
Lecture 19 - 18-05-2020

k(x, x′) =< φ(x), φ(x′) > φ : X → H

where X → R2 and H → barraRN

Hδ = {
N∑
i=1

αi kδ(xi, ·), x1, ..., xN ∈ Rd, α1, ...αN , N ∈ N}

Inner product measures "similarities" between data points.

xT x′ = ‖x‖ ‖x′‖ cos Θ x ∈ X k(x, x′)

k sais how much similar are the structure (tree, documents etc).
I would like to learn a predictor based on the notion of similarity.

k(x, x′) =< φ(x), φ(x′) >

where <> is the inner product.
So we have Data → Kernel → Kernel learning Algortithm
Kernels o�er a uniform interface to data in such way they algoriithm can
learn from data.
Given K on X, I need to �nd ∃Hk φk X → Hk

∃ < ... >k s.t k(x, x′) =< φk(x), φk(x
′) >k

Theorem

Given K : X ×X → R, symmetric
Then K is a Kernel iif ∀m ∈ N ∀x1, ..., xm ∈ X
The m×m matrix K Kij = k(xi, xj) is positive semide�nite
∀α ∈ Rm αT K α ≥ 0
In general, given a Kernel K there is not unique representation for φk and
< ... >k (inner product).
However, there is a "canonical" representation: φk(x) = K(x, ·)

φk : X → H Hk = {
N∑
i=1

αi k(xi, ·), α1, ..., αN ∈ R, x1, ..., xN ∈ X,N ∈ N}

We have to de�ne an inner product like:

< φk(x), φk(x
′) >k = k(x, x′)

This is the canonical representation that helps mapping.
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What happen to use this mechanism to perform predictions?
x ∈ Rd w ∈ Rd wT x where g =

∑N
i=1 αi k(xi, ·)

φk(x) g ∈ Hk < g, φk(x) >k = <
∑
i

αik(xi, ·), φk(x) > =

We have to satisfy allinearity

=
∑
i

αi < k(xi, ·), k(x, ·) >k =
∑
i

αi < φ(xi), φk(x) >k =
∑
i

αik(xi, x) = g(x)

At the end we have:
< g, φk(x) >k = g(x)

Now, if i have two functions:

f =
N∑
i=1

αi k(xi, ·) g =
M∑
j=1

βj k(x′j, ·) f, g ∈ Hk

< f, g >k=<
∑
i

αi k(xi, ·),
∑
j

βj k(x′j, ·) >k =
∑
i

∑
j

αi βj < k(xi, ·), k(x′j, · >k =

=
∑
i

∑
j

αi βj k(xi, xj)

‖f‖2 =< f, f >k=
∑
ij

αi αj k(xi, xj)

Perceptron convergence theorem in kernel space:

M ≤ ‖U‖2(max
t
‖xt‖2) ∀u ∈ Rd yt u

T xt ≥ 1quad∀g ∈ Hk yt g(xt) ≥ 1

we know that:

‖xt‖2  ‖φk(xt)‖2k = < φk(xt), φk(αt) >k = k(xt, xt)

so
.... MANCA ULTIMA FORUMA

Ridge regression:

w =
(
α I + ST S

)−1
ST y
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S is m× d matrix whose rows are the training points x1, ..., xm ∈ Rd

y = (y1, ..., ym) yt ∈ Rd training labels α > 0(
α I + ST S

)−1
ST = ST

(
α Im + S ST

)−1
where d× d and d×m = d×m and m×m(

S ST
)
ij

= xTi xj  < φ(xi), φ(xj) >k= k(xi, xj) = Kij

ST = [x1, ..., xm]  [ φk(xi), ..., φk(xm) ] = [ k(x1, ·), ..., k(km, ·) ] = k(·)

k(·)T (α Im +K)−1 y = g

where 1×m and m×m and m× 1

How to compute prediction?

g(x) = yT (α Im +K)−1 k(x)

1×m and m×m and m× 1
In fact, is the evaltuation of g in any point x.
The drawback is that we pass from d× d matrix to a m×m matrix that can
be huge. So it is not really e�cient in this way, we need to use addictional
"tricks" having a more compact representation of the last matrix prediction.
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1.1 Support Vector Machine (SVM)

It is a linear predictor and is a very popular one because has better perfor-
mance than perceptron and we will see it for classi�cation but there are also
version for regression.

The idea here is that you want to come up with an hyperplane that is de�ned
as a solution of an optimisation problem.
We have a classi�cation dataset (x1, y1)...(xm, ym) xt ∈ Rd yt ∈ {−1, 1}
and it is linearly separable.
Sum as the solution w∗ (optimisation problem) to this problem:

min
w∈Rd

1

2
‖w‖2 s.t ytw

T xt ≥ 1 t = 1, 2, ...,m

Geometrically w∗ corresponds to the maximum marging separating hyper-
plane like:

γ∗ = max
u:‖u‖=1

yt u
t xt t = 1, ...,m

u∗ is achieving γ∗ is the maximal margin separator.

Figure 1.1: Draw of SVG

So I want to maximise this distance.

max
γ>0

γ2 s.t ‖u‖2 = 1 yt u
t xt ≥ γ t = 1, ...,m

So we can maximise instead of minimising.
What is the theorem? The equivalent between this two.

Theorem:
∀ linear separator (x1, y1)...(xm, ym)
The max margin separator u∗ satis�es u∗ = γ∗w∗ where w∗ is the SVM
solution and γ∗ is the maximum margin.
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