Lecture 22 - 26-05-2020

1.1 Continous of Pegasos
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We can run SVM in a Kernel space Hy:
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If Hj, is the kernel space induced by the Gaussian Kernel, then elements of
g can approximate any continous function = consistency

SVM with Gaussian Kernel is consistent if A = \,, (with 0-1 loss)

1) A = 0o(N)

2) A = w(m™2)

1.2 Boosting and ensemble predictors

Examples:
e Stochastic gradiant descent (SGD)

A hi,...,hr Given S, example from S: 1, ..., S7

hy = A(Sy) is the output 1

Assume we are doing binary classification with 0-1 [oss.

hi,...hr: X = {-1,1} (We go for a majority vote classifier)

2 (@) hr(@) € {-1,1}  f =sgn (S )

Ideal condition Z is the index of a training example from .S drawn at random
(uniformly):
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The error probability of each h; is independent from the others.
Define the training error of the classifier:
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We can assume £4(h;) <
(Take h; or any hr)
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I want to bound my majority vote f
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If half of them are wrong
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By, ... Br By = I{hi(x.) # y.}
And because of our independence assumption, we know that By,.., Br are
independent

We can apply Chernoff-Hoffding bounds to By, ..., B; even if they don’t have
the same expectations
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where ; is the edge of h;
If v > Ve =1,...,T, then the training error of my majority vote is:
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U(f) < e

How do we get independence of h;(z,) # y.7
We can’t guarantee this!
The subsampling of S is attempting to achieve this independence.



1.2.1 Bagging

It is a meta algorithm!
S; is a random (with replacement) subsample of S of size |s;| = |5].
So the subsample have the same size of the initial training.
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N = # of unique points in S; (did non draw them twice from S)
x; = I{(zy, ) is drawn in S;} Pz, =0)=(1-2)
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So 1 will be missing.

1.2.2 Random Forest

Independence of errors helps bias.
randomisation of subsampling helps variance.

e 1) Bagging over Tree classifiers (predictors)

e 2) Subsample of features

Figure 1.2:

Control H of subsample features depth of each tree.
Random forest is typically good on many learning tasks.
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Boosting is more recent than bagging and builds independent classifiers "by
design".
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Vi = 5 - és(hi) edge of h;

where £,(h;) is weighted training error



