsibilities

 High modularity but
 Do not take the evolution of network applications into

account

 Trend towards reduction of the interfaces due to the success
of Internet protocols (TCP/IP)

Cloud and Distributed Computing Claudio Ardagna

OSI vs TCP/IP model

ISO OSI
Application

ApplicationPresentation

Session

Transport Trasport

Network Network

Datalink Datalink

Physical Physical

TCP/IP

Cloud and Distributed Computing Claudio Ardagna

Simplified OSI (TCP/IP model)

 Application layer: real applications

 Transport layer: add functionalities like reliability and
fault tolerance

 Network layer: basic communication between
heterogeneous networks

Cloud and Distributed Computing Claudio Ardagna

Interconnection Devices and ISO/OSI

Host A Host B

Application

Presentation

Session

Transport

Network

Physical

Application

Presentation

Session

Transport

Network

Physical

Cloud and Distributed Computing Claudio Ardagna

Interconnection Devices

 Repeater: device at physical layer, which restores data and
collision signal
 Digital amplifier

 Extend the lenght of the network

 Permits the traffic to traverse the LAN segments

 Hub: multi-port repeater at physical layer, with fault detector

Cloud and Distributed Computing Claudio Ardagna

Interconnection Devices

 Bridge: device at data link layer, connecting two or more
collision domains

 Switch: multi-port bridge with parallel active path
 Smart hub: read the address of the destination and use this

information to forward the frame

 Avoid collisions thanks to independent paths

Cloud and Distributed Computing Claudio Ardagna

Switch

 A switch selects a path or line and send every frame to its
destination
 A switch is simpler than a router

Cloud and Distributed Computing Claudio Ardagna

Router

 Identify the next node of the network to which a packet
should be sent in the path towards final destination

 Use information of layer 3 network protocols in the packets to
route them from one LAN to another

 It means the routed must know all protocols at network layer that
can be used by the corresponding networks

 Mainly used in TCP/IP network: use IP addresses for routing

 Communicate among them to identify the best path to
increase velocity and reduce network traffic (like a global
navigator)

Cloud and Distributed Computing Claudio Ardagna

Gateway

 Used to interconnect networks with different protocols

 Work at network and upper layers of the ISO/OSI

 To communicate with a host residing on another network, we
need to configure a router towards that network

 If not exist, a gateway is used (default IP router)

 If no gateway exists, only communications in local network are
possible

 Gateway receives data from a network with a specific protocol
stack, remove the protocol stack and reconstruct the message
using the network protocol of the destination network

IP, TCP, UDP (READ ONLY)

Cloud and Distributed Computing Claudio Ardagna

Network Layer: IP

 Protocol for the delivery of packets from a host sender to
a host receiver

 Unique identifier for each host (IP address)

 Logic communication between hosts

 But

 No connection: every packet is treated independently from the
others

 Not reliable: the delivery is not guaranteed (packets can be
lost, duplicated, delayed or delivered in the wrong order)

 Delivery with commitment: attempt to deliver every packet
(unreliability due to network congestion or node/router
failures)

Cloud and Distributed Computing Claudio Ardagna

IP Protocol

• IP protocol provides a connectionless and unreliable
datagram service

• Unreliable means that there are no guarantees that an IP
packet reaches its destination (best effort service)

• Connectionless means that IP protocol does not maintain
information on the state of the forwarded packets

• Every packet is treated independently from each other

• IP datagrams can be delivered out of sequence

Cloud and Distributed Computing Claudio Ardagna

Header IP

Cloud and Distributed Computing Claudio Ardagna

Internet

 Internet or network of networks have these
properties

1. PC on local networks (subnets) can communicate among
them

2. Data link layer of the subnets can be heterogeneou (e.g.,
Ethernet, Token Ring)

3. Can include an unlimited number of hosts, within the
limits granted by the maximum number of hosts that can
be connected to each subnet

Cloud and Distributed Computing Claudio Ardagna

IP Address

 Every network interface has a unique IP address of fixed
length (4 bytes = 32 bits)

 IP addresses are a finite resource (IPv4 and IPv6
addresses)

 Five classes of IP addresses: A, B, C, D and E
 D for broadcast communications, E is not used

 IP addresses use prefix
 The network prefix (netid) of an IP address tells the network to

which the interface connects

Cloud and Distributed Computing Claudio Ardagna

Classes of IP Addresses

Classe A

Classe B

Classe C

Classe D

Classe E

0

1 0

1 1 0

1 1 1 0

1 1 1 1 0

net_ID host_ID

net_ID

net_ID

host_ID

host_ID

group_ID

7 bit 24 bit

14 bit 16 bit

21 bit 8 bit

28 bit

27 bit

Cloud and Distributed Computing Claudio Ardagna

Classes of IP Addresses

 Different classes differs by the prefix, the different distribution
of the net_ID of the local network and host_ID of the network
card

 Every addressing is given on the basis of the number of
machines that connect to the local network
 Address of Class C: first 24 bits are fixed (21 represents the network)

and 8 bits are free, permitting to identify at most 256 maccines (with
the same net_ID)

 Addresses assignedusing pointed decimal notation (e.g.,
196.20.44.2). Every number identify the content of one byte of
the IP address

 The decimal valueof the first byte can be used to identify the
class
 Up to 127 is class A, from 128 to 191 is class B, from 192 to 219 is

class C and so on

Cloud and Distributed Computing Claudio Ardagna

Subnet Mask

 The division in classes of the IP addresses provides
three standard models of partitioning the IP address
(32 bit) between net_id and host_id

 Not always practice and useful

 We can obtain a different partition between host_id
and net_id associating a subnet mask, defined as the
binary number that put in AND with the IP address
provides the real net_id

Cloud and Distributed Computing Claudio Ardagna

Subnet Mask

 All three classes of IP address are associated with default

masks

 Applying the subnet masks we obtain a prefix equivalent

to the net_id

Class Default Subnet Mask

A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

Cloud and Distributed Computing Claudio Ardagna

TCP/IP

 Transmission Control Protocol/Internet Protocol (TCP/IP)
is a network software supporting applications in the
commmunication by means of a protocol that is routable,
the same used in Internet

 TCP/IP defines a fixed header and three special headers

 A simple one, best effort (User-Datagram, UDP)

 A complex one for a reliable flow service (TCP)

 One for control messages (Internet Control Message Protocol –
ICMP)

Cloud and Distributed Computing Claudio Ardagna

TCP

 TCP is a connection-oriented protocol

 It must guarantee two main conditions

1. The destination is reachable

2. All packets sent by the sender reaches their destination

 To this aim, TCP protocol needs of additional information
with respect to the ones contained in the IP header

 Additional header for each IP packet to be sent

Cloud and Distributed Computing Claudio Ardagna

TCP

Cloud and Distributed Computing Claudio Ardagna

TCP Ports

 TCP and UDP use ports to map data in input with a particular
process active on a PC

 Each socket is bound to a port number such that the TCP layer
can identify the destination application to which data must be
delivered

UDP / TCP

Port Port Port PortPort

App App App AppApp

#port Data

SERVER

P
O
R
T

CLIENT

Cloud and Distributed Computing Claudio Ardagna

Well-Known Ports

 Ports are represented as positive integers (16 bit)

 Represent a point of connection betweem physical and
application layers; represent a communication channel

 Some ports are reserved for well-known services

 ftp -> 21/tcp

 telnet -> 23/tcp

 smtp -> 25/tcp

 http -> 80/tcp

 login -> 513/tcp

 Processes and services at user level use port numbers
>=1024

Cloud and Distributed Computing Claudio Ardagna

Threeway handshake

 Used by TCP to establish a connection between two hosts

23546

23546

23546 23

23

23

seq: 3245 ack: 0

seq: 7654 ack: 3246

seq: 3246 ack: 7655

SYN: 1 ACK: 1 FIN: 0

SYN: 1 ACK: 0 FIN: 0

SYN: 0 ACK: 1 FIN: 0

Client

Server

Cloud and Distributed Computing Claudio Ardagna

UDP

 A protocol working at the same layer as TCP but not
oriented to the connection

 There is no connection phase

 Packets are sent without knowing whether the
application at the destination is ready to receive them

 Simplified header

Cloud and Distributed Computing Claudio Ardagna

Header UDP

 UDP adds only source and destination ports to IP packets
to support application-layer communication

Cloud and Distributed Computing Claudio Ardagna

TCP vs UDP

 TCP

 Connection oriented

 Reliable transport

 Flow management

 Congestion control

 UDP

 Unreliable

 Does not guarantee flow
management nor
congestion control

Cloud and Distributed Computing Claudio Ardagna

Transport Layer: Which Protocol to Use

 Data loss
 Some apps (e.g., audio) can tolerate some loss

 Other apps (e.g., file transfer, telnet) require reliable
connection

 Timing
 Some apps (e.g., VOIP, interactive game) require low delay

 Bandwidth

 Some apps (e.g., multimedia) require a minimum amount
ofbandwidth to be efficient

