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Lecture 1 - 09-03-2020

1.1 Introduction of the course

In this course we look at the principle behind design of Machine learning.
Not just coding but have an idea of algorithm that can work with the data.

We have to �x a mathematical framework: some statistic and mathemat-
ics.
Work on ML on a higher level
ML is data inference: make prediction about the future using data about the
past

� Clustering → grouping according to similarity

� Planning → (robot to learn to interact in a certain environment)

� Classi�cation → (assign meaning to data) example: Spam �ltering
I want to predict the outcome of this individual or i want to predict
whether a person click or not in a certain advertisement.

1.2 Examples

Classify data into categories:

� Medical diagnosis: data are medical records and categories are diseases

� Document analysis: data are texts and categories are topics

� Image analysts: data are digital images and for categories name of
objects in the image (but could be di�erent).

� Spam �ltering: data are emails, categories are spam vs non spam.

� Advertising prediction: data are features of web site visitors and cate-
gories could be click/non click on banners.

Classi�cation : Di�erent from clustering since we do not have semanti-
cally classi�cation (spam or not spam) → like meaning of the image.
I have a semantic label.
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Clustering: i want to group data with similarity function.

Planning: Learning what to do next

Clustering: Learn similarity function

Classi�cation: Learn semantic labels meaning of data

Planning: Learn actions given state

In classi�cation is an easier than planning task since I'm able to make pre-
diction telling what is the semantic label that goes with data points.
If i can do classi�cation i can clustering.
If you do planning you probably classify (since you understanding meaning
in your position) and then you can also do clustering probably.
We will focus on classi�cation because many tasks are about classi�cation.

Classify data in categories we can image a set of categories.
For instance the tasks:
`predict income of a person'
`Predict tomorrow price for a stock'
The label is a number and not an abstract thing.

We can distinguish two cases:

� The label set → set of possible categories for each data point. For
each of this could be �nite set of abstract symbols (case of document
classi�cation, medical diagnosis). So the task is classi�cation.

� Real number (no bound on how many of them). My prediction will be
a real number and is not a category. In this case we talk about a task
of regression.

Classi�cation: task we want to give a label prede�ned point in abstract cat-
egories (like YES or NO)
Regression: task we want to give label to data points but this label are num-
bers.

When we say prediction task: used both for classi�cation and regression
tasks.
Supervised learning: Label attached to data (classi�cation, regression)
Unsupervised learning: No labels attached to data (clustering)

9



In unsupervised the mathematical modelling and way algorithm are score
and can learn from mistakes is a little bit harder. Problem of clustering is
harder to model mathematically.
You can cast planning as supervised learning: i can show the robot which is
the right action to do in that state. But that depends on planning task is
formalised.
Planning is higher level of learning since include task of supervised and un-
supervised learning.

Why is this important ?
Algorithm has to know how to given the label.
In ML we want to teach the algorithm to perform prediction correctly. Ini-
tially algorithm will make mistakes in classifying data. We want to tell
algorithm that classi�cation was wrong and just want to perform a score.
Like giving a grade to the algorithm to understand if it did bad or really
bad. So we have mistakes!

Algorithm predicts and something makes a mistake → we can correct it.
Then algorithm can be more precisely. We have to de�ne this mistake.
Mistakes in case of classi�cation:

� If category is the wrong one (in the simple case). We have a binary
signal where we know that category is wrong.

How to communicate it?
We can use the loss function: we can tell the algorithm whether is wrong or
not.

Loss function: measure discrepancy between `true' label and predicted la-
bel.
So we may assume that every datapoint has a true label. If we have a set of
topic this is the true topic that document is talking about. It is typical in
supervised learning.

How good the algorithm did?

`(y, ŷ) ≤ 0

were y is true label and ŷ is predicted label

10



We want to build a spam �lter were 0 is not spam and 1 is spam and that's
a Classi�cation task:

`(y, ŷ =

{
0, if ŷ = y

1, if ŷ 6= y

The loss function is the �interface� between algorithm and data.
So algorithm know about the data through the loss function.
If we give a useless loss function the algorithm will not perform good: is
important to have a good loss function.

1.2.1 Spam �ltering

Y = {spam, no spam}
Binary classi�cation |Y | = 2
We have two main mistake:

� False positive: y =non spam, ŷ = spam

� False negative: y =spam, ŷ = no spam

It is the same mistake? No if i have important email and you classify as spam
that's bad and if you show me a spam than it's ok.
So we have to assign a di�erent weight.

` (y, ŷ) =


2 if FP

1 if FN

0 otherwise

We have to take more attention on positive mistake
Even in binary classi�cation, mistakes are not equal.
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Lecture 2 - 10-03-2020

2.1 Argomento

Classi�cation tasks
Semantic label space Y
Categorization Y �nite and
small Regression Y appartiene ad |R
How to predict labels?
Using the lost function → ..
Binary classi�cation
Label space is Y = -1, +1
Zero-one loss

`(y, ŷ =

{
0, if ŷ = y

1, if ŷ 6= y

FP ŷ = 1, y = −1
FN ŷ = −1, y = 1

Losses for regression?
y, and ŷ ∈ R,
so they are numbers!
One example of loss is the absolute loss: absolute di�erence between numbers

2.2 Loss

2.2.1 Absolute Loss

`(y, ŷ = |y − ŷ| ⇒ absolute loss

Some inconvenient properties:

� ...

