
What is ?

Reference: Dr. Corrado Mio

What is Docker?
There are several definitions of Docker, but one of them can be based on the following problem.

We consider to install a software inside some physical machine. We have to

1. download the software, for example Neo4J

2. install Neo4J using the installer

3. configure Neo4J specifying

1. the port to use (the default is 7474)

2. the directory where databases are saved

3. the user root and password

4. the first time the default values can be enough

4. start the Neo4J daemon

At the end, we have a running instance of Neo4J

2

What is Docker?
Now, we suppose that we need another instance of Neo4J, for example because we need to
compare the behavior of different versions.

There are several problems to resolve:

1. it is not possible to have, in the same computer, two Neo4J listen on the same port (7474).
We need to change the port.

2. there is not only one listen port to configure, but two: one for the HTTP protocol (7474) and
the other for the bolt protocol (7687)

3. because Neo4J is a Java application, it is possible that each Neo4J version needs a specific
Java version. For example Neo4J v3.5 uses Java 8 and Neo4j v4.0 uses Java 11.

Another important problem is the:

▪ each application has specific configurations and specific mechanisms to configure them.
Neo4J uses a file inside the directory NEO4J_HOME/conf/neo4j.conf. Apache Web Server
uses a file inside the directory APACHE_HOME/conf/httpd.conf, but the file syntax is totally
different, …

3

What is Docker?

Next problem, we suppose that there is a computer farm, and we request to the system
administrator, responsible on the software installed, to install some little clusters of Neo4J v3.0,
v3.5 and v4.0.

The system administrator must know that each version of Neo4J need a specific Java version,
how to install and to configure it. And how to install and configure Java. It have to resolve port
conflicts, configuration conflicts, …

But these are just two of hundreds of software that he must know how to install and configure.

4

What is Docker?

Instead, we consider the concepts that a system administrator handles every day:

▪ cpu, memory

▪ local/remote/mounted filesystem

▪ networking: IP/port, NAT, bridge, network segments, …

▪ (bash) scripts, environment variables

▪ cluster node, rack, …

5

What is Docker?
If the installation problems can be converted in terms of standard hardware and system concepts
it is possible to simplify the software installation and configuration.

Docker offers exactly this.

Each Docker instance is composed by:

1. (configurable) standard hardware: cpu, memory, storage, network card. Eventually, graphic
card, cdrom, or other pci/usb devices …

2. a minimal normal operating system with complete support for the hardware, but, in general,
without support for GUI, or other client services (e-mail, video/audio players, …).
But it is possible to install them.

In this sense, a Docker instance can be considered as (light) version of a VMware / Virtualbox
virtual machine.

6

What is Docker?

However, the Docker infrastructure permits a Docker instance to communicate with the physical
hardware. The two most important mechanisms are

1. mounted filesystem: the instance mounts as local directory a physical directory (a classic
Unix/Linux method to mount CDROM, FTP/Webdav servers, NTFS external disks, …)

2. network mapping: the local IP/ports are mapped to a physical IP/ports

7

What is Docker?

Inside the Docker instance, a Neo4J expert can install Neo4J and all necessary dependencies.
Then, to configure it to serve some specific task (standalone, in cluster, …)

Because each instance can be considered as a standalone computer, there are no port conflicts,
directory conflicts, …

If it is necessary to change some configuration parameter, this must be done

▪ using bash scripts and/or environment variables.

If it is necessary to export the logs of Neo4J outside the Docker instances, this can be done

▪ using mounted filesystems.

If some Neo4J instance needs more memory or computation power, it can be done

▪ changing the hardware configuration of the Docker instance.

If it is necessary to install multiple instance of the same Neo4J installation, it can be done

▪ copying multiple times the Docker instance and mapping internal IP/ports to external IP/ports.

8

What is Docker?

In this way,

▪ the Neo4J expert is responsible to install and configure a single Neo4J instance, and

▪ the system administrator can install and configure Neo4J instances using only system
concepts.