 Some apps (“elastic apps”) use the available bandwidth

Cloud and Distributed Computing Claudio Ardagna

Transport Layer: Which Protocol to Use

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

instant messaging

Data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Bandwidth

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

Cloud and Distributed Computing Claudio Ardagna

Transport Layer: Which Protocol to Use

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g. RealNetworks)

proprietary

(e.g., Dialpad)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

Open Stack Lab

Cloud and Distributed Computing Claudio Ardagna

Goals

 Access a tenancy on OpenStack

 Create a virtual machine

 Link a virtual machine to a virtual network reachable from
the external network

 Install a Web server on a virtual machine

 Access index.html

Cloud and Distributed Computing Claudio Ardagna

OpenStack: Login

 URL

 Username

 Password

Cloud and Distributed Computing Claudio Ardagna

OpenStack: Dashboard

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Subnet

 Tab network -> networks -> create network
 Add network name

 Admin status UP

 We deployed the switch that will connect the virtual machines

 Subnet menu: create the subnet to be associated to the
network
 Add name

 Network address: for example 10.0.70.0/24

 IPV4

 Gateway 10.0.70.1

 Subnet detail
 Enable dhcp

 Name server DNS 8.8.8.8

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Subnet

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Router

 Create router
 Add name
 Add external network

 Left mouse on router, interface, add interface (menu
«Network Topology»)
 Select the new subnet (our network)
 Click submit

 Back to network topology
 On router select view router details
 Click on set gateway
 Select public-subnet (external network)

 Click on router details and check whether fixed ip is the one of
the default gateway

 Back on network topology (FINE)

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Router

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: VM

 Goal: create a VM reachable from the outside using a
secure connection (SSH)

 Create a SSH key used by the VM to comunicate

 Menu compute -> key pairs

 Create key pairs

 Add key nameInserire nome della chiave

 We have a ready-to-be-used security key

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: VM

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: VM

 Menu instances to create a VM instance

 Launch instance

 Menu details

 Add name

 Boot from image or boot image source

 Select Cirros image

 Select m1.small

 Menu Key Pair

 Select the created key pair

 Menu networks to add the created network

 Select our network

 Launch

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: VM

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: VM

 Select associate floating IP to the new machine

 Floating IP makes the VM visible to the external network

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Privileges

 Modify the default security group to permit access from
the external network and enable SSH

 Tab network -> security groups

 Manage default security group

 Add a rule

 Rule predefined tcp -> SSH, HTTP

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Permessi

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Connect to VM

 Use SSH PUTTY client and its tool PUTTYgen for key generation
 Generate a key for communication

 Start puttygen
 Open file .pem downloaded when created the key
 Load the key

 Save private key

 Access using putty
 Session folder

 Add session name
 SSH destination: floating ip used for the VM created in Open Stack

 Connection folder->ssh->auth
 Add private key file for authentication

 Execute putty
 Insert default username for cirrus: cirros
 Insert default password for cirrus: gocubsgo

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Install apache2

(ubuntu)

 sudo apt install apache2
 If not working edit /etc/resolv.conf adding 8.8.8.8 as DNS
 If not working «sudo apt-get update»
 sudo nano /etc/resolv.conf

 Add «nameserver 8.8.8.8»

 sudo service apache2 start
 If not working «unable to resolve host» modify /etc/hosts
 sudo nano /etc/hosts and add

 127.0.0.1 machine_name

 Access http://floating_ip/index.html

 sudo service apache2 start

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Install apache

(centOS)

 Log in with username centos

 sudo yum –y update

 sudo yum install httpd

 sudo service httpd start

 Access http://floating_ip/index.html

Cloud and Distributed Computing Claudio Ardagna

Create a virtual network: Install apache

(centOS)

Cloud and Distributed Computing Claudio Ardagna

Conclusions

 We configured a tenancy creating a network and a VM
that can be accessed from the external network

 We created a secure connection with putty and managed
a remote VM

 We installed HTTPD and accessed its index.html

Lesson 3.1: Big Data PaaS

Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Scenario

 A huge amount of data are generated and collected every
minute (sensors)
 1.7 million billion bytes of data, over 6 megabytes for each human

for minute (2016)
 2.5 quintillion bytes of data created each day

 IDC predicts that by 2025, the total amount of digital data created
worldwide will rise to 163 zettabytes (1billion terabytes = 1021 bytes)

 The trend is rapidly accelerating with the growth of the Internet of
Things (IoT), 200 billions of connected devices by 2020

 Low latency access to huge distributed data sources has
become a value proposition

 Business intelligence applications require proper big data
analysis and management functionalities

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Quintillion?!?

 2.5 Quintillionbyte

 2,500,000 Terabytes

 2,500,000,000,000,000,000 Bytes

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Quintillion?!?

 2.5 Quintillionbyte

 2,500,000 Terabytes

 2,500,000,000,000,000,000 Bytes

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Quintillion?!?
https://www.forbes.com/sites/nicolemartin1/20

19/08/07/how-much-data-is-collected-every-

minute-of-the-day/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Five Vs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The data analytics pipeline and areas

Cleaning

Integration

Selection

Transformation
Analytics Result

interpretation

Evaluation

KnowledgePatterns

Data representation

Data preparation

Data processing

Data analytics

Data display and

reporting

Specify how data are represented: NoSQL, Graph-based,

Relational, Extended relational, Markup based, Hybrid

Specify how data will be routed and parallelized,

and how the analytics will be computed: parallel

batch, stream, hybrid

Specify the expected outcome: descriptive,

prescriptive, predictive

Specify the display and reporting of the results:

scalar, multi-dimensional

Specify how to prepare data for analitycs:

anonymize, reduce dimensions, hash

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Status on Big Data implementation

 Big data technologies have grown tremendously in past few
years

 Industry-wide adoption for big data has been phenomenal
which led to the increase in demand but shortage in supply of
talented professionals in this field

 Jump on Big Data bandwagon behavior has created more semi-
skilled people and few who has in-depth command on these
technologies

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Implementation Challenges

 Only 30% businesses has Big Data
insights fully integrated into their
operations

 Many businesses (38%) are struggling
even with proofs of concept

 Key challenges associated with the
development and management of
Big Data initiatives:

Lack of skills &

clarity on Big Data

technology

Ineffective
governance

models

Lack of general

Architecture &

Lack of standard

processes

NewVentage Partner (NVP) BigData Executive Survey2016: represented 44 Fortune 1000 and leading firms

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Adoption

https://www.statista.com/statistics/919670/worl

dwide-big-data-adoption-expectations/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Adoption

DataBench infographic based on a

survey on 700 European companies

https://www.big-data-value.eu/databench-

infographic-based-on-a-survey-on-700-

european-companies/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Adoption

DataBench infographic based on a

survey on 700 European companies

https://www.big-data-value.eu/databench-

infographic-based-on-a-survey-on-700-

european-companies/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Adoption

DataBench infographic based on a

survey on 700 European companies

https://www.big-data-value.eu/databench-

infographic-based-on-a-survey-on-700-

european-companies/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Adoption

DataBench infographic based on a

survey on 700 European companies

https://www.big-data-value.eu/databench-

infographic-based-on-a-survey-on-700-

european-companies/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

High Level View of Big Data Analytics Pipeline

Building Blocks

Batch

Extraction

Filtering

Staging

Data Cleaning Data

Integration

Data Warehouse

Information

Extraction

Raw Data Archive

Data Load

Indexing

Stream

Acquisition

Stream

analysis

Search
Index

Deep

Analysis

Data

Transformation
Analysis Data

Store

Reporting &

Dahsboard

Guided Ad-

hoc Analysis

free Ad-hoc

Analysis

free Ad-hoc

Analysis

Data

Discovery &

Search

Data Access

API

anonymization

<<externa source>>
Structured Data

<<externa source>>
Semi-Structured

Data

<<externa source>>
Un-structured Data

Data
Model

Data
Model

Data
Model

Data
Model

Data
Model

Access

Control

Data Preparation, Pre-Processing & Storage (ETL) Analytics

Visualization &
 Reporting

Visualization &
 Reporting

Big Data Analytics Pipeline

Data Inventory & Metadata Management

Security Management

Performance Management

Scalability and Risk control

SLA & QoS Monitoring

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Technology Landmark

Data Preparation (ETL)

SSIS

Data Visualization

Data Storage (Mngt & Integration)

SSIS

Data

extraction
Provisioning &
Governance

Security Workflow

Processing framework Query language data access Analytic library

Database

Big Data Analytics Infrastructure

Data Analytics
Low-level Implementation Framework/ Language

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Implementation Frameworks and

Languages

 Big Data technology has been made available to the community
through many open source Big Data processing frameworks,
storage, and implementation languages

 Companies who are interested in implementing Big Data can exploit
the open access to these technologies to build their internal big data
platform without depending on a particular Big Data vendor
 Data Processing Framework: Hadoop MapReduce, Spark, Storm, Tez,

