
Lecture 22 - 26-05-2020

1.1 Continous of Pegasos

ws = argmin(ˆ̀s(w) +
λ

2
‖w‖2 (2L)2

λm
− stable

`(w, (x, y)) =
[
1− ywTx

]
+

Figure 1.1:

∇`(w, (x, y)) = −yxI{wT x ≤ 1} ‖∇`(w, z)‖ ≤ ‖x‖ ≤ X

`(w, z)− `(w, z) ≤ ∇`(w′, z)T (w − w′) ≤ ‖∇`(w′, z)‖‖w − w′‖

where red is equal to X

ˆ̀
s(ws) ≤ ˆ̀(ws) +

1

2
‖ws‖2 ≤ ˆ̀

s(u) +
1

2
‖u‖2 ∀u ∈ Rd

E[`D(ws)] ≤ E[ˆ̀(ws)] +
4x2

λm
≤ E[ˆ̀s(u) +

1

2
‖u‖2] + 4X2

λm
=

= `D(u) +
λ

2
‖u‖2 + 4x2

λm

E[`D(ws)] ≤ min(`D(u) +
λ

2
‖u‖2) + 4x2

λm

`0−1D (ws) ≤ `D(ws)

0− 1 loss ≤ hinge

E[`D(ws)] + `D(u) +
λ

2
‖u‖2 + 4x2

λm
λ ≈ 1√

m

1

We can run SVM in a Kernel space Hk:

gs = arg min
g∈Hk

(ˆ̀s(g)−
λ

2
‖g‖2k)

g =
N∑
i=1

αi k(xi, ·) ht(g) = [1− ytg(xt)]+

If Hk is the kernel space induced by the Gaussian Kernel, then elements of
g can approximate any continous function ⇒ consistency

SVM with Gaussian Kernel is consistent if λ = λm (with 0-1 loss)
1) λm = o(λ)

2) λm = w(m−
1
2)

λm ≈
lnm√
m

√

1.2 Boosting and ensemble predictors

Examples:

� Stochastic gradiant descent (SGD)

A h1, ..., hT Given S, example from S: 1, ..., ST
h1 = A(S1) is the output 1
Assume we are doing binary classi�cation with 0-1 loss.
h1, ..., hT : X → {−1, 1} (We go for a majority vote classi�er)

x h1(x), ..., hT (x) ∈ {−1, 1} f = sgn
(∑T

t=1 ht

)
Ideal condition Z is the index of a training example from S drawn at random
(uniformly):

P (h1(x2) 6= yz ∧ ... ∧ ht(xz) 6= yz) =
T∏
i=1

P (hi(xz) 6= yz)

The error probability of each hi is independent from the others.
De�ne the training error of the classi�er:

ˆ̀
s(hi) =

1

m

m∑
t=1

I{ht(xt) 6= yt} = P (ht(xz) 6= yz)

2

We can assume ˆ̀
s(hi) ≤ 1

2
∀i = 1, ..., T

(Take hi or any hT)

I want to bound my majority vote f

ˆ̀
s(f) = P (f(xz) 6= yz) = P

(
T∑
i=1

I{hi(xz) 6= yz} >
T

2

)

If half of them are wrong

ˆ̀
ave =

1

T

T∑
i=1

ˆ̀
s(ht) = P

(
1

T

T∑
i=1

I{hi(xz) 6= yz} > ˆ̀
ave +

(
1

2
− ˆ̀

ave

))

B1, ..., BT B1 = I{hi(xz) 6= yz}
And because of our independence assumption, we know that B1, .., BT are
independent

E [Bi] = ˆ̀
s(hi)

We can apply Cherno�-Ho�ding bounds to B1, ..., Bt even if they don't have
the same expectations

P

(
1

T

T∑
i=1

Bi > ˆ̀
ave+ ε

)
≤ e−2 ε

2 T ε =
1

2
− ˆ̀

ave ≥ 0

P (f(xz) 6= yz) ≤ e−2 ε
2 T γi =

1

2
− ˆ̀

s(hi)
1

T

∑
i

γi =
1

2
− ˆ̀

ave

ˆ̀(f) ≤ exp

−2T (1

T

∑
i

γi

)2


where γi is the edge of hi
If γi ≥ γ∀i = 1, ..., T , then the training error of my majority vote is:

ˆ̀(f) ≤ e−2T γ
2

How do we get independence of hi(xz) 6= yz?
We can't guarantee this!
The subsampling of S is attempting to achieve this independence.

3

1.2.1 Bagging

It is a meta algorithm!
Si is a random (with replacement) subsample of S of size |si| = |S|.
So the subsample have the same size of the initial training.

|Si∇S| |Si ∩ S| ≤
2

3

N = # of unique points in Si (did non draw them twice from S)
xt = I{(xt, yt) is drawn in Si} P (xt = 0) = (1− 1

m
)

E[N] =
m∑
t=1

P (xt = 1) =
m∑
t=1

(1− (1− 1

m
)m) = m−m(1− 1

m
)m

Fraction of unique points in S :

E[N]

m
= 1− (1− 1

m
)m =m→∞ 1− e−1 ≈ 0, 63

So 1
3
will be missing.

1.2.2 Random Forest

Independence of errors helps bias.
randomisation of subsampling helps variance.

� 1) Bagging over Tree classi�ers (predictors)

� 2) Subsample of features

Figure 1.2:

Control H of subsample features depth of each tree.
Random forest is typically good on many learning tasks.

4

Boosting is more recent than bagging and builds independent classi�ers "by
design".

ˆ̀(f) ≤ e−2Tγ
2

γi > γ

γi =
1

2
− ˆ̀

s(hi) edge of hi

where ˆ̀
s(hi) is weighted training error

5