� Derivative only two values (not much informations)
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Figure 2.1: Example of domain of KNN

2.2.2 Square Loss

`(y, ŷ = (y − ŷ)2 ⇒ square loss

Figure 2.2: Example of domain of KNN

Derivative :

� more informative

� and di�erentible

Real numbers as label → regression.
Whenever taking di�erence between two prediction make sense (value are
numbers) then we are talking about regression problem.
Classi�cation as categorization when we have small �nite set.
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2.2.3 Example of information of square loss

`(y, ŷ) = (y − ŷ)2 = F (y)
F ′(ŷ) = −2 · (y − ŷ)

� I'm under sho or over and how much

� How much far away from the truth

`(y, ŷ) = |y − ŷ| = F (y′) · F ′(y) = Sign(y − ŷ)

Question about the future
Will it rain tomorrow?
We have a label and this is a binary classi�cation problem.
My label space will be Y = �rain�, �no rain�
We don't get a binary prediction, we need another space called prediction
space (or decision space).
Z = [0, 1]
ŷ ∈ Z ŷ is my prediction of rain tomorrow
ŷ = P(y = ”rain”) → my guess is tomorrow will rain (not sure)

y ∈ Y ŷ ∈ Z
quadHow can we manage loss?
Put numbers in our space
{1, 0} where 1 is rain and 0 no rain

I measure how much I'm far from reality.
So loss behave like this and the punishment is gonna go linearly??

26..

However is pretty annoying. Sometime I prefer to punish more so i going
quadratically instead of linearly.
There are other way to punish this.
I called logarithmic loss
We are extending a lot the range of our loss function.

`(y, ŷ) = |y − ŷ| ∈ |0, 1| `(y, ŷ) = (y − ŷ)2 ∈ |0, 1|

If i want to expand the punishment i use logarithmic loss
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`(y, ŷ =

{
ln 1

ŷ
, if y = 1(rain)

ln 1
1−ŷ , if y = 0(no rain

F (ŷ)→ can be 0 if i predict with certainty
If ŷ = 0.5 `(y, 1

2
) = ln2 constant losses in each prediction

limŷ→0+ `(1, ŷ) = +∞
We give a vanishing probability not rain but tomorrow will rain.
So this is +∞
limŷ→1− `(0, ŷ) = +∞

The algorithm will be punish high more the prediction is not real. Algorithm
will not get 0 and 1 because for example is impossible to get a perfect pre-
diction.
This loss is useful to give this information to the algorithm.

Now we talk about labels and losses

2.2.4 labels and losses

Data points: they have some semantic labels that denote some true about
this data points and we want to predict this labels.
We need to de�ne what data points are: number? Strings? File? Typically
they are stored in database records
They can have very precise structure or more homogeneously structured
A data point can be viewed as a vector in some d dimensional real space. So
it's a vector of number

RdX = (x1, x2..., xd) ∈ Rc

Image can be viewed as a vector of pixel values (grey scale 0-255).
I can use geometry to learn because point are in my Euclidean space. Data
can be represented as point in Euclidean space. Images are list of pixel that
are pretty much the same range and structure (from 0 to 255). It's very
natural to put them in a space.

Assume X can be a record with heterogeneous �elds:
For example medical records, we have several values and each �elds has his
meaning by it's own. (Sex, weight, height, age, zip code)
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Each one has a di�erent range, in some cases is numerical but something
have like age ..
Does have any sense to see a medical record as a point since coordinates have
di�erent meaning.
Fields are not comparable.
This is something that you do: when you want to solve some inference you
have to decide which are the label and what is the label space and we have
to encode the data points.

Data algorithm expect some homogenous interface. In this case algorithm
has to build records with di�erent values of �elds.
This is something that we have to pay attention too.
You can always each range of values in number. So ages is number, sex you
can give 0 and 1, weight number and zip code is number.
How ever geometry doesn't make sense since I cannot compare this coordi-
nates.
Linear space i can sum up as vector: i can make linear combination of vec-
tors.
Inner product to measure angles! (We will see in linear classi�er).

I can scramble the number of my zip code.
So we get problems with sex and zip code

Why do we care about geometry? I can use geometry to learn.
However there is more to that, geometry will carry some semantically infor-
mation that I'm going to preserve during prediction.
I want to encode my images as vectors in a space. Images with dog.....

PCA doesn't work because assume we encode in linear space.
We hope geometry will help us to predict label correctly and sometimes i
hard to convert data into geometry point.
Example of comparable data: images, or documents.
Assume we have documents with corpus (set of documents).
Maybe in English and talk about di�erent thing and di�erent words.
X is a document and i want to encode X into a point �x in bidimensional
space.
There is a way to encode a set of documents in point in a �xed dimensional
space in such way it make sense this coordinate are comparable.
I can represent �elds with [0,1] for Neural network for example. But they
have no geometrical meaning
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2.2.5 Example TF(idf) documents encoding

TF encoding of docs.

1. Extract where all the words from docs

2. Normalize words (nouns, adjectives, verbs ...)

3. Build a dictionary of normalized words

Doc x = (x1, .., xd)
I associate a coordinate for each word in a dictionary.
d = number of words in dictionary
I can decide that
xi = 1 If i-th word of dictionary occurs in doc.
xi = 0 Else

Xi number of time i-th word occur in doc.
Longer documents will have higher value of coordinates that are not zero.
Now i can do the TF encoding in which xi = frequency with which i-th word
occur in dictionary.
You cannot sum dog and cat but we are considering them frequencies so we
are summing frequency of words.
This encoding works well in real words.
I can choose di�erent way of encoding my data and sometime i can encode
a real vector

I want

1. A predictor f : X −→ Y (in weather X −→ Z

2. X is our data space (where points live)

3. X = Rd images

4. X = X1x...xXd Medical record

5. ŷ = f(x) predictor for X

(x, y)

We want to predict a label that is much closer to our label. How?
Loss function: so this is my setting and is called and example.
Data point together with label is a �example�
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We can get collection of example making measurements or asking people. So
we can always recover the true label.
We want to replace this process with a predictor (so we don't have to bored
a person).
y is the ground truth for x → mean reality!
If i want to predict stock for tomorrow, i will wait tomorrow to see the ground
truth.
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Lecture 3 - 16-03-2020

Data point x represented as sequences of measurement and we called this
measurements features or attributes.

x = (x1, ..., xd) x1 feature valuex ∈ Xd X = Rd X = X1·x·...·Xd·x

Label space Y
Predictor f : X → Y

Example (x, y) y is the label associated with x
(→ y is the correct label, the ground truth)

Learning with example (x1, y1)...(xm, ym) training set

Training set is a set of examples with every algorithm can learn.......