But this is not all
Docker is a light version of a virtual machine: why?

9

Thanks

Docker

Reference: Dr. Corrado Mio

Prerequisites

In these exercitations we will use a Virtual Machine

▪ Ubuntu LTS (18.04, 20.04,…):
http://releases.ubuntu.com/
http://releases.ubuntu.com/20.04.1/ubuntu-20.04.1-desktop-amd64.iso

installed using

▪ VMware Player/Workstation:
https://www.vmware.com/products/workstation-player/workstation-player-
evaluation.html

or

▪ Virtual Box:
https://www.virtualbox.org/

2

http://releases.ubuntu.com/18.04.4/
http://releases.ubuntu.com/20.04.1/ubuntu-
http://releases.ubuntu.com/20.04.1/ubuntu-18.04.4-desktop-amd64.iso
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.virtualbox.org/

Installation

Docker can be installed on Linux, Windows and Mac

1. Linux: the installation is very simple and direct

2. Windows: it is necessary to enable Hyper-V

3. Mac: …

In Windows, the problem is that Hyper-V is
incompatible with other virtualization software
(Vmware, VirtualBox, ..).

But Hyper-V can be enabled inside the virtual machine!

3

Docker Web sites

▪ https://www.docker.com

▪ https://www.docker.com/products/docker-desktop

▪ https://www.docker.com/products/docker-hub

4

https://www.docker.com/
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-hub

Installation: Windows

Docker Desktop for Windows is available for Windows 10 Pro/Enterprise, 64bit

https://desktop.docker.com/win/stable/Docker%20Desktop%20Installer.exe

5

https://desktop.docker.com/win/stable/Docker%20Desktop%20Installer.exe

Docker for Windows

It supports two container’s types:

1. Linux containers (default)

2. Windows containers

It is possible to change from one container type to the other using item specified in
the image.

Note: what is a container will be described in the following slides.

6

Installation: Linux

We start with a clean installation of
Ubuntu LTS (18.04, 20.04, …).

Some simple tutorials

https://docs.docker.com/install/linux/docker-ce/ubuntu/

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

7

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

Installation: Linux - commands

Based on: https://docs.docker.com/install/linux/docker-ce/ubuntu/

8

Commands

> sudo apt-get remove docker docker-engine docker.io containerd runc

> sudo apt-get update

> sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-

properties-common

> curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

> sudo apt-key fingerprint 0EBFCD88

> sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu

$(lsb_release -cs) stable"

> sudo apt-get update

> sudo apt-get install docker-ce docker-ce-cli containerd.io

> sudo docker run hello-world

https://docs.docker.com/install/linux/docker-ce/ubuntu/

Check the installation

.

https://hub.docker.com/_/microsoft-windows

9

Example (Linux)

> docker run hello-world

Example (Windows)

> docker run mcr.microsoft.com/windows:1903

https://hub.docker.com/_/microsoft-windows

Virtual Machine vs Docker

Virtual Machines

▪ Host: SO + Vmware + …

▪ Guest: SO + applications + …

10

Docker images

▪ Host: Linux + cgroups + namespaces + …

▪ Guest1: Host + applications + …

▪ Guest2: Guest1 +…

▪ Guest3: guest2 + …

Virtual Machines vs Docker/2

Each virtual machine needs:

▪ Virtualized hardware (CPU, ram, disk, video/network cards, USB, …)

▪ An operating system (it can be different from the host OS)

▪ The applications

Each Docker image can use the real hardware under Kernel Linux control:

▪ Cgroups: it controls CPU, ram, block devices, network cards, …

▪ Namespaces: it controls processes, users, filesystem, networking, …

▪ Union Filesystem: it permit to create a new Docker image using previous
created ones.

▪ It is a controlled version of the real hardware, where the user can install his
software.

11

Virtual Machines vs Docker/3

.

12

Virtual Machines vs Docker/4

.

13

What can be a Docker object

Docker is lite but not so lite!