Pig
 Query Language and Data Access: Impala, Hive, Shark, Drill, Solr,

Accumulo
 Analytics and Machine Learning Algorithms: GraphX, MLLib, Mahout
 Data Extraction and Aggregation Service: Flume, Sqoop, HttpFS
 Security Framework: Sentry, Knox
 Workflow Engine: Oozie, Kepler, Falcon
 Provisioning Service: Juju, ZooKeeper, Whirr
 Storage: Neo4J, Cassandra, redis, Hbase, RethinkDB

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Apache Hadoop Stack Example (Hortonworks)

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data Analytics Infrastructure Platforms

 There are number of commercial analytics platforms that are
built on top of Big Data open source technologies (e.g., Apache
Hadoop, Spark, Storm, etc)

 Main purpose of these platforms is to provide reliable
analytics platforms on top of Apache Hadoop, or Spark.
Cloudera, Hortonworks, MapR, and IBM insights are the
leaders in this segment

 Summary of their main features
 Provide enterprise-ready Hadoop distributions

 Management of Hadoop clusters

 Performance analytics

 Security and SLA monitoring

 Support for integrated marketing solutions

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Data Storage & Preparation Technology

 There are number of commercial tools that enable the management
and governance of big data storage

 Most of these technologies provide as well a data preparation
functionalities which refer to in Big Data community as ETL (Extract,
Transform, and Load) tools

 Data Storage and Preparation tools offers usually the following
features
 Data inventory
 Metadata management
 Data quality
 Data integration
 Data security
 Fault-tolerance
 ETL
 SLA monitoring

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Data Analytics & Visualization Technology

 This category of technologies provides an
integrated environment for applying
common analytics techniques on data such
as: machine learning, data mining, text
mining, predictive analytics and business
analytics

 At the same time, they offer different
visualization and reporting techniques

 Summary of their main features
 Graphical interface to design the analytics

model

 Store the analysis result to different databases

 Provide data training and validation
environment

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Selecting Big Data Technology

 Selecting the appropriate Big Data technology that suits
your business requirements requires to take in
consideration the following key aspects

 Recognize that there is no single ‘Big Data’ technology

 Big Data has many different use cases

 Big Data skills deficits

 Make sure that your planning is long-term

 Consider agile, flexible Big Data platform

 Balance between bottom-up (tech-led) and top-down
(business-led) planning

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Criterion for Selecting Big Data Technology

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Technical Perspective

 There are many factors that drive a decision toward the
selection of a Big Data technology stack
 Handling huge data volumes, variety, velocity

 Flexibility, availability, fault tolerance, scalability

 Security, Performance
 Distributed Storage
 Easy data integration
 Support for integrated marketing solutions
 Support for advanced analytics
 Expertise available
 Support procedural/algorithmic queries
 Processing mode: Real-time analysis
 Minimize administrative overhead and costs
 Uptime and load without disruption

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Technical Perspective

 Different Big Data analytics use cases will have different factors in the
technology stack necessary for their support

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Social Perspective

 Ease of installation and maintenance

 Command line interface or graphical user interface, skills and
knowledge needed for the deployment of a new solution

 User interface and reporting

 Usability and complexity of features

 Collaborative environment

 Documentation and support

 Simple description of each tool feature, technical and
customer support

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cost and Policy perspective

 Cost
 Open source vs Commercial

 Sustainability of the solution
 The cost associated with the skills maintenance, configuration,

and adjustments to the level of agility in development

 How much data will the organization need to manage and
process today and in the future

 Policy and regulation (related to the deployment of the
selected solution)
 Privacy and data protection policies (e.g, GDPR)

 Law conflicts

 Restrictions of the use

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Select and Manage Your Big Data Technology?

Big Data-as-a-Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

What is Big Data as a Service (BDaaS)?

 Organizations undergoing digital transformation need to
understand Big Data

 The costs of setting up big data infrastructure have been
prohibitive for mid-sized organizations, or those without
strong technical expertise

 Offerings by cloud and SaaS/PaaS vendors are
democratizing big data

 You do not need a team of big data experts to set up
infrastructure—they’ll manage it for you, at affordable rates

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

What is Big Data as a Service (BDaaS)?

 BDaas is any service that involves managing or running
big data on the cloud

 It is not just about storage and cost

 BDaaS solutions offer in-built solutions for artificial
intelligence and analytics

 You can accomplish some pretty impressive results without
having to have a huge team of data analysts, scientists and
architects around you

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Why Big Data as a Service (BDaaS)?

 Advantages of BDaas

 It makes many of the aspects that managing a big data
infrastructure yourself so much easier

 One of the biggest advantages is that it makes managing large
quantities of data possible for medium-sized businesses

 With BDaaS solutions that run in the cloud, companies do not
need to stump up cash up front, and operational expenses on
hardware can be kept to a minimum

 With cloud computing, your infrastructure requirements are
fixed at a monthly or annual cost

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The different models of BDaaS

 Three different BDaaS models

 Big Data Infrastructure as a Service (IaaS) – Basic data services
from a cloud service provider.

 Big Data Platform as a Service (PaaS) – Offerings of an all-round
Big Data stack like those provided by Amazon S3, EMR or
RedShift. This excludes ETL and BI.

 Big Data Software as a
Service (SaaS) –
A complete Big Data
stack within a single
tool

https://hub.packtpub.com/big-data-as-a-service-

bdaas-solutions-comparing-iaas-paas-and-saas/

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

How does the Big Data IaaS Model work?

 “Buy the engine and build the car around it, the IaaS
model may be for you”

 “The integration and workflow are on you”

 Example: Amazon AWS IaaS architecture, which combines
S3 and EC2.

 S3 acts as a data lake that can store infinite amounts of
structured as well as unstructured data.

 EC2 acts a compute layer that can be used to implement a data
service of your choice and connects to the S3 data.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

How does the Big Data IaaS Model work?

 Data layer

 Hadoop – The Hadoop ecosystem can be run on an EC2
instance giving you complete control

 NoSQL Databases – These include MongoDB or Cassandra

 Relational Databases – These include PostgreSQL or MySQL

 Compute layer

 Self-built ETL scripts that run on EC2 instances

 Commercial ETL tools that can run on Amazon’s infrastructure
and use S3

 Open source processing tools that run on AWS instances, like
Kafka

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

How does the Big Data PaaS Model work?

 A standard Hadoop cloud-based Big Data Infrastructure on Amazon
contains
 Data Ingestion – Logs file data from any data source
 Amazon S3 Data Storage Layer

 Amazon EMR – A scalable set of instances that run Map/Reduce against the S3
data.

 Amazon RDS – A hosted MySQL database that stores the results from Map/Reduce
computations.

 Analytics and Visualization – Using an in-house BI tool.

 A similar set up can be replicated using Microsoft’s Azure HDInsight.
The data ingestion can be made easier with Azure Data Factory’s
copy data tool
 Azure offers several storage options like Data lake storage and Blob

storage that you can use to store results from the computations

 Other offers: Google AppEngine-MapReduce, Heroku Treasure Data
Hadoop add-on, IBM Apache Hadoop in SmartCloud

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

How does the Big Data PaaS Model work?

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

How does the Big Data SaaS model work?

 A fully hosted Big Data stack complete that includes everything from
data storage to data visualization contains the following:
 Data Layer – Data needs to be pulled into a basic SQL database. An

automated data warehouse does this efficiently
 Integration Layer – Pulls the data from the SQL database into a flexible

modeling layer
 Processing Layer – Prepares the data based on the custom business

requirements and logic provided by the user
 Analytics and BI Layer – Fully featured BI abilities which include

visualizations, dashboards, and charts, etc.

 Azure Synapse Analytics and AWS Redshift are the popular SaaS
options that offer a complete data warehouse solution in the cloud
 Their stack integrates all the four layers and is designed to be highly

scalable
 Google BigQuery is another contender for generating meaningful

insights at an unmatched price-performance

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Comparing IaaS, PaaS, SaaS

 IaaS model compared to SaaS and PaaS:

 IaaS is “hard core”, more complex and often more expensive than
other options

 Suitable for organizations with very complex data pipelines, or those
moving existing infrastructure to the cloud

 Although IaaS is more difficult than other hosted models, it can be
vastly superior to an on-premise data infrastructure

 Lower upfront hardware costs

 Amazon, Azure and other cloud vendors provide a scalable,
performant foundation compared to your own data center

 Most importantly, forget about maintaining the data storage layer

 Goodbye expensive storage apps; hello Amazon S3 and Azure Blob
Storage

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Comparing IaaS, PaaS, SaaS

 PaaS model compared to IaaS and SaaS

 PaaS is the middle ground—you can offload most of the work to your
cloud vendor, filling in any needed gaps

 You can still build custom data ingestion flows, and Bring Your Own BI
This requires a higher level of expertise compared to SaaS options

SaaS model compared to IaaS and PaaS

 Without complex organizational dependencies or data processes,
there is little-to-no downside for smaller organizations or green field
applications

 Go from data to insights quickly, at low cost

 Switch to a more customized implementation via PaaS or IaaS model
when you need power or custom processes

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Choosing the right BDaaS provider

 Core BDaaS

 Performance BDaaS

 Feature BDaaS

 Integrated BDaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Core BDaaS

 Core BDaaS uses a minimal platform like Hadoop with YARN
and HDFS and other services like Hive

 This service has gained popularity among companies which use this
for any irregular workloads or as part of their larger infrastructure

 They might not be as performance intensive as the other two
categories.