Learning algorithm take training set as input and produces a predictor as
output.

Figure 3.1: Example of domain of KNN

With image recognition we use as measurement pixels.
How do we measure the power of a predictor?
A learning algorithm will look at training set, algorithm and generate the
predictor. Now the problem is verify the score.
Now we can consider a test set collection of example

Test set (x′1, y
′
1)...(x′n, y

′
n)

Typically we collect big dataset and then we split in training set and test set
randomly.

19



Training and test are typically disjoint
How we measure the score of a predictor? We compute the average loss.
The error is the average loss in the element in the test set.

Test error
1

n
·

n∑
t=1

`(f(x′t), y
′)

In order to simulate we collect the test set and take the average loss of the
predictor of the test set. This will give us idea of how the..
Proportion of test and train depends in how big the dataset is in general.
Our Goal: A learning algorithm `A' must output f with a small test error.
A does not have access to the test set. (Test set is not part of input of A).
Now we can think in general on how a learning algorithm should be design.
We have a training set so algorithm can say:
`A' may choose f based on performance on training set.

Training error ˆ̀(f) =
1

m
·
m∑
t=1

`(f(xt), yt)

Given the training set (x1, ..., xm)(y1, ..., ym)
If ˆ̀(f) for same f, then test of f is also small
Fix F set of predictors output f̂

f̂ = arg min ˆ̀(f)f ∈ F

This algorithm is called Empirical Risk Minimiser (ERM)
When this strategy (ERM) fails?
ERM may fails if for the given training set there are:
Many f ∈ F with small ˆ̀(f), but not all of them have small test error

There could be many predictor with small error but some of them may have
big test error. Predictor with the smallest training error doesn't mean we
will have the smallest test error.
I would like to pick f ∗ such that:

f ∗ = arg min
1

n
·
m∑
t=1

`(f(x′t), yt) f ∈ F

where `(f(x′t), yt) is the test error
ERM works if f ∗such that f ∗ = arg min ˆ̀(f) f ∈ F
So minimising training and test????? Check videolecture
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We can think of f as �nite since we are working on a �nite computer.
We want to see why this can happen and we want to formalise a model in
which we can avoid this to happen by design: We want when we run ERM
choosing a good predictor with ...... PD

3.1 Over�tting

We called this as over�tting: speci�c situation in which `A' (where A is the
learning algorithm) over�ts if f output by A tends to have a training error
much smaller than the test error.
A is not doing his job (outputting large test error) this happen because test
error is misleading.
Minimising training error doesn't mean minimising test error. Over�tting is
bad.
Why this happens?
This happen because we have noise in the data

3.1.1 Noise in the data

Noise in the data: yt is not deterministically associated with xi.

Could be that datapoint appears more times in the same test set. Same
datapoint is repeated actually I'm mislead since training and dataset not co-
incide. Minimising the training error can take me away from the point that
minimise the test error.
Why this is the case?

� Some human in the loop: label assigned by people.(Like image con-
tains certain object but human are not objective and people may have
di�erent opinion)

� Lack of information: in weather prediction i want to predict weather
error. Weather is determined by a large complicated system. If i have
humidity today is di�cult to say for sure that tomorrow will rain.

When data are not noise i should be ok.
Labels are not noisy
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Fix test set and trainign set.

∃f ∗ ∈ F y′t = f ∗(x′t) ∀(x′t, y′t) in test set

yt = f+(xt) ∀(xt, yt) in training set

Think a problem in which we have 5 data points(vectors) :
~x1, ... ~x5 in some space X
We have a binary classi�cation problem Y = {0, 1}
{ ~x1, ..., ~x5} ∈ X Y = {0, 1}

F contains all possible calssi�er 25 = 32 f : {x1, ..., x5} → {0, 1}

Example
x1 x2 x3 x4 x5

f 0 0 0 0 0
f
′

0 0 0 0 1
f ” .. .. .. .. ..

Training set x1, x2, x3 f+

Test set x4, x5 f ∗

4 classi�er f ∈ F will have ˆ̀(f) = 0

(x1, 0) (x2, 1) (x3, 0)
(x4, ?) (x5, ?)
f ∗(x4) f ∗(x5)
If not noise i will have deterministic data but in this example (worst case)
we get problem.
I have 32 classi�er to choose: i need a larger training set since i can't distin-
guish predictor with small and larger training(?) error. So over�tting noisy
or can happen with no noisy but few point in the dataset to de�ne which
predictor is good.
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3.2 Under�tting

`A' under�ts when f output by A has training error close to test error but
they are both large.
Close error test and training error is good but the are both large.

A ≡ ERM , then A unde�ts if F is too small→ not containing too much predictors

In general, given a certain training set size:

� Over�tting when |F | is too large (not enough points in training set)

� Under�tting when |F | is too small

Proportion predictors and training set

|F |, i need ln|F | bits of info to uniquely determine f ∗ ∈ F

m >> ln|F | when |F | <∞where m is the size of traning set

3.3 Nearest neighbour

This is completely di�erent from ERM and is one of the �rst learning algo-
rithm. This exploit the geometry of the data. Assume that our data space
X is:
X ≡ Rd x = (x1, ..., xd) y − {−1, 1}
S is the traning set (x1, y1)...(xm, ym)
xt ∈ Rd yt ∈ {−1, 1}

d = 2→ 2-dimensional vector

where + and - are labels
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Point of test set
If i want to predict this point?