▪ Application server (Tomcat, …)

▪ A DBMS (Oracle, Mysql, …)

▪ A complex application (Mathematica, Matlab, …)

▪ …

It is not necessary to install the application, it is enough to copy/download the
Docker files (that contain the application) in the Docker infrastructure, to configure
the Docker object (if necessary) and to execute it.

In this case, the configuration is more simple than a application configuration.

14

Key concepts: layers, images, containers

.

15

Key concepts: layers

.

16

Key concepts: images

A Docker image is the main component of the
Docker infrastructure.

It is a stack of layers, created using a Dockerfile.

Example:

▪ FROM openjdk:8-alpine: previous layer

▪ Rest of file: the new layer is defined as changes
respect the previous layer

The previous layers are read-only, the changes
are available only on the current layer.

17

Key concepts: containers

A Docker container is a running instance of a Docker image.

It is possible to create a Docker image from scratch, but an alternative approach is
to search the required image in Docker Hub:

18

Key concepts: containers/2

Steps to launch an image:

1. Search the image in Docker Hub. For example:
“tensorflow ”

2. Download (pull) the image in local
“docker pull tensorflow/tensorflow:2.3.1-jupyter”

3. Execute (run) the downloaded image
“docker run -it --rm -p 8888:8888 tensorflow/tensorflow:2.3.1-jupyter”

The structure of an image’s name is:

[http://<website>:dockerhub/][<company:docker>/]<image-name>:<tag:latest>

.

19

Access to Docker Hub

To access to Docker Hub you have to register.

20

Search an image

Body

21

Select a Tag

Body

22

Download an image

Body

23

Find the image ID

Body

24

Executing an image

.

25

Key concepts vs OOP vs OS

.

26

Docker OOP Operating System

Image Class Program/Executable

Container Object instance Process

Layered filesystem Inheritance:

• Class L1 extends class O

• Class L2 extends class L1

Storage

Docker

Image A installed program

Container An image/program in execution.

Multiple containers can use the same image, same as

multiple processes can be started from the same program

Layered filesystem read-write container’s fs above multiple read-only image’s

filesystems

Docker Engine

Docker is also the term used describe the software infrastructure used to handle
images and containers:

1. Docker client: docker command line. Other clients: plugins for IDEs

2. Docker RESTful service: docker daemon

3. filesystem where the images are saved (used by docker daemon)

4. registry from where the images are downloaded (Docker Hub)
27

Docker Engine/2

.

28

(Some) Docker general commands

.

29

<command> docker <command> <args…>

ps List containers (running, stopped, …)

attach Attach local std input, output, error streams to a running container

cp Copy files/folders between a container and the local filesystem

exec Run a command in a running container

images List images

kill Kill one or more running containers

rm Remove one or more containers

rmi Remove one or more images

run Run a command in a new container

start Start one or more stopped containers

stop Stop one or more running containers

restart Restart one or more containers

top Display the running processes of a container

(Some) Docker management commands

.

30

<command> docker image <command> <args>

ls List images

pull Pull an image or a repository from a registry

rm Remove one or more images

<command> docker container <command> <args>

ls List containers

run Run a command in a new container

start Start one or more stopped containers

stop Stop one or more running containers

kill Kill one or more running containers

rm Remove one or more containers

cp Copy files/folders between a container and the local filesystem

exec Run a command in a running container

Docker & filesystem

A container Docker can mount external filesystems (external from the container
point of view) as, for example a local directory (local from the user point of view)

31

Docker & networking

Each container is isolated from the other ones. Multiple containers can use the
same port to publish they services.

The Docker bridge map the container ports into different host ports. The syntax is:

-p <external [ip:]?port>:<internal port>

$ docker run -d -p 5000:5000 -v $HOME/registry:/var/lib/registry

registry:2

32

(Some) Docker management commands/2

.