 A prime example would be Elastic MapReduce (EMR) provided
by AWS

 This integrates freely with NoSQL store, S3 Storage, DynamoDB and
similar services

 Given its generic nature, EMR allows a company to combine it with
other services which can result in simple data pipelines to a
complete infrastructure

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Performance BDaaS

 One path of vertical integration for BDaaS is downwards
to include an optimized infrastructure

 It allows to do away with some overheads of virtualization and
specifically build hardware servers and networks that cater to
Hadoop’s performance needs

 Performance BDaaS assists businesses that are already
employing a cluster-computing framework like Hadoop to
further optimize their infrastructure as well as the cluster
performance

 Performance BDaaS is a good fit for companies that are rapidly
expanding and do not wish to be burdened by having to build a
data architecture and a SaaS layer

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Performance BDaaS

 The benefit of outsourcing the infrastructure and
platform is that companies can focus on specific
processes that add value instead of concentrating on
complicated Big Data related infrastructure

 For instance, there are many third-party solutions built on top
of Amazon or Azure stack that let you outsource your
infrastructure and platform requirements to them.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Feature BDaaS

 The other path of integration for BDaaS is upwards to
include features beyond the common Hadoop ecosystem
offerings.

 If your business is in need of additional features that may
not be within the scope of Hadoop, Feature BDaaS may
be the way forward

 It focuses on productivity as well as abstraction

 It is designed to enable users to be up and using Big Data
quickly and efficiently

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Feature BDaaS

 Feature BDaaS combines both PaaS and SaaS layers

 This includes web/API interfaces, and database adapters that
offer a layer of abstraction from the underlying details

 Businesses do not have to spend resources and manpower
setting up the cloud infrastructure

 Instead, they can rely on third-party vendors like Qubole and
Altiscale that are designed to set it up and running on AWS,
Azure or cloud vendor of choice quickly and efficiently

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Integrated BDaaS

 Lastly, another option is a fully vertically integrated BDaaS
that combines the performance and feature benefits of
the previous two BDaaS

 This is an appealing approach since it could result in the
perfect BDaaS, which is productive and supports business
users and experts, and provides maximum performance.

 Both feature and performance BDaaS are at early stages
and the integrated BDaaS could in practice turn out to be
a squaring the circle problem

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Additional Aspects

 Low or Zero Startup Costs – A number of BDaaS providers
offer a free trial period. Therefore, theoretically, you can
start seeing results before you even commit a dollar

 Scalable – Growth in scale is in the very nature of a Big
Data project. The solution should be easy and affordable
to scale, especially in terms of storage and processing
resources.

 Industry Footprint – It is a good idea to choose a BDaaS
provider that already has an experience in your industry.
This is doubly important if you are also using them for
consultancy and project planning requirement

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Additional Aspects

 Real-Time Analysis and Feedback – The most successful
Big Data projects today are those that can provide almost
immediate analysis and feedback. This helps businesses
to take remedial action instantly instead of working off of
historical data

 Managed or Self-Service – Most BDaaS providers today
provide a mix of both managed as well as self-service
models based on the company’s needs. It is common to
find a host of technical staff working in the background to
provide the client with services as needed

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data as-a-Service: Another View

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data-as-a-Service: Cloud Infrastructure

 Big Data-as-a-Service usually leverages cloud components

 Compute and storage nodes

 Data produced by applications deployed on a cloud
infrastructure

 Moving data is costly

 Having data already available in the service provider’s
infrastructure increase performance and service offering

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data-as-a-Service: Data Fabric

 Service providers can offer data fabric services

 Data management

 Platform-as-a-Service

 Database-as-a-Service

 Data aggregation and exposure

 Data-as-a-Service: aggregating and managing
datasets, controlled access to data

 E.g. Google’s Public Data service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data-as-a-Service: Data Platform-as-a-

Service

 Service provider not only puts a data management
infrastructure in line, but also the execution environment
for data processing applications and scripts

 Users can upload both their data and analytics jobs

 Platform take care of scale out/scale down appropriate clusters
of data and processing nodes

 Users=data scientists/programmers able to manage private
dedicated analytics environments, as well as
to write analytics jobs

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Big Data-as-a-Service: Analytics SaaS

 Users is familiar with an analytics platform at a higher
abstraction layer

 Execute scripts and queries that data scientists or
programmers developed for them

 Generate reports, visualizations, dashboards

 Analytics SaaS has many vertical-specific solutions

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Conclusions

 Complexity of Big Data pipelines

 Big Data adoption

 Big Data Platform-as-a-Service

 Core BDaaS, Performance BDaaS, Feature BDaaS, Integrated
BDaaS

 Cloud Infrastructure, Data Fabric, Data Platform-as-a-Service,
Analytics SaaS

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Lesson 3.2: AZURE HD Insight

(READ ONLY)

Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Evolving Approaches to Analytics

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Canonical Architecture

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Introducing Hadoop

 Apache Hadoop is for big data - Open Source for reliable, scalable,
distributed computing.

 It is a set of open source projects that transform commodity hardware into
a service that can:
 Store petabytes of data reliably
 Allow huge distributed computations

 Key attributes:
 Hadoop common – utilities to support modules
 HDFS (Hadoop Distributed File System) – high throughput
 YARN – job scheduling and cluster RM
 MapReduce – YARN-based for parallel processing
 Spark – compute engine
 Pig – data-flow language & execution framework
 Oozie – workflow scheduler
 Ambari – provisioning, managing and monitoring clusters
 Sqoop – bulk data transfer between Hadoop & Relational DB
 Batch processing centric – using a “Map-Reduce” processing paradigm

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Introducing Hadoop

 Comparison to Traditional RDBMS

TRADITIONAL RDBMS HADOOP

Data Size

Access

Updates

Structure

Integrity

Scaling

DBA Ratio

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

+

Introducing Azure HDInsight

 Azure HDInsight is Microsoft’s Hadoop-based service that
enables big data solutions in the cloud

 A cloud implementation on Microsoft Azure of the rapidly
expanding Apache Hadoop technology stack

 Hortonworks Data Platform that is the go-to solution for
big data analysis

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

About Microsoft Azure HDInsight

 Key attributes:

 integrates with Microsoft BI & scripting tools :

 Power BI,

 Excel

 SSAS and SSRS

 PowerShell

 implementations of Apache Spark, HBase, Storm, Pig, Hive,
Sqoop, Oozie, Ambari, and so on.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

About Microsoft Azure HDInsight

 Microsoft’s managed Hadoop as a Service

 100% open source Apache Hadoop

 Built on the latest releases across Hadoop (2.4)

 YARN

 Stinger Phase 2 (Faster queries)

 Up and running in minutes with no hardware to deploy

 Access Data with Pig and Hive

 Utilize familiar BI tools for analysis including Microsoft
Excel

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Hortonworks Data Platform On Azure

HDP is the only

completely open

Hadoop data

platform

available. All

solutions in

HDP are

developed as

projects

through the

Apache

Software

Foundation

(ASF). There

are NO

proprietary

extensions in

HDP.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Hadoop

 How it Works: 1 – Data Storage

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Hadoop

 How it Works: 2 – Take the Processing to the Data

ServerServer

ServerServer

RUNTIME

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Introducing the zoo:

Distributed Storage

(HDFS)

Distributed Processing

(MapReduce)

Legend

Red = Core Hadoop

Blue = Data processing

Green = Packages

Purple = Microsoft

integration points and

value adds

Orange = Data Movement

HDInsight/Hadoop Ecosystem

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Programming HDInsight

 Since HDInsight is a service-based implementation, you
get immediate access to the tools you need to program
against HDInsight/Hadoop

• Hive, Pig, Sqoop, Mahout, Cascading, Scalding, Scoobi,
Pegasus, etc.Existing Ecosystem

• C#, F# Map/Reduce, LINQ to Hive, .Net Management
Clients, etc..NET

• JavaScript Map/Reduce, Browser-hosted Console, Node.js
management clientsJavaScript

• PowerShell, Cross-Platform CLI ToolsDevOps/IT Pros:

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Microsoft Big Data Solution

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

MobileReports

Natural

language queryDashboardsApplications

StreamingRelational

Internal

& external

✓

Non-relational NoSQL

Orchestration

Machine

learningModeling

Information

management

Complex event

processing

Data

The Microsoft
data platform

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

SQL Server 2016: Everything built-in

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Traditional operational/analytics architecture

 Key issues

 Complex implementation

 Requires two servers (capital
expenditures and operational
expenditures)

 Data latency in analytics

 High demand;
requires real-time analytics

Performance

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Minimizing data latency for analytics

 Challenges

 Analytics queries are resource
intensive and can cause blocking

 Minimizing impact on operational
workloads

 Sub-optimal execution of analytics on
relational schema

 Benefits

 No data latency

 No ETL

 No separate data warehouse

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Minimizing data latency for analytics

• Challenges
• Analytics queries are resource intensive and can cause

blocking

• Minimizing impact on operational workloads

• Sub-optimal execution of analytics on relational
schema

• Benefits
• No data latency

• No ETL

• No separate data warehouse

Key points

Create an updateable NCCI for analytics queries

Drop all other indexes that were created for

analytics

No application changes

Columnstore index is maintained just like any

other index

Query optimizer will choose columnstore index

where needed

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Problems with query performance

 Fixing query plan choice regressions is difficult
 Query plan cache is not well-suited for performance troubleshooting

 Long time to detect the issue (TTD)
 Which query is slow? Why is it slow?