Figure 3.2: Example of domain of KNN

Maybe if point is close to point with label i know then. Maybe they have the
same label.
ŷ = + or ŷ = −

Figure 3.3: Example of domain of KNN

I can came up with some sort of classi�er.

Given S training set, i can de�ne hNN X → {−1, 1}
hNN(x) = label yt of the point xt in S closest to X
(the breaking rule for ties)
For the closest we mean euclidian distance

24



X = Rd

‖x− xt‖ =

√√√√ d∑
e=1

(xe − xt, e)2

ˆ̀(hNN) = 0

hNN(xt) = yt

training error is 0!
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Lecture 4 - 17-03-2020

We spoke about Knn classi�er with voronoi diagram

ˆ̀(hNN) = 0 ∀Traning set

hNN predictor needs to store entire dataset.

4.1 Computing hNN

Computing hNN(x) requires computing distances between x and points in
the traning set.

Θ(d) time for each distance

NN → 1-NN
We can generalise NN in K-NN with k = 1, 3, 5, 7 so odd K
hk−NN(x) = label corresponding to the majority of labels of the k closet point
to x in the training set.

How big could K be if i have n point?
I look at the k closest point
When k = m?
The majority, will be a constant classi�er hk−NN is constant and corresponds
to the majority of training labels
Training error is always 0 for hNN , while for hk−NN will be typically > 0,
with k > 1
Image: one dimensional classi�er and training set is repeated. Is the plot of
1-NN classi�er.
Positive and negative. K = 1 error is 0.
In the second line we switch to k = 3. Second point doesn't switch and third
will be classify to positive and we have training mistake.
Switches corresponds to border of voronoi partition.

KNN For multiclass classi�cation

(|Y | > 2) for regression Y ≡ R

Average of labels of K neighbours → i will get a number with prediction.
I can weight average by distance
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You can vary this algorithm as you want.

Let's go back to Binary classi�cation.
The k parameter is the e�ect of making the structure of classi�er more com-
plex and less complex for small value of k.

Figure 4.1: Example of domain of KNN

Fix training set and test set
Accury as oppose to the error

Show a plot. Training error is 0 at k = 0.
As i go further training error is higher and test error goes down. At some
point after which training and set met and then after that training and test
error goes up (accuracy goes down).
If i run algorithm is going to be over�tting: training error and test error is
high and also under�tting since testing and training are close and both high.
Trade o� point is the point in x = 23 (more or less).
There are some heuristic to run NN algorithm without value of k.

History

� KNN : from 1960 → X ≡ Rd

� Tree predictor: from 1980
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4.2 Tree Predictor

If a give you data not welled de�ned in a Euclidean space.
X = X1 · x · ... ·Xd · x Medical Record
X1 = {Male, Female}
X2 = {Y es,No}
so we have di�erent data

I want to avoid comparing xi with xj, i 6= j
so comparing di�erent feature and we want to compare each feature with
each self. I don't want to mix them up.
We can use a tree!

Figure 4.2: Example of domain of KNN

I have 3 features:

� outlook = {sunny, overcast, rain}

� humidity = {[0, 100]}

� windy = {yes, no}

Tree is a natural way of doing decision and abstraction of decision process of
one person. It is a good way to deal with categorical variables.
What kind of tree we are talking about?
Tree has inner node and leaves. Leaves are associated with labels (Y ) and
inner nodes are associated with test.

� Inner node → test

� Leaves → label in Y
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Figure 4.3: Example of domain of KNN

Test if a function f (NOT A PREDICTOR!)
Test fiXi → {1, ..., k}
where k is the number of children (inner node) to which test is assigned
In a tree predictor we have:

� Root node

� Children are ordered(i know the order of each branch that come out
from the node)

X = {Sunny, 50%, No} → are the parameters for {outlook.humidity, windy}

fi =

{
1, if x2 ∈ [30%, 60%]

2, if otherwise

where the numbers 1 and 2 are the children
A test is partitioning the range of values of a certain attribute in a number
of elements equal to number of children of of the node to which the test is
assigned.
hT (x) is always the label of a leaf of T
This leaf is the leaf to which x is routed
Data space for this problem (outlook,..) is partitioned in the leaves of the
tree. It won't be like voronoi graph. How do I build a tree given a training
set? How do i learn a tree predictor given a training set?

� Decide tree structure (how � many node, leaves ecc..)

� Decide test on inner nodes

� Decide labels on leaves

We have to do this all together and process will be more dynamic. For sim-
plicity binary classi�cation and �x two children for each inner node.

Y = {−1,+1}
2 children for each inner node
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What's the simplest way?
Initial tree and correspond to a costant classi�er

Figure 4.4: Example of domain of KNN

Majority of all example

Figure 4.5: Example of domain of KNN

(x1, y1)...(xm, ym)
xt ∈ X yt ∈ {−1,+1}
Training set S = {(x, y) ∈ S, x is routed to `}
S+
`

Figure 4.6: Example of domain of KNN

S` and S
′
` are given by the result of the test, not the labels and ` and `′.
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Figure 4.7: Example of domain of KNN
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Lecture 5 - 23-03-2020

5.1 Tree Classi�er

Supposed we groped a tree up to this point and we are wandering how to
grow it.
S Training set (x1, y1)...(xm, ym), x1 ∈ X

Figure 5.1: Example of domain of KNN

S` ≡ {(x1, y1)xt is router to `}

y1 ∈ {−1, 1}

S+
` ≡ {(x1, y1) ∈ S` : yt = +1}

S−` ≡ {(x1, y1) ∈ S` : yt = −1} S+
` ∩ S

−
` ≡ 0 S` ≡ S+

` ∪ S
−
`

N` = |S`| N+
` = |S+

` | N−` = |S−` |

N` = N−` +N+
`

leaf ` classi�es all traning example (S`)

Y` =

{
+1, If N+

` ≥ N−`
−1, If otherwise
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` makes a mistake on min{N+
` , N

−
` } example in S`

ˆ̀(hT ) =
1

m
·
∑
`

min{N
+
`

N`

,
N−`
N`

} ·N` =

=
1

m
·
∑
`

ψ · (N`+

N`

) ·N` −→ N+
`

N`

= 1− N`

N`??

where ψ(a) = min{a, 1− a} a ∈ [0, 1]
I want to replace inner node with other leaves.