33

<command> docker network <command>

ls List networks

create Create a network

connect Connect a container to a network

disconnect Disconnect a container from a network

rm Remove one or more networks

<command> docker volume <command>

ls List volumes

create Create a volume

rm Remove one or more volumes

Docker GUI

The docker command line is for Linux fan. For Windows fan, there exists several
GUI. Some of them are:

1. Portainer (https://www.portainer.io/)

2. Kitematic (https://kitematic.com/)

3. Shipyard (https://github.com/shipyard/shipyard)

4. DockStation (https://dockstation.io/)

Kitematic is part of Docker distribution for Windows & Mac but in GitHub there
exists also the distribution for Ubuntu. The cons is that it has limited features.

Portainer is a better alternative.

34

https://www.portainer.io/
https://kitematic.com/
https://github.com/shipyard/shipyard
https://dockstation.io/

Portainer

Portainer is a good alternative to the command line. It is a web application installed (and
distributed) as a Docker image. It is available in Docker Hub.

35

Commands (Linux)

> docker volume create portainer_data

> docker run -d -p 8000:8000 -p 9000:9000 --name=portainer --restart=always -v

/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce

Commands (Windows)

> mkdir \var\run

> docker pull portainer/portainer-ce

> docker volume create portainer_data

> docker run -d -p 8000:8000 -p 9000:9000 --name=portainer --restart=always -v

/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce

Portainer/2

.

36

Examples

37

Tensorflow

Possible versions

1. tensorflow/tensorflow:1.15.2-py3-jupyter

2. tensorflow/tensorflow:2.0.1-py3-jupyter

3. tensorflow/tensorflow:2.1.0-py3-jupyter

38

Commands

> docker pull tensorflow/tensorflow:2.1.0-py3-jupyter

> mkdir ~/notebooks

> docker run -it --rm -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888

tensorflow/tensorflow:2.1.0-py3-jupyter

> firefox http://127.0.0.1:8888/?token=<tokenid> &

http://127.0.0.1:8888/?token=

Tensorflow/2

<tokenid>

39

Tensorflow: Jupyter

.

40

Anaconda Python

Installation of Anaconda Python/R distribution via Docker

41

Commands

> docker pull continuumio/anaconda3:2020.02

> docker run -it continuumio/anaconda3:2020.02 /bin/bash

References:

▪ https://docs.docker.com/

▪ Docker Up and Running (O’Reilly, 2015)

▪ Using Docker (O’Reilly, 2016)

▪ Docker Deep Dive (O’Reilly, 2018)

▪ Docker in Action (O’Reilly, 2019)

▪ Docker in Practice (O’Reilly, 2019)

42

https://docs.docker.com/

Thanks

Tensorflow

Reference: Dr. Corrado Mio

Tensorflow: Docker installation

Version to install:

1. tensorflow/tensorflow:2.3.1-jupyter

2

Commands (Linux)

> docker pull tensorflow/tensorflow:2.3.1-jupyter

> mkdir ~/notebooks

> docker run -it -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888

tensorflow/tensorflow:2.3.1-jupyter

> firefox http://127.0.0.1:8888/?token=<tokenid> &

Commands (Windows)

> docker pull tensorflow/tensorflow:2.3.1-jupyter

> mkdir \var\notebooks

> docker run -it -v "/var/notebooks:/tf/notebooks" -p 8888:8888

tensorflow/tensorflow:2.3.1-jupyter

> firefox http://127.0.0.1:8888/?token=<tokenid> &

http://127.0.0.1:8888/?token=
http://127.0.0.1:8888/?token=

Command executed

1. run: creates and run a new container

2. -it: interactive mode (-i), allocate a pseudo tty (-t)

3. -v $(realpath ~/notebooks):/tf/notebooks: mounts the real path
$(realpath ~/notebooks) (this is an expression evaluated by the bash) as the
path, inside the container, /tf/notebooks ,

4. -p 8888:8888: publish the internal local port 8888 on the external local port 8888 (in
this case, the ports are the same)