 What was the previous plan?

 Long time to mitigate (TTM)
 Can I modify the query?

 How to use plan guide?

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The solution: Query Store

 Dedicated store for query workload performance data

 Captures the history of plans for each query

 Captures the performance of each plan over time

 Persists the data to disk (works across restarts, upgrades, and
recompiles)

 Significantly reduces TTD/TTM

 Find regressions and other issues in seconds

 Allows you to force previous plans from history

 DBA is now in control

Performance

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Monitoring performance by using the Query

Store

The Query Store

feature provides DBAs

with insight on query

plan choice and

performance

Performance

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Cortana Analytics Suite
Transform data into intelligent action

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Azure Data Factory

 A managed cloud service for building & operating data
pipelines

 Part of the Cortana Analytics Suite

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

DocumentDB – Schema Free DB

 A NoSQL document database-as-a-service, fully managed by Microsoft
Azure.

 For cloud-designed apps when query over schema-free data; reliable and
predictable performance; and rapid development are key. First of its kind
database service to offer native support for JavaScript, SQL query and
transactions over schema-free JSON documents.

 Perfect for cloud architects and developers who need an enterprise-ready
NoSQL document database.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Schema-free NoSQL

document store

Scalable transactional processing

for rapidly changing apps

Premium relational

DB capable to

exchange data with

modern apps and services

Derives unified insights from

structured/unstructured data

JSON
JS

JS
JSON

Performance

TechNet Virtual Lab

“Exploring SQL Server 2016

support for JSON data” -

http://go.microsoft.com/?linkid

=9898458

CapabilityGreatly enhances

developer productivity

Benefits Added native JSON

support in the core database

engine supports schema-free

data. Tackle more diverse data

types right in SQL Server, support

in DocumentDB

SQL Server and Azure DocumentDB

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

What’s next?

 Moving from on premises platforms to Big Data-as-a-
Service

 Different solutions at different layers of a cloud
environment

 Next step: Big Data Analytics-as-a-Service

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Lesson 4.1: Microservices

Ernesto Damiani, Claudio Ardagna – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Issues

 Reference environment

 Web systems

 Jointly developed by several development teams

 Traffic requiring horizontal scaling (e.g. load balancing between
different copies of the system)

 Fact

 These systems are often realized as monolithic or layered
systems

Cloud and Distributed Computing3

Cloud and Distributed Computing

Observed problems

 “expediency over design”

 Brian Foot & Joseph Yoder

Cloud and Distributed Computing5

Cloud and Distributed Computing

Software Monolith

6

Cloud and Distributed Computing

Monolithic software

 Monolithic software
 One build and deployment unit

 One code base

 One technology stack (Linux, JVM,
Tomcat, Libraries)

 Pros
 Simple mental model for the developers

 A single access unit for development,
compilation and deployment

 Simple scaling model for the operations
 Multiple copies are executed behind a

load balancer

Cloud and Distributed Computing

Monolithic application: Example

 Application for calling a taxi, a rival of Uber and Hailo

 A new project to develop manually or using code generators
within platforms like Rails, Spring Boot, Play, or Maven

Cloud and Distributed Computing

Monolithic application: Example

 The core of the
application is the
business logic
 Made up of modules

defining services,
domain object and
events.

 All around there are
the adapters interfacing
with the external world
 Database access

component
 Messaging

component
producing/consumin
g messages

 Web component
exposing APIs or
implementing a UI

9

Cloud and Distributed Computing

Monolithic application: Example

 Even if the
architecture is
modular…

 … the application is
packaged and
installed as
monolith

 Java applications
packaged as WAR
files and installed
on application
servers like Tomcat
or Jetty

10

Cloud and Distributed Computing

Monolithic application: Example

 Easy to develop
 IDE and other tools are

products for building a
single application

 Easy to test
 End-to-end testing

launching the application
and testing the UI with
testing packages like
Selenium

 Easy to deploy
 It’s enough to copy the

application package
within the server

 Scaling is supported by
executing multiple copies
behind a load balancer

 Works well in the first
stages of the project

11

Cloud and Distributed Computing

Issues with Monolithic Software

 The code base is huge and scares developers
 Development tools become overloaded

 Refactoring requires minutes
 Building requires hours
 Testing with continuous integration requires days

 Limited scalability
 Executing a copy of the system is

resource-intense
 Does not scale with the volume of data
 Out-of-the-box
 Limited deployment frequency
 Re-deployment implies stopping the

system
 Re-deployment will fail and increase the perceived risk

Cloud and Distributed Computing

Issues with Monolithic Software

 The biggest problem is that
successful applications grow over
time and become huge

 The development team
implements new use cases, which
means adding code

 After few years the application
becomes a monolith of
monstrous dimensions

Cloud and Distributed Computing

Issues with Monolithic Software

 Monolith monster = world of pain in the development
organization

 Every attempt of agile development and release will fail

 The application will become so big that it will be
impossible to manage and understand

 Fixing bugs and implementing new features become difficult
and require a lot of time

 Downward spiral… a code difficult to understand increases
the chance of uncorrect updates

 The result is a monstrous, incomprehensible…

Cloud and Distributed Computing15

Cloud and Distributed Computing16

Cloud and Distributed Computing

Issues with Monolithic Software

 Other cons

 Inefficient development

 High startup time

 If the restart happens frequently, most of day is spent waiting

 Complex applications are an obstacle to continuous
deployment

 State of art requires pushing updates to production more times
in a day

 With monolithic applications you need to re-deploy from scratch
to update just a small part of the application

 Monolithic applications are difficult to scale if modules
require conflicting resources

Cloud and Distributed Computing

Issues with Monolithic Software

 Reduced reliability because all the modules are executed
in the same process

 A bug in a module, for example memory loss, may cause a
failure in the whole process

 Finally, monolithic applications make it difficult to adopt
new frameworks and languages

 For example, consider a code with 2 million of LoC written
with the framework XYZ. It is very expensive and slow to
rewrite the whole application with a different framework,
even if that framework is better

Cloud and Distributed Computing

Issues with Monolithic Software

To summarize: you have a successful business-
critical application that has grown into a
monstrous monolith that very few, if any,
developers understand. It is written using

obsolete, unproductive technology that makes
hiring talented developers difficult. The

application is difficult to scale and is
unreliable. As a result, agile development and

delivery of applications are impossible.

Cloud and Distributed Computing

Layered system

 The monolithic system is decomposed in
layers
 Presentation, logic, data access

 At most a set of technologies for each layer

 Presentation: Linux, JVM, Tomcat, Libs, EJB
client, JavaScript

 Logic: Linux, JVM, EJB container, Libs

 Data Access: Linux, JVM, EJB JPA, EJB
container, Libs

 Pros
 Simple mental model, simple dependencies

 Simple deployment and scaling model

Cloud and Distributed Computing

Issues of layered systems

 Big code base (one for each layer)

 … with the same impact on development, build, and
deployment

 Better scaling, but still limited

 Limited staff growth: to simplify, one team for layer works
well

 Developers become specialized in a specific layer

 The communication among teams is influenced by different
level of competences

Cloud and Distributed Computing

Growth of the systems beyond limits

 Applications and teams have to grow beyond the limits
imposed by monolithic and layered systems

 Often done in an uncontrolled way

 Big companies have layered systems interacting in an
undocumented way

 These systems often fail in an unexpected way

 How can a company grow while maintaining an
architecture and an IT vision?

 Big successful companies (Amazon, Netflix) trace the route
toward the microservice architecture

So what? Microservices

Cloud and Distributed Computing

History

 2011: term coined in a software architecture conference
close to Venice

 May 2012: microservice identified as the most proper
term

 March 2012: “Microservices: Java, the Unix Way” at 33rd
degree by James Lewis

 September 2012: “μService Architecture“ at Baruco
(Barcelona Ruby Conference 2012) by Fred George

 Adrian Cockroft in the meantime becomes the pioneer of
this style at Netflix, calling it “fine grained SOA”

http://martinfowler.com/articles/microservice
s.html#footnote-etymology

Cloud and Distributed Computing26

Cloud and Distributed Computing

Principle

 At a logical level, microservice architecture means

functional system decomposition into manageable
and independently deployable components

 The term “micro” is referred to the dimension
 A microservice has to be manageable by a single development

team

 Functional system decomposition means vertical
decomposition (as opposed to the horizontal approach of a
layered system)

 Independent deployment means no shared state or inter-
process communication (often through HTTP interfaces REST-
like)

Cloud and Distributed Computing

Principle

 The idea is to divide the application into small
interconnected services

 Each service typically implements a set of features or
functionalities like order management, customer
management, etc.