Figure 5.2: Example of domain of KNN

How is traning error going to change? (when i replace inner nodes with other
leaves)
I'm hoping my algorithm is not going to over�t (if training error goes to 0
also testing error goes to 0).
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5.2 Jensen's inequality

If ψ is a concave function −→ (like log or 2
√
.. )

Figure 5.3: Example of domain of KNN

Also ψ is a function that map 0 to 1, −→ ψ [0, 1]→ R

ψ(α ·a+(1−α) ·b) ≥ α ·ψ(a)+(1−α) ·ψ(b) Also 2° derivative is negative

Figure 5.4: Example of domain of KNN

ˆ̀(hT ) =
1

m
·
∑
`

ψ(
N+
`

N`

) ·N`

Look a single contribution fo a leaf ` to training error

ψ(
N+
`

N`

) ·N` = ψ(
N ′+`
N ′`
· N

′
`

N`

+
N`”

+

N`”
· N`”

N`

) ·N`

where
N ′`
N`

= α and N`”
N`

= 1−α so
N ′`
N`

+ N`”
N`

= 1 −→ α+ 1−α = 1
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N+
`′ +N+

`” = N`

I want to check function min concave between 0 and 1.

min(0, 1) = 0 ψ(a) = min(α, 1− α)

Figure 5.5: Example of domain of KNN

This is a concave function and now I can apply Jensen's inquality

ψ(
N+
`

N`

) ·N` ≥ (
N ′`
N`

· ψ(
N ′+`
N ′`

) +
N`”

N`

· ψ(
N`”

+

N`”
)) ·N` =

= ψ(
N ′+`
N ′`

) ·N ′` + ψ(N`”
+

N`”
) ·N`”

This are the contribuion of `′ and `” to the training error

Every time i split my tree my training error is never going to increase since
we have a concave function.
Whenever I'm growing my tree training error is going to be smaller.

Every time a leaf is expanded the training error never goes up.
(Hopelly will go down)
I'll should always grow the tree by expanding leave that decrease the training
error as much as possible.
If i take the e�ort of growing the tree i should get bene�ts. I can imaging
that if i grow the tree at random my training error is going to drop down
error (but maybe will derive over�tting).
For now is just an intuition since we will introduced statistical learning model.
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Could be complicated and tree big may have 100 leave and there could be
many way of associating a test with that leaves.
I can spent a lot of time to select which leave is the best promising to split.

� Grow the tree by expanding leave that decrease the training error as
much as possible

� In general we can assume:
greedy algorithm at each step pick the pair leaf and test that cause
(approximative) the largest decrease in training error

In practise we want optimise this all the way since it's time expensive. That's
the approximately since we are not every time sure.

� MANCA PARTE �

Figure 5.6: Example of domain of KNN

p = 0.8 q = 1 r = 1 α = 60%
Net Change in number of mistakes

ψ(p)− (α · ψ(q) + (1− α) · ψ(r)) =

` − `′ + `”

Fraction of example miss classi�ed `− error `′+ error `”

= 0.2− (
1

2
· 0.4 +

1

2
· 0) = 0
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Figure 5.7: Example of domain of KNN

Figure 5.8: Example of domain of KNN

Idea is to replace minimum function with convex combination.

ψ(α) = min {α, 1− α} ψ(a) ≥ ψ(α)
ψ1(α) = 2 · α · (1− α) −→ GNI

ψ2(α) = −α
2
· lnα− 1−α

2
· ln(1− α) −→ ENTROPY

ψ3(α) =
√
α · (1− α)

All this functions has this shape (concave???)

Figure 5.9: Example of domain of KNN

In practise Machine Learning algorithm use GNI or entropy to control the
split
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5.3 Tree Predictor

� Multi class classi�cation |Y | > 2 −→ take majority

� Regression Y = R −→ take average of labels in S`

I still take majority among di�erent classes.
Take average of labels in S`

Unless
N+
`

N`
∈ 0, 1 ∀ leaves `, ˆ̀(hT ) > 0

Unless leaves are "pured", the training error will be bigger than 0.

In general, i can always write ˆ̀(ht) to 0 by growing enough the tree un-
less there are x1 in the Time Series such that (xt, yt)(xt, y

′
t) with yt 6= y′t both

occur.

Figure 5.10: Example of domain of KNN

if(x1 = α) ∧ (x2 =≥ α) ∨ (x1 = b) ∨ (x1 = c) ∧ (x3 = y)

then predict 1

else
then predict -1

� Picture of tree classi�er of iris dataset. �
I'm using due attribute at the time.
Each data point is a �ower and i can measure how petal and sepal are long.
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I can use two attribute and i test this two. I can see the plot of the tree
classi�er (second one) making test splitting data space into region that has
this sort of �blackish� shape ( like boxes: blue box, red box, yellow box)
A good exercise in which I want to reconstruct the tree given this picture.

5.4 Statistical model for Machine Learning

To understand Tree classi�er, nearest neighbour and other algorithm...
It's important to understand that the only way to have a guideline in which
model to choose.

This mathematical model are developed to learning and choose
learning algorithm.

Now let start with theoretical model.

� How example (x, y) are generated to create test set and training set?
We get the dataset but we need to have a mathematical model for
this process. (x, y) are drawn from a �xed but unknown probability
distribution on the pairs X and Y (X data space, Y label set o label
space)

� Why X should be random?
In general we assumed that not all the x in X are equally likely to be
observed. I have some distribution over my data point and this said
that I'm most like to get a datapoint to another.