5. tensorflow/tensorflow:2.1.0-py3-jupyter: the name of the image to execute

3

Commands

> docker run -it -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888

tensorflow/tensorflow:2.1.0-py3-jupyter

Start & Stop the docker image

4

Commands

docker run -it -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888

tensorflow/tensorflow:2.1.0-py3-jupyter

docker container stop <container_id>

docker container start –ai <container_id>

docker container ls

docker ps

Useful Jupyter commands

5

Commands Description

!pip install --upgrade pip Update pip

!pip freeze List of installed packages

!pip list –outdated List of outdated packages

!pip install <package> Install a package

!pip install sklearn Install SciKit-Learn

!pip install pandas Install Pandas

!pip install seaborn Install Seaborn

!pip install sklearn_pandas Install Scikit-Pandas

!pip install scikit-image Install SciKit-Image

!pip freeze >

requirements.txt

&& {replace == with >= } &&

pip install -r

requirements.txt --upgrade

Update a list of packages: replace “==“ with “>=“ in “requirements.txt”

Useful Jupyter commands

6

Commands

!apt update Update the applications database

!apt install -y git Install “git”

Tensorflow Serving

7

Tensorflow Serving: Docker installation (Linux)

Version to install:

1. tensorflow/serving

8

Commands (Linux)

> cd $HOME

> mkdir Projects

> cd Projects

> git clone https://github.com/tensorflow/serving

> TESTDATA="$HOME/Projects/serving/tensorflow_serving/servables/tensorflow/testdata"

>

> docker pull tensorflow/serving

> docker run -it –-rm -p 8500:8500 -p 8501:8501 -v

"$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" -e

MODEL_NAME=half_plus_two tensorflow/serving

https://github.com/tensorflow/serving

Tensorflow Serving: -- (Windows)

Version to install:

1. tensorflow/serving

9

Commands (Windows)

> cd %USERPROFILE%

> mkdir Projects

> cd Projects

> git clone https://github.com/tensorflow/serving

> set TESTDATA=%USERPROFILE%\Projects\serving\tensorflow_serving\servables\tensorflow\testdata

>

> docker pull tensorflow/serving

> docker run -it --rm -p 8500:8500 -p 8501:8501 -v

"%TESTDATA%\saved_model_half_plus_two_cpu":"/models/half_plus_two" -e MODEL_NAME=half_plus_two

tensorflow/serving

https://github.com/tensorflow/serving

Tensorflow Serving: Client

Ports:

▪ REST: 8501

▪ Grpc: 8500

10

Commands

> curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST

http://localhost:8501/v1/models/half_plus_two:predict

Cloud & Notebook Services
Azure https://azure.microsoft.com/en-us/

Amazon Web Services https://aws.amazon.com/

Digital Ocean https://www.digitalocean.com/

Heroku https://www.heroku.com/

https://clockwise.software/blog/amazon-web-services-introduction-largest-cloud-services-

provider/

PythonAnywhere https://www.pythonanywhere.com/

Heroku https://www.heroku.com/

AWS Cloud9 https://aws.amazon.com/cloud9/

Google App Engine https://cloud.google.com/appengine/docs

Codeanywhere https://alternativeto.net/software/codeanywhere/

Google Colab

Azure Notebooks https://notebooks.azure.com/

Kaggle https://www.kaggle.com/orgs-under-maintenance

Amazon Sagemaker https://aws.amazon.com/sagemaker/

IBM DataPlatform Notebooks https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-

data/notebooks-parent.html

Jupyter Notebook https://jupyter-notebook-beginner-

guide.readthedocs.io/en/latest/what_is_jupyter.html

Apache Zeppelin https://zeppelin.apache.org/

nteract https://nteract.io/

Beaker http://beakerx.com/

conda install -c conda-forge ipywidgets beakerx

docker pull beakerx/beakerx

docker run -p 8888:8888 beakerx/beakerx

Polynote https://polynote.org/

paperspace https://www.paperspace.com/

11

Python Notebooks

Blinder https://mybinder.org/

Kaggle https://www.kaggle.com/

Google Colab https://colab.research.google.com/

Azure Notebook https://notebooks.azure.com/

CoCalc https://cocalc.com/

Datalore https://datalore.io/

Jupyter https://jupyter.org/try

Paiza https://paiza.cloud/en/

https://www.dataschool.io/cloud-services-for-jupyter-notebook/

Thanks

Reference: Dr. Corrado Mio

Spark

Apache Spark is a cluster computing framework.