 Each microservice is a mini-application with its own
hexagonal architecture consisting of business logic and
several adaptors
 Some microservices expose an API that can be used by other

microservices, or by client applications
 Other microservices implements a web interface

 At run time, each instance is, often, a virtual machine or a
Docker container

Cloud and Distributed Computing

Microservice architecture: Example

 Each functional area
is implemented with
its own microservice

 The web application
is divided into a set
of simpler web
applications

 It simplifies the
deployment by
distinguishing
operations for
specific users, or
specialized use cases

Cloud and Distributed Computing

Microservice architecture: Example

 Each backend service
exposes an API and
several services use the
API of other services

 Services can use
asynchronous
communication based
on messages

 Communications are
mediated by a known
broker like an API
Gateway

 API Gateway is
responsible for
activities such as load
balancing, caching,
access control, API
metering, and
monitoring

Cloud and Distributed Computing

More in detail

 Each microservice is functionally
complete with
 Resource representation

 Data management

 Each microservice manages a resource
 Client

 Shop Item

 Cart

 Checkout

Microservices are called fun-sized services,
because they are “still fun to develop and
deploy”

Cloud and Distributed Computing

Easy and fun

 A monolithic application
has all the functionalities
in a single process…

 A microservice
architecture has each
element/functionality in a
separated service...

32

Cloud and Distributed Computing

Independent deployment is fundamental

 Allows separation and independent evolution

 Code base

 Technological stack

 Scaling

 Functionalities

Cloud and Distributed Computing

Independent code base

 Each service has its own software repository

 The code is maintainable for the developers

 It fits into their brain

 Tools work faster – building, testing, refactoring the code
take seconds

 Service startup takes few seconds

 There are no accidental cross-dependencies between
different code bases

Cloud and Distributed Computing

Independent Process

Transforming a monolith into

microservices

Cloud and Distributed Computing

Introduction

 Transforming a monolithic application into a set of
microservices is a sort of an application modernization

 That’s what developers have been doing for decades

 A strategy to not use “Big Bang rewrite”

 Building a microservice application from scratch

 Even though it can sound interesting, it’s extremely risky and
may fail with high probability

37

Cloud and Distributed Computing

Big Bang Rewrite

 “The only thing a Big Bang rewrite guarantees is a Big
Bang!” cit. Martin Fowler

38

Cloud and Distributed Computing

Refactoring

 Incremental refactoring of the monolithic application

 Gradual adding of new functionalities and extension of existing
functionalities as microservices

 Modifying the monolithic application in a complementary way
 Executing microservices and modified monolith in tandem
 The monolithic application becomes smaller until it disappears or becomes

itself another microservice

39

Cloud and Distributed Computing

Refactoring

 Still risky, but less than a Big Bang rewrite.

40

Cloud and Distributed Computing

Main Strategies

 Strategy #1 – Stop Digging

 Strategy #2 – Split Frontend and Backend

 Strategy #3 – Extract Services

41

Strategy #1 – Stop Digging

Cloud and Distributed Computing

Introduction

43

Cloud and Distributed Computing

Soft migration

 When a migration has become unmanageable, you need
to stop the enlargement of the monolith

 New functionalities should not add new code to the
monolith

 The idea is to put the new code in standalone
microservices

44

Cloud and Distributed Computing

Soft migration

45

 The router is similar to
the API gateway

 Legacy requests go to
the monolith

 Requests to new
functionalities go to
the microservice

Cloud and Distributed Computing

Glue Code

46

 Glue code integrates
the service with the
monolith

 The service often
needs to access data
managed by the
monolith

 Glue code is
responsible for data
integration

Cloud and Distributed Computing

Glue Code

47

 Three strategies for
accessing monolith’s
data

 Invoking a remote API
offered by the
monolith

 Accessing directly to
the monolith database

 Keeping a copy of the
data, which is
synchronized with the
monolith database

Cloud and Distributed Computing

Glue Code

48

 The glue code is also
called anti-corruption
layer

 It avoids the service with
its own domain model to
be polluted by concepts
of the domain model of
the monolith

 The glue code translates
between two different
models

Cloud and Distributed Computing

Strategy #1: Pros and cons

 Pros

 Implementing new functionalities as a light service avoiding
making the monolith even more unmanageable

 The service can be developed, deployed, and scaled
independently from the monolith

 Advantages coming from a microservice architecture for each
new created service

 Cons

 Does not solve the monolith issue

 To solve it you need to destroy the monolith (next strategies)

49

Strategy #2 – Splitting Frontend

and Backend

Cloud and Distributed Computing

Layer separation

 Separating the presentation layer from
business logic and data access layer

 Presentation layer – Components handling
HTTP requests and implementing a (REST)
API or a HTML-based web UI

 Often it is a big code base

 Business logic layer – Core application
components implementing business rules

 Data-access layer – Components providing
access to infrastructure components like
database and message broker

51

Cloud and Distributed Computing

How to

 There is often a clear separation between presentation
logic, on one side, and business and data access logic, on
the other side

 The business tier has a coarse-grained API consisting of
one or more façade, encapsulating components with the
business logic

 This API is the natural path to follow to divide the
monolith into two smaller applications
 An application contains the presentation layer

 The other one the business and the data-access logic

52

Cloud and Distributed Computing

How to

53

Cloud and Distributed Computing

Strategy #2: Pros and cons

 Pros
 It allows independent development, deployment, and scaling of

two applications
 Presentation-layer: developers can rapidly iterate the user interface

and execute integration testing

 A remote API is exposed and can be called by the developed
microservices

 Cons
 Partial solution
 One or both the applications will become an unmanageable

monolith

 There is the need of a third strategy to eliminate the
monolith/s

54

Strategy #3 – Extract Services

Cloud and Distributed Computing

Shrinking the Monolith

 Transforming the modules
of the monolith into
standalone microservices

 Once enough modules
have been converted, the
monolith will no longer
be an issue

 The monolith disappears
and becomes so small to
be considered just
another service

56

Cloud and Distributed Computing

Shrinking the Monolith

57

Cloud and Distributed Computing

Phase 1: Prioritizing Which Modules to Convert

into Services

 A monolithic complex
application is composed of
dozens or hundreds modules,
all of them can be eventually
converted

 How to choose which
module to convert?

 Starting with a few simple-to-
extract modules (build
experience)

 Then, going on with modules
giving more pros

58

Cloud and Distributed Computing

Phase 1: Prioritizing Which Modules to Convert

into Services

 Convert a module to a service is time consuming

 Prioritize modules according to benefits
 Extract modules that change frequently

 The converted modules support faster development processes
 Development and deployment are independent from the monolith

59

Cloud and Distributed Computing

Phase 1: Prioritizing Which Modules to Convert

into Services

 Ordering first modules having
requirements in terms of resources that
are significantly different from the rest of
the monolith
 For example, converting a module having

an in-memory database into a service
 Once done, the service can be deployed

on a host, being bare metal server, VM or
cloud instances, with more memory

 Ordering first modules implementing
computationally expensive algorithms
 The service can be deployed on a host

with many CPUs

 The conversion of modules with specific
requirements in terms of resources into
services makes the application easier and
less expensive to scale

60

Cloud and Distributed Computing

Phase 1: Prioritizing Which Modules to Convert

into Services

 Searching for modules having clear and recognizable
interactions with the external world

 It is easy and less expensive to modify a model having
simple boundaries into a service
 For example, a module communicating with the rest of the

application with asynchronous messages

 It is relatively less expensive and easy to transform these
modules into microservices

61

Cloud and Distributed Computing

Phase 2: Extract a Module

 Defining a clear interface
between the module and the
monolith

 Bidirectional API, since the
monolith will need data
managed by the service and
vice versa

 It is difficult to implement an
API because of the many
dependencies and interaction
patterns between the module
and the application

 Often much code has to be
modified to break the
dependencies among the
classes

62

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 1)

63

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 1)

 After having implemented the external interface, the
module becomes a service

 Need of writing the code allowing the monolith and the
service to communicate, through an API using an inter-
process communication (IPC) mechanism

64

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 1)

 Module Z is the
candidate to extract

 Its components are
being used by Module X

 It uses Module Y

65

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 1)

 The first step defines a pair
of coarse-grained APIs

 The first interface
(inbound) is used by
Module X to invoke
Module Z

 The second interface
(outbound) is used by
Module Z to invoke
Module Y

66

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 2)

67

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 2)