� How much label?
Often labels are not determined uniquely by their datapoints because
labels are given by human that have their subjective thoughts and also
natural phenomena. Labels are stochastic phenomena given a data-
point: i will have a distribution.

We're going to write (in capital) (X, Y ) since they are random variable drawn
from D on X ·Y A dataset (X1, Y1)...(Xm, Ym) they are drawn independently
from D (distribution on examples)
When I get a training the abstraction of process collecting a training set
D is a joint probability distribution over X · Y
where Dx is the marginal over X → Dy|x (conditional of Y given X).
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I can divided my draw in two part. I draw sample and label from condi-
tional.??
Any dataset ( training or test ) is a random sample (campione casuale) in
the statistical sense −→ so we can use all stastical tools to make inference.
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Lecture 6 - 24-03-2020

(X, Y ) We random variables drawn iid from D on X ·Y −→ where D is �xed
but unknown

Independence does not hold. We do not collect datapoints to an independent
process.
Example: identify new article and i want to put categories. The feed is
highly depend on what is happening in the world and there are some news
highly correlated. Why do we make an assumption that follows reality? Is
very convenient in mathematical term. If you assume Independence you can
make a lot of process in mathematical term in making the algorithm.
If you have enough data they look independent enough. Statistical learn-
ing is not the only way of analyse algorithms �> we will see in linear ML
algorithm and at the end you can use both statistical model s

6.1 Bayes Optimal Predictor

f ∗ : X → Y

f ∗(x) = argminE [ `(y, ŷ)|X = x ] ŷ ∈ Y

In general Y given X has distribution Dy|X = x
Clearly ∀ h X → Y

E [ `(y, f ∗(x))|X = x ] ≤ E [ `(y, h(x)|X = x ]

X, Y E [Y |X = x ] = F (x) −→ ConditionalExpectation

E [E [Y |X ] ] = E(Y )

Now take Expectation for distribution

E [ `(y, f ∗(x)) ] ≤ [E(`(y, h(x)) ]

where risk is smaller in f ∗

I can look at the quantity before
ld Bayes risk −→ Smallest possible risk given a learning problm

ld(f
∗) > 0 because y are still stochastic given X
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Learning problem can be complem → large risk

6.1.1 Square Loss

`(y, ŷ = (y − ŷ)2

I want to compute bayes optimal predictor
ŷ, y ∈ R

f ∗(x) = argminE
[

(y − ŷ)2|X = x
]

= ŷ ∈ R

we use E [X + Y ] = E[X]+E[Y ] = argminE
[
y2 + ŷ2 − 2 · y · ŷ2|X = x

]
=

Dropping y2 i remove something that is not important for ŷ

= argmin(E
[
y2|X = x

]
+ ŷ2 − 2 · ŷ · E [ y|X = x ]) =

= argmin(ŷ2 − 2 · ŷ · E [ y|X = x ]) =

Expectation is a number, so it's a constant
Assume � = y2

argmin
[
�+ ŷ2 + 2 · ŷ · E [Y |X = x ]

]
where redG(ŷ) is equal to the part between [...]

dG(ŷ)

dŷ
= 2 · ŷ − 2 · E [ y|X = x ] = 0 −→ So setting derivative to 0

Suppose we have a learning domain

Figure 6.1: Example of domain of KNN

G′(ŷ) = ŷ2 − 2 · b · ŷ

ŷ = E [ y|X = x ] f ∗(x) = E [ y|X = x ]
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Square loss is nice because expected prediction is ...
In order to predict the best possibile we have to estimate the value given
data point.

E
[

(y − f ∗(x))2|X = x
]

=

= E
[

(y − E [ y|X = x ])2|X = x
]

= V ar [Y |X = x ]

6.1.2 Zero-one loss for binary classi�cation

Y = {−1, 1}

`(y, ŷ) = I{ŷ 6= y} IA(x) =

{
1 x ∈ A
0 x 6∈ A

If ŷ 6= y true, indicator function will give us 1, otherwise it will give 0

D on X · Y D∗x Dy|x = D

Dx η : X −→ [ 0, 1 ] η = P (y = 1|X = x)

D  (Dx, η) −→ Distribution 0-1 loss

X v Dx −→ Where v mean "draw from" and Dx is marginal distribution

Y = 1 with probability η(x)

Dy|x = {η(x), 1− η(x)}
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Suppose we have a learning domain

Figure 6.2: Example of domain of KNN

where η is a function of x, so i can plot it
η will te me Prob(x) =
η tells me a lot how hard is learning problem in the domain
η(x) is not necessary continous

Figure 6.3: Example of domain of KNN

η(x) ∈ {0, 1} y is always determined by x
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How to get f ∗ from the graph?

f+ : X → {−1, 1}
Y = {−1,+1}

Figure 6.4: Example of domain of KNN

===============================
MANCA ROBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
==============================

f ∗(x) = argminE [ `(y, ŷ)|X = x ] = −→ ŷ ∈ {−1,+1}

= argminE [ I{ŷ = 1} · I{Y = −1}+ I{ŷ = −1} · I{y = 1} |X = x ] =

we are splitting wrong cases

= argmin ( I{ŷ = 1}·E [ I{Y = −1}|X = x ]+I{ŷ = −1}·E [ I{y = 1} |X = x ] ) = >

We know that:

E [ I{y = −1} |X = x ] = 1 · P(ŷ = −1|X = x) + 0 · P(y = 1|X = x) =

P(x = −1|X = x) = 1− η(x)

> = argmin ( I{ŷ = 1} · (1− η(x)) + I{ŷ = −1} · (η(x) )

where Blue colored I{...} = 1° and Orange I{...} = 2°

I have to choose -1 or +1 so we will remove one of the two (1° or
2°)
It depend on η(x):
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� If η(x) < 1
2
−→ kill 1°