It extends the original map/reduce Hadoop’s computing model in a more coherent
infrastructure based on:

▪ RDD: Resilient Distributed Dataset (v1.0)

▪ DF: Data Frame (v2.0)

DF (and RDD) is similar to a relational table. The table can be partitioned
horizontally and each partition can be handled by a different node of a cluster.

2

Spark: map/reduce computation model

Spark implements the map/reduce computation model:

𝒚𝒊 = map 𝒙𝒊

𝒙𝒊 𝒚𝒊

𝒚𝒕𝟏 = reduce 𝒙𝒊𝟏, 𝒙𝒊𝟐, …

𝒚𝒋 = reduce 𝒚𝒕𝟏, 𝒚𝒕𝟐, …

𝒙𝒊 𝒚𝒋

reduce: Tn → T, n ∈ 𝑁 (commutative & associative)

3

map

reduce

Spark: network architecture

4

1

Spark

Master

Spark

Worker

Spark

Worker

172.17.0.2 172.17.0.3172.17.0.1

172.17.0.1

192.168.161.139

172.18.64.1

8080

8080

7474

7474

8081

8081

8081

8082

7474 8080 8081 8082

Docker
for Windows

VMware
Windows 10

Notebook
Windows 10

Spark: filesystem architecture

5

N

/

1

Spark

Master

Spark

Worker

Spark

Worker

Docker
for Windows

VMware
Windows 10

Notebook
Windows 10

/mnt/spark/*

mounted

/mnt/spark/*

mounted

/mnt/spark/*

mounted

/mnt/spark/*

mounted

/mnt/spark/*

Spark: infrastructure

The general Spark Cluster infrastructure must be composed by 4 elements:

1. the Spark Master

2. one or more Spark Workers (2)

3. a network that connects master and workers: each node must see all the others

4. a distributed filesystem accessible from master and workers with the same
paths where to read the data/to write the results.
This filesystem can be:

▪ a FTP/WEBDAV server

▪ a HTTP server

▪ a mounted filesystem

6

Spark: Docker Installation
Commands (Windows)

> docker pull bde2020/spark-master

> docker pull bde2020/spark-worker

> mkdir c:\mnt\spark\spark-apps

> mkdir c:\mnt\spark\spark-data

>

> docker run --name spark-master -h spark-master -p 7077:7077 -p 8080:8080 -v

"c:\mnt\spark\spark-data:/mnt/spark/spark-data" -v "c:\mnt\spark\spark-

apps:/mnt/spark/spark-apps" -e ENABLE_INIT_DAEMON=false -d bde2020/spark-master

> docker run --name spark-worker-1 --link spark-master:spark-master -p 8081:8081 -v

"c:\mnt\spark\spark-data:/mnt/spark/spark-data" -v "c:\mnt\spark\spark-

apps:/mnt/spark/spark-apps" -e ENABLE_INIT_DAEMON=false -d bde2020/spark-worker

> docker run --name spark-worker-2 --link spark-master:spark-master -p 8082:8081 -v

"c:\mnt\spark\spark-data:/mnt/spark/spark-data" -v "c:\mnt\spark\spark-

apps:/mnt/spark/spark-apps" -e ENABLE_INIT_DAEMON=false -d bde2020/spark-worker

7

Spark: Docker Installation
Commands (Linux)