 Modifying the module in a standalone service

 Inbound and outbound interfaces are implemented by a
code using an IPC mechanism

 Building the service combining Module Z with a
Microservice Chassis framework

 It manages cross-cutting concerns like service discovery

68

Cloud and Distributed Computing

Phase 2: Extract a Module (Step 2)

 Once the module has been extracted, there is one more
service to be developed, deployed, and scaled
independently from the monolith and other services

 It is possible to rewrite the service from scratch

 The API code integrating the service with the monolith
becomes an anti-corruption layer transforming the two
domain models

 Each time a service is being extracted, we take a step
more towards microservices: shrinking the monolith

69

Cloud and Distributed Computing

References

 Books:

 Continuous Delivery - Jez Humble, Dave Farley

 Working Effectively with Legacy Code - Michael Feathers

 Domain Driven Design - Eric Evans

 Your Brain at Work - David Rock

 Refactoring Databases - Scott W Ambler & Pramod Sadalage

 Building Microservices - Sam Newman

 Microservices: From Design to Deployment - NGINX

 Articles/Blogs:

 Ball of Mud: http://www.laputan.org/mud/

 Demming - http://leanandkanban.wordpress.com/2011/07/15/demings-14-points/

 Coding Horror: http://www.codinghorror.com/blog/2007/11/the-big-ball-of-mud-and-other-
architecturaldisasters.html

 http://devlicio.us/blogs/casey/archive/2009/05/14/commercial-suicide-integration-at-the-database-
level.aspx

 Evolutionary Architecture and Emergent Design: http://www.ibm.com/developerworks/java/library/j-
eaed1/index.html

 Microservices: http://www.infoq.com/presentations/Micro-Services and
http://yobriefca.se/blog/2013/04/29/micro-service-architecture/ and
http://davidmorgantini.blogspot.co.uk/2013/08/micro-services-what-are-microservices.html

 http://martinfowler.com/articles/microservices.html

 http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

Cloud and Distributed Computing

Lesson 5.1: Big Data Analytics-as-a-

Service and Microservices

Claudio Ardagna, Ernesto Damiani – Università degli Studi di Milano

Cloud and Distributed Computing

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Project

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Project Coordinator

PI: Prof. Ernesto Damiani

Consortium

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

TOREADOR Concept

 Many SME lack the IT
expertise and budget to
fully exploit Big Data
Analytics (BDA)

 To overcome this hurdle, TOREADOR takes a Model-
based BDA-as-a-service (MBDAaaS) approach

 TOREADOR open, suitable for-standardisation models will
support substantial automation and commoditization of Big
Data Analytics

 Once TOREADOR MBDAaaS will become widespread, price
competition on Big Data services will ensue, driving costs of
Big Data analytics well within reach of EU organizations

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

 Automation and commoditization of
Big Data analytics
 MBDAaaS provides models of the entire

Big Data process and of its artefacts
 Specification of a fully declarative

framework and a model set supporting Big Data analytics
 Enabling it to be easily tailored to domain-specific customer

requirements

 SLA approaches to guarantee contractual quality, performance,
and security of BDA

 Design and development of automatic deployment of TOREADOR
analytic solutions

TOREADOR Objectives

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

 Model-driven approach

 Abstract the typical procedural
models (e.g., data pipeline)
implemented in big data
frameworks

 Develop model transformations
to translate modelling decisions
into actual provisioning

TOREADOR Overview

Declarative

Models

Procedural

Models

Deploymen

t Models

(Non-)Fuctional

Goals: Service goals

of Big Data Pipeline

What the BDA

should achieve and

how to achieve

objectives

How the BDA

process should work

PlatformPlatformPlatform

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

The Model-driven approach supports

 Usability and productivity
 Customers lacking Big Data expertise in managing big

data analytics deploying a full big data pipeline

 Fast roll-out: efficient link between R&D and
production

 Accountability and reproducibility
 Multiple solutions can be compared

 Clear specification of the services

 Reuse and modularity

 Verifiability
 Assess preconditions

 Check consistency with requirements

 Technology neutrality
 Multiple platforms are supported

TOREADOR Overview

Declarative

Models

Procedural

Models

Deploymen

t Models

(Non-)Fuctional

Goals: Service goals

of Big Data Pipeline

What the BDA

should achieve and

how to achieve

objectives

How the BDA

process should work

PlatformPlatformPlatform

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Declarative

Model

Specification

Service

Selection

Procedural

Model

Definition

Workflow

Compiler

Deployment

Model

Execution

Declarative

Specifications

Service

Catalog

Service

Composition

Repository

Deployment

Configurations

MBDAaaS

Platform Big Data

Platform

T
o
 co

d
e
-b

ase
d

T
o
 re

cip
ie

s

[SERVICE-BASED] C.A. Ardagna, V. Bellandi, M. Bezzi and P. Ceravolo, E. Damiani, C. Hebert, "Model-based Big Data Analytics-as-a-Service: Take Big Data to the

Next Level," in IEEE Transactions on Services Computing (TSC), 2018

[CODE-BASED] B. Di Martino, S. D'Angelo, A. Esposito, S. Maisto, S. Nacchia, "A Compiler for Agnostic Programming and Deployment of Big Data Analytics on

Multiple Platforms", in IEEE Transactions on Parallel and Distributed Systems (TPDS), 2019 (accepted for publication)

Overview of the Methodology

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Declarative

Model

Specification

Service

Selection

Procedural

Model

Definition

Workflow

Compiler

Deployment

Model

Execution

Declarative

Specifications

Service

Catalog

Service

Composition

Repository

Deployment

Configurations

MBDAaaS

Platform Big Data

Platform

T
o
 co

d
e
-b

ase
d

T
o
 re

cip
ie

s

DS SS SC WC E

Overview of the Methodology

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

 Service-based
 No coding, for basic users
 Analytics services are provided by the target

TOREADOR platform
 Big Data campaign built by composing existing services
 Based on model transformations

 Code-based
 Advanced users
 Analytics algorithms are developed by the users
 Parallel computations are configured by the users

 Both driven by the same declarative model
 Code once, deploy everywhere

 Support for batch and stream

 Hybridization and «docker landing» supported

Two Methodology Lines

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

BDC Development LifeCycle Methodology

Service-

based

Code-basedBoth

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Reference Scenario

 Our reference scenario is an infrastructure
for pollution monitoring managed by
Lombardia Informatica, an agency of
Lombardy region in Italy.

 A network of sensors acquire pollution data
everyday.

 sensors, containing information of a specific
acquiring sensor such as ID, pollutant type, unit of
measure

 data acquisition stations, managing a set of
sensors and containing information regarding their
position (e.g. longitude/latitude)

 pollution values, containing the values acquired by
sensors, the timestamp, and the validation status.
Each value is validated by a human operator that
manually labels it as valid or invalid.

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

 The goal is to deploy a DSS
using our methodology to
reduce the time required for
validating data

 The DSS must
 predict the labels of acquired

data in real time

 alert the operator when
anomalous values are observed

Reference Scenario

Declarative Model Definition

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Declarative Models: vocabulary

 Declarative model offers a vocabulary for an computation
independent description of BDA

 Organized in 5 areas
 Representation (Data Mode, Data Type, Management, Partitioning)
 Preparation (Data Reduction, Expansion, Cleaning, Anonymization)
 Analytics (Analytics Model, Task, Learning Approach, Expected

Quality)
 Processing (Analysis Goal, Interaction, Performances)
 Visualization and Reporting (Goal, Interaction, Data Dimensionality)

 Each specification can be structured in three levels:
 Goal: Indicator – Objective – Constraint
 Feature: Type – Sub Type – Sub Sub Type

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Declarative Models

 A web-based GUI for
specifying the requirements
of a BDA

 No coding, for basic users

 Analytics services are provided
by the target TOREADOR
platform

 Big Data campaign built by
composing existing services

 Based on model
transformations

16

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Declarative Models

 A web-based GUI for
specifying the
requirements of a BDA

 Data_Preparation.Data_Sou
rce_Model.Data_Model.
Document_Oriented

 Data_Analytics.Analytics_Ai
m.Task.Crisp_Clustering

17

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Declarative Model for Reference Scenario

 The solution require to processing stages training step and a
prediction step

 Our DM includes two requirement specifications
 DataPreparation.DataTransformation.Filtering;

 DataAnalitycs.LearningApproach.Supervised;

 DataAnalitycs.LearningStep.Training;

 DataAnalitycs.AnalyticsAim.Regression;

 DataProcessing.AnalyticsGoal.Batch.

 DataAnalitycs.LearningApproach.Supervised;

 DataAnalitycs.LearningStep.Prediction;

 DataAnalitycs.AnalyticsAim.Regression;

 DataProcessing.AnalyticsGoal.Streaming.