� Else η(x) ≥ 1
2
−→ kill 2°

f ∗(x) =

{
+1 if η(x) ≥ 1

2

−1 if η(x) < 1
2

6.2 Bayes Risk

E [ I{y 6= f ∗(x)} |X = x ] = P(y 6= f ∗(x)|X = x)

η(x) ≥ 1

2
⇒ ŷ = 1 ⇒ P(y 6= 1|X = x) = 1− η(x)

η(x) <
1

2
⇒ ŷ = −1 ⇒ P(y 6= 1|X = x) = η(x)

Conditiona risk for 0-1 loss is:

E [ `(y, f ∗(x)) |X = x ] = I{η(x) ≥ 1

2
}· (1−η(x))+I{η(x) <

1

2
}·η(x) =

= min {η(x), 1− η(x)}

E [ `, f ∗(x) ] = E [min {η(x), 1− η(x)} ]

Figure 6.5: Example of domain of KNN

Conditional risk will be high aroun the half so min between the two is around
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the half since the labels are random i will get an error near 50%.
My condition risk will be 0 in the region in the bottom since label are going
to be deterministic.

47



Lecture 7 - 30-03-2020

Bounding statistical risk of a predictor
Design a learning algorithm that predict with small statistical risk

(D, `) `d(h) = E [ `(y), h(x) ]

were D is unknown
`(y, ŷ) ∈ [0, 1] ∀y, ŷ ∈ Y

We cannot compute statistical risk of all predictor.
We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).
Before design a learning algorithm with lowest risk, How can we estimate
risk?
We can use test error → way to measure performances of a predictor h. We
want to link test error and risk.
Test set S ′ = {(x′1, y′1)...(x′n, y

′
n)} is a random sample from D

How can we use this assumption?
Go back to the de�nition of test error

Sample mean (IT: Media campionaria)

ˆ̀
s(h) =

1

n
·

n∑
t=1

`(ŷt, h(x′t))

i can look at this as a random variable `(y′t, h(x′t))

E [ `(y′t, h(x′t))] = `D(h) −→ risk

Using law of large number (LLN), i know that:

ˆ̀−→ `D(h) as n→∞

We cannot have a sample of n =∞ so we will introduce another assumption:
the Cherno�-Ho�ding bound

7.1 Cherno�-Ho�ding bound

Z1, ..., Zn iid random variable E [Zt] = u

all drawn for the same distribution

t = 1, ..., n and 0 ≤ Zt ≤ 1 t = 1, ..., n then ∀ε > 0
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P

(
1

n
·

n∑
t=1

zt > u+ ε

)
≤ e−2 ε2 n or P

(
1

n
·

n∑
t=1

zt < u+ ε

)
≤ e−2 ε2 n

as sample size then ↓

Zt = `(Y ′t , h(X ′t)) ∈ [0, 1]

(X ′1, Y
′

1)...(X ′n, Y
′
N) are iid therefore,

` (Y ′t , h (X ′t)) t = 1, ..., n are also iid
We are using the bound of e to bound the deviation of this.

7.2 Union Bound

Union bound: a collection of event not necessary disjoint, then i know that
probability of the union of this event is the at most the sum of the probabil-
ities of individual events

A1, ..., An P (A1 ∪ ... ∪ An) ≤
n∑
t=1

P (At)

Figure 7.1: Example

that's why ≤

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
This is the probability according to the random draw of the test set.

If test error di�er from the risk by a number epsilon > 0. I want to bound
the probability. This two thing will di�er by more than epsilon. How can i
use the Cherno� bound?

| ˆ̀s′ (h)− `D (h) | > ε ⇒ ˆ̀
s′ (h)− `D (h) > ε ∨ ˆ̀

D (h)− `s′ (h) > ε
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Figure 7.2: Example

A,B A⇒ B P (A) < P (B)

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
≤ P

(
|ˆ̀s′ (h)− `D (h) |

)
∪ P

(
|ˆ̀D (h)− `s′ (h) |

)
≤

≤ P
(

ˆ̀
s′ > `D (h) + ε

)
+P
(

ˆ̀
s′ < `D (h)− ε

)
≤ 2·e−2 ε2 n ⇒ we call it δ

ε =

√
1

2 · n
ln

2

δ

The two events are disjoint

This mean that probability of this deviation is at least delta!

| ˆ̀s′ (h)− `D (h) | ≤
√

1

2 · n
ln

2

δ
with probability at least 1− δ

Test error of true estimate is going to be good for this value (δ)
Con�dence interval for risk at con�dence level 1-delta.

Figure 7.3: Example

I want to take δ = 0, 05 so that 1− δ is 95%. So test error is going to be an
estimate of the true risk which is precise that depend on how big is the test
set (n).
As n grows I can pin down the position of the true risk.
This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.
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We can measure how accurate is our risk error estimate.
Test error is an estimate of risk for a given predictor (h).

E [ ` (Y ′t , h (X ′t)) ] = `D (h)

h is �xed with respect to S' −→ h does not depend on the test set. So
learning algorithm which produce h not have access to test set.
If we use test set we break down this equation.

Now, how to build a good algorithm?
Training set S = {(x1, y1) ... (xm, ym)} random sample
A A (S) = h predictor output by A given S where A is learning algo-
rithm as function of traning set S.
∀S A (S) ∈ H h∗ ∈ H

`D (h∗) = min `D (h) ˆ̀
s (h∗) is closed to `D (h∗) −→ it is going to have small error

where `D (h∗) is the training error of h∗

Figure 7.4: Example

This guy `D (h∗) is closest to 0 since optimum

Figure 7.5: Example

In risk we get opt in h∗ but in empirical one we could get another h′ better
than h+

In order to �x on a concrete algorithm we are going to take the empiri-
cal Islam minimiser (ERM) algorithm.
A is ERM on H (A) = ĥ = (∈) argmin ˆ̀

S (h)
Once I piack ĥ i can look at training error of ERM

ˆ̀
S

(
ĥ
)
ofĥ = A(S)
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where ˆ̀
S is the training error

Should ˆ̀
S

(
ĥ
)
be close to `D

(
ĥ
)
?