> docker pull bde2020/spark-master

> docker pull bde2020/spark-worker

> sudo mkdir /mnt/spark/spark-apps

> sudo mkdir /mnt/spark/spark-data

> sudo chown –R ubuntu:ubuntu /mnt/spark

> docker run --name spark-master -h spark-master -p 7077:7077 -p 8080:8080 -v

“/mnt/spark/spark-data:/mnt/spark/spark-data" -v “/mnt/spark/spark-apps:/mnt/spark/spark-

apps" -e ENABLE_INIT_DAEMON=false -d bde2020/spark-master

> docker run --name spark-worker-1 --link spark-master:spark-master -p 8081:8081 -v

“/mnt/spark/spark-data:/mnt/spark/spark-data" -v “/mnt/spark/spark-apps:/mnt/spark/spark-

apps" -e ENABLE_INIT_DAEMON=false -d bde2020/spark-worker

> docker run --name spark-worker-2 --link spark-master:spark-master -p 8082:8081 -v

“/mnt/spark/spark-data:/mnt/spark/spark-data" -v “/mnt/spark/spark-apps:/mnt/spark/spark-

apps" -e ENABLE_INIT_DAEMON=false -d bde2020/spark-worker

8

Thanks

Google BERT & Docker

Reference: Dr. Corrado Mio

Micro NLP Introduction

Natural Language Processing is the area of the Computer Science that studies
the analysis and interpretation of speech and text.

Some services offered are (https://en.wikipedia.org/wiki/Natural_language_processing):

▪ speech → text

▪ part of speech tagging: objects and what it the object referred by a personal
pronoun (it, you, …)

▪ parsing/tagging: the hierarchical structure of the text

▪ …

Another service is: word/sentence embeddings

2

https://en.wikipedia.org/wiki/Natural_language_processing

Word/Sentence embeddings
The word embedding (https://en.wikipedia.org/wiki/Word_embedding) is a technique
used to map a word in a numerical vector.

The main idea is that a word can be characterized by several features
(singular/plural/…, male/female/neutral/…, etc) and these features can be described
using a numerical vector with enough elements.

There are several algorithms able to obtain this result:

▪ word2vec (https://en.wikipedia.org/wiki/Word2vec)

▪ GloVe (https://en.wikipedia.org/wiki/GloVe_(machine_learning))

▪ fastText (https://en.wikipedia.org/wiki/FastText)

▪ BERT (https://en.wikipedia.org/wiki/BERT_(language_model))

▪ …

Little problem: there is no relation between the human concept of feature and the features generated by the
algorithms! This is similar to the filters in a Convolutional NN.

3

https://en.wikipedia.org/wiki/Word_embedding
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/GloVe_(machine_learning)
https://en.wikipedia.org/wiki/FastText
https://en.wikipedia.org/wiki/BERT_(language_model)

Cosine distance

If we have two words 𝑤1 and 𝑤2 and their embeddings (numerical vectors!) 𝑣1 =
[𝑎1, … 𝑎𝑛], 𝑣2 = [𝑏1, … 𝑏𝑛], we can compare the distance between words using the
cosine distance. The dot product of two vectors is defined as:

𝒂 ⋅ 𝒃 =

𝑖=1

𝑛

𝑎𝑖𝑏𝑖

and this is equal to

𝒂 ⋅ 𝒃 = 𝒂 𝒃 cos 𝛼

if 𝒂 = 𝒃 = 1, the result is
𝒂 ⋅ 𝒃 = cos 𝛼

4

Cosine distance/2

Cosine distance is defined as:

𝑑 𝒂, 𝒃 =
𝒂 ⋅ 𝒃

𝒂 ⋅ 𝒃
= cos𝛼

we can have

▪ 𝑑 𝒂, 𝒃 ∼ 1 the words are used in the similar contexts (cat, dog)

▪ 𝑑 𝒂, 𝒃 ∼ 0 the words are rarely used in the same contexts (bear, space)

5

Word embeddings → sentence embeddings

Using the word embedding it can be possible to do operations with words.