DS1

DS2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Checking Consistency of Declarative Models

 Interference Declarations

 Boolean Interference: P→¬Q

 Intensity of an Interference: DP∩DQ

 Interference Enforcement

 The interference enforcement process is modeled as a
function that takes as input an interference and produce as
output a rule r ∈ R that, applied to the specification with lower
priority, resolves the interference

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Interference Declaration

 A few examples

 Data_Preparation.Anonymization. Technique.k-anonymity

→¬ Data_Analitycs.Analitycs_Quality. False_Positive_Rate.low

 Data_Preparation.Anonymization. Technique.hashing

→¬ Data_Analitycs.Analitycs_Aim.
Task.Crisp_Clustering.algorithm=k-mean

 Data_Representation.Storage_Property.
Coherence_Model.Strong_Consistency

→¬ Data_Representation.Storage_Property. Partitioning

27

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Consistency Check

29

Service-Based Line

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Methodology: Building Blocks

 Declarative Specifications allow customers to define
declarative models shaping a BDA and retrieve a set of
compatible services

 Service Catalog specifies the set of abstract services (e.g.,
algorithms, mechanisms, or components) that are available to
Big Data customers and consultants for building their BDA

 Service Composition Repository permits to specify the
procedural model defining how services can be composed to
carry out the Big Data analytics
 Support specification of an abstract Big Data service composition

 Deployment Configurations define the platform-dependent
version of a procedural model, as a workflow that is ready to
be executed on the target Big Data platform

31

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Overview of the Methodology

Declarative

Model

Specification

Service

Selection

Procedural

Model

Definition

Workflow

Compiler

Deployment

Model

Execution

Declarative

Specifications

Service

Catalog

Service

Composition

Repository

Deployment

Configurations

MBDAaaS

Platform Big Data

Platform

Procedural Model Definition

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Overview of the Methodology

Declarative

Model

Specification

Service

Selection

Procedural

Model

Definition

Workflow

Compiler

Deployment

Model

Execution

Declarative

Specifications

Service

Catalog

Service

Composition

Repository

Deployment

Configurations

MBDAaaS

Platform Big Data

Platform

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Procedural Models

 Platform-independent models that formally and
unambiguously describe how analytics should be
configured and executed

 They are generated following goals and constraints specified in
the declarative models

 They provide a workflow in the form of a service orchestration

 Sequence

 Choice

 If-then

 Do-While

 Split-Join

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Procedural Model

 TOREADOR (SS) will return a set of services consistent
with DS1 and DS2

 The user can compose these services to address the
scenario goals

DS1

SS

SC1

DS2

SS

SC2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Procedural Model

 The two compositions must be connected: the output of
SC1 is a pre-requisite for SC2

DS1

SS

SC1

DS2

SS

SC2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Procedural Model

 The two compositions must be connected: the output of
SC1 is a pre-requisite for SC2

DS1

SS

SC1

DS2

SS

SC2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Procedural Model

 The two compositions must be connected as the out put
of SC1 is a pre requirement for SC2

DS1

SS

SC1

DS2

SS

SC2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Annotations on procedural models

 Services and Computational Models at Procedural level
are annotated and indexed

43

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service Selection

1. Receives a list of declarative
models

2. Extract areas and categories
from declarative models

3. Identify services compatible
with the extracted areas
and categories

4. For each area return a list of
compatible services

We support Boolean formulas
of specifications in a
Disjunctive Normal Form

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service Selection

The aim is to identify specifications that are effective in
discriminating services

Data_Representation.Data_Source_Property.Data_Man
agment.Data_Stream

AND

Data_Analytics.Analytics_Aims.Task.Crisp_Clustering

The only services consistent with these two constraints
are micro clustering algorithms

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service Composition

 User creates the flow based on the list of returned
services

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service Composition

 User
creates the
flow based
on the list
of returned
services

 Services
enriched
with ad hoc
parameters

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service Composition

 User creates the flow
based on the list of
returned services

 Services enriched with
ad hoc parameters

 The flow is submitted
to the service which
translates it into
service composition

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Service Composition

 All internals are made
explicits

 Clear specification of
the services

 Reuse and modularity

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Managing Multiple Declarations

 Some tasks require as a precondition the execution of
other specific tasks which may or may not be deployed on
the same platform

 E.g. to run a classifier (scorer/regression) we need to have
available a classification model generated by a training/test
task

 TOREADOR made available two solutions

 Data as connectors

 E.g. the model is the data connector

 Saving a workflow as a new service in the catalog

 E.g. the service for the generation of the classification model

50

Deployment Model Definition

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Overview of the Methodology

Declarative

Model

Specification

Service

Selection

Procedural

Model

Definition

Workflow

Compiler

Deployment

Model

Execution

Declarative

Specifications

Service

Catalog

Service

Composition

Repository

Deployment

Configurations

MBDAaaS

Platform Big Data

Platform

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Deployment Model

 The TOREADOR compiler

 Takes SC1 and SC2 to produce two executable workflows

 Supports different engines and languages: Spring Cloud
DataFlow and Oozie

 Can be extended to any engines simply defining the proper
driver

DS1

SS

SC1

DS2

SS

SC2

spark−filter−sensorsTest : filter
−−expr=”sensorsDF#SensorId === 5958” −− i n p u t P a
t h = ” / u s e r / r o o t / s e n s o r s / j o i n e d . c s v ”
−−outputPath=”/user/root/sensors test.csv” &&
spark−assemblerTest : spark−assembler
−−features=”Data,Quote”−−inputPath=”/user/root/sen
sors test.csv”
−−outputPath=”/user/root/sensors/sensors test
assembled.csv” &&
spark−gbt−predict :
batch−gradientboostedtree−classification−predict
−−inputPath =/ user / root / sensors / sensors
−−outputPath =/ user / root / sensors / sensors −− m o
d e l = / u s e r / r o o t / s e n s o r s / m o d e l

spark−filter−sensorsTest : filter
−−expr=”sensorsDF#SensorId === 5958” −− i n p u t P a
t h = ” / u s e r / r o o t / s e n s o r s / j o i n e d . c s v ”
−−outputPath=”/user/root/sensors test.csv” &&
spark−assemblerTest : spark−assembler
−−features=”Data,Quote”−−inputPath=”/user/root/sen
sors test.csv”
−−outputPath=”/user/root/sensors/sensors test
assembled.csv” &&
spark−gbt−predict :
batch−gradientboostedtree−classification−predict
−−inputPath =/ user / root / sensors / sensors
−−outputPath =/ user / root / sensors / sensors −− m o
d e l = / u s e r / r o o t / s e n s o r s / m o d e l

WC1
WC2

1-n

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Workflow compiler

 It consists of two main sub-processes

 Structure generation: the compiler parses the procedural
model and identifies the process operators (sequence,
alternative, parallel, loop) composing it

 Service configuration: for each service in the procedural model
the corresponding one is identified and inserted in the
deployment model

 Support transformations to any orchestration engine
available as a service
 Available for Oozie and Spring Cloud DataFlow

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Deployment Model

 Workflow compiler takes as input

 the OWL-S service composition

 information on the target platform (e.g., installed
services/algorithms),

 It produces as output an executable workflow

 For example an Oozie workflow

 XML file of the workflow

 job.properties

 System variables

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Translating the Composition Structure

 Deployment models:
 specify how procedural models are instantiated and configured on a

target platform

 drive analytics execution in real scenario

 are platform-dependent

 Workflow compiler transforms the procedural model in a
deployment model that can be directly executed on the target
platform.

 This transformation is based on a compiler that takes as input
 the OWL-S service composition

 information on the target platform (e.g., installed services/algorithms),

 and produces as output a technology-dependent workflow

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Deployment Model

 The execution E2 will produce results

DS1

SS

SC2

WC2

E2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Deployment Model

 The execution E2 will produce results

DS1

SS

SC2

WC2

E2

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Experimental Results: Performance

 Overhead
 Time needed to generate the OWL-S version

of our procedural model (OWL-S Generation)
and the executable model (Compiler
Execution).

 Compiler Execution measures the time
needed to produce the XML for Oozie
workflow engine (Training Phase) and the DSL
for Spring Cloud Data Flow (Prediction Phase)

 TOREADOR vs development cost
 Development cost estimated using the

Constructive Cost Model (COCOMO)
methodology

 Development cost as a function of the
program size and a set of “cost drivers” that
include subjective assessment of the
products, hardware, personnel, and project
attributes

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Analytics Deployment Approach

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Conclusions

 A new development life cycle for Big Data, conciliating
exploration and refinement, fast deployment and
controlled execution

 A methodology based on an iterative sequence of two
phases

 Design and bootstrap based on the Model-based Big Data as-
a-Service (MBDAaaS) paradigm

 Tuning and refinement based on a model-driven, code-based
approach

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

Key Takeaways

 Batch and stream computations
 Our methodology guide the user in selecting

consistent set of services for both batch and stream
computations

 Multiple platforms
 Our methodology implements a smart compiler

supporting the deployment of interconnected
computations residing on different platforms

 End-to-end verifiability
 Our methodology provides an end-to-end procedure

for checking the consistency of model specifications

 Model reuse and refinement
 Our methodology supports model reuse and

refinement
 Declarative, procedural and deployment models can

be stored in templates to replicate or extend designed
computations

Claudio ArdagnaCloud and Distributed Computing Claudio Ardagna