The classic example using 𝑘𝑖𝑛𝑔, 𝑞𝑢𝑒𝑒𝑛,𝑚𝑎𝑙𝑒, 𝑓𝑒𝑚𝑎𝑙𝑒 is:

𝑑(𝑘𝑖𝑛𝑔, 𝑞𝑢𝑒𝑒𝑛) ≅ 𝑑(𝑚𝑎𝑙𝑒, 𝑓𝑒𝑚𝑎𝑙𝑒)

𝑞𝑒𝑒𝑛 ≅ 𝑘𝑖𝑛𝑔 −𝑚𝑎𝑙𝑒 + 𝑓𝑒𝑚𝑎𝑙𝑒

(remember that the word is represented by a numerical vector)

The generalization of word embedding is sentence embedding where it is
computed the embedding vector for a complete sentence (in theory, an entire book!)

6

Google BERT

Bidirectional Encoder Representations from Transformers (BERT).

The word embedding evaluation can be context free or contextual. The contextual
version can be unidirectional or bidirectional.

Algorithms as word2vec and GloVe are context free and are able only to evaluate
the embedding of a single word: they are based on the concepts of bag of words,
where the order of the words are totally lost.

The contextual algorithms consider the sentence (the words in their order). In a
phrase like “I accessed the bank account”, in the analysis of “bank”, the
unidirectional algorithms consider only the sentence “I accessed the”, where the
bidirectional algorithms consider also the following word “account”.

BERT uses the bidirectional approaches.

7

Google BERT in numbers

8

max n of inputs n of layers n of parameters

BERT base 512 12 110.000.000

BERT large 512 12 340.000.000

BERT as service

Download the source from

▪ https://github.com/hanxiao/bert-as-service

▪ copy the compressed file in a machine where is installed Docker

▪ unzip it

▪ enter into bert-as-service-master

▪ edit the file docker/Dockerfile and replace tensorflow/tensorflow:1.12.0-gpu-
py3 with tensorflow/tensorflow:1.12.0-py3 (remove the gpu support, if this is
not available)

▪ download a BERT models and unzip them into the same machine where is
installed Docker (next slide)

9

https://github.com/hanxiao/bert-as-service

BERT models

List of available BERT models.

10

Model URL

BERT-Base, Uncased https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-

768_A-12.zip

BERT-Large, Uncased https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-

1024_A-16.zip

BERT-Base, Cased
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-

12.zip

BERT-Large, Cased
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-

1024_A-16.zip

BERT-Base, Multilingual

Cased (New)

https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-

768_A-12.zip

https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip

BERT as service

Create the image and run it

11

Commands

> export PATH_MODEL=~/models/<model_name>

> export NUM_WORKER=2

> docker build -t bert-as-service -f ./docker/Dockerfile .

> docker run --runtime nvidia -dit -p 5555:5555 -p 5556:5556 -v $PATH_MODEL:/model -t

bert-as-service $NUM_WORKER

> docker run -dit -p 5555:5555 -p 5556:5556 -v $PATH_MODEL:/model -t bert-as-service

$NUM_WORKER

win:> docker run -dit -p 5555:5555 -p 5556:5556 -v %PATH_MODEL%:/model -t bert-as-service

%NUM_WORKER%

References

▪ Neural Network Methods in Natural Language Processing – 2017

▪ https://bert-as-service.readthedocs.io/en/latest/section/get-start.html

▪ https://www.blog.google/products/search/search-language-understanding-bert/

▪ https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

▪ https://arxiv.org/abs/1810.04805

▪ https://github.com/google-research/bert

▪ https://en.wikipedia.org/wiki/BERT_(language_model)

12

https://www.blog.google/products/search/search-language-understanding-bert/
https://www.blog.google/products/search/search-language-understanding-bert/
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://github.com/google-research/bert
https://github.com/google-research/bert
https://en.wikipedia.org/wiki/BERT_(language_model)

Thanks