I'm interested in empirical error minimiser and do a trivial decomposition.

`d

(
ĥ
)

= `D

(
ĥ
)
− `d (h∗) + −→ Variance error ⇒ Over�tting

+ `d
(
h+
)
− `d (f ∗) + −→ Bias error ⇒ Under�tting

+ `D (f ∗) −→ Bayes risk ⇒ Unavoidable

Even the best predictor is going to su�er that

f ∗ is Bayes Optimal for (D, `)

∀h `D (h) ≥ `D (f ∗)

If f ∗ 6∈ H then `D (h∗) > `D(f ∗)

If i pick h∗ I will pick some error because we are not close enough to the
risk.
We called this component bias error.
Bias error is responsible for under�tting (when training and test are close to
each but they are both high :( )
Variance error over �tting

Figure 7.6: Draw of how ĥ, h∗ and f ∗ are represented

Variance is a random quantity and we want to study this. We can always
get risk from training error.
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7.3 Studying over�tting of a ERM

We can bound it with probability.
I add and subtract trivial traning error ˆ̀

S (h)

`D

(
ĥ
)
− `d (h∗) = `D

(
ĥ
)
− ˆ̀

S (h) + ˆ̀
S

(
ĥ
)
− `D (h∗) ≤

≤ `D

(
ĥ
)
− ˆ̀

S

(
ĥ
)

+ ˆ̀
S (h∗)− `D (h∗) ≤

≤ | `D
(
ĥ
)
− ˆ̀

S (h) |+ | ˆ̀S
(
h+
)
− `D (h∗) | ≤

≤ 2 ·max |ˆ̀S (h)− `D (h) |
(no probability here)
Any given ĥ minising ˆ̀

S (h)

Now assume we have a large deviation

Assume `D

(
ĥ
)
− `D (h∗) > ε ⇒ max | ˆ̀S (h)− `D (h) | > ε

2

We know `d

(
ĥ
)
− `D (h∗) ≤ 2 ·max | ˆ̀S (h)− `D (h) | ⇒

⇒ ∃h ∈ H | ˆ̀S (h)− `D (h) | > 3

2
⇒

with |H| <∞
⇒ U

(
| ˆ̀S (h)− `D (h) |

)
>

3

2

P
(
`D

(
ĥ
)
− `D (h∗) > ε

)
≤ P

(
U
(
| ˆ̀S (h)− `D (h) |

)
>

3

2

)
≤

≤
∑
h∈H

P
(
| ˆ̀S (h)− `D (h) | > 3

2

)
≤

∑
h∈H

2 · e−2 ( ε2)
2
m ≤

Union Bound Cherno�. Ho�ding bound (P (...))

≤ 2 · |H|e−
ε2

2
m

Solve for ε 2 · |H|e− ε2

2
m = δ

Solve for ε −→ ε =

√
2

m
· ln ·2|H|

δ
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`D

(
ĥ
)
− `D (h∗) ≤

√
2

m
· ln ·2|H|

δ

With probability at least 1− δ with respect to random draw of S.
We want m >> ln|H| −→ in order to avoid over�tting
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Lecture 8 - 31-03-2020

|H| <∞ ĥ = argmin ˆ̀
S (h) h∗ = argmin `D (h)

minimise risk

Bias-Variance decomposition

`d

(
ĥS

)
= `D

(
ĥS

)
− `d (h∗) + −→ Variance error ⇒ Over�tting

+ `d
(
h+
)
− `d (f ∗) + −→ Bias error ⇒ Under�tting

+ `D (f ∗) −→ Bayes risk ⇒ Unavoidable

We state this for all algorithm but we studied for ERM.

`D

(
ĥS

)
≤ `D (h∗)+

√
2

m
ln

2 |H|
δ

with probability at least 1− δ over the draw of S

we want this to be small when m >> ln |H|

Figure 8.1: Representation of ĥ, h∗ and f ∗

Size of model �x, increase m (size of sample) when m is bigger −→ variance
goes down.
When |H| −→ big model will be closer to optimal

� m grows ⇒ variance error goes down (if not over�tting)

� |H| grows ⇒ bias error goes down (if not under�tting)
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ERM with |H| <∞
A H such that ∀s A(S) ∈ H

We controlled this event:

∀h ∈ H ˆ̀
S(h)−`D (h) ≤

√
2

m
ln

2 |H|
δ

with probability at least 1− δ

We assure that training error is a good proxy for the true risk.

Figure 8.2: Example

If I do the empirical way(for a speci�c training set) i get something
di�erent.

8.1 The problem of estimating risk in practise

Test error is a good estimate for a risk, provided 1√
n
is small

It's usually good to take a small test set.
80/20 big data, if low data better to look at good estimate...=??
Usually small test set is still ok

Typically we are not given the predictor, instead we start from a learn-
ing algorithm. It's true that A has parameter (how many nodes for a tree
classi�er for example).
In general, if I have parameters then i get a set of di�erent classi�er Imaging
Algorithm that has parameter θ:

A {Aθ : θ ∈ Θ} Aθ (S) = ĥS

E [`D (Aθ (S))] typically averaged over S of size m for �xed m

In general you may also be interest looking at the best choice of parame-
ter for your algorithm: Suppose now that i want to look at mini sing the risk
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with the respect to the choice of the parameter

E [min `D (Aθ (S))] i want to choose parameter that minimise risk run-
ning algorithm on training set.

I would like to choose best possible value for my parameter k in the k-NN
and i want to estimate the risk.
θ can be a set of parameters (so more than 1 parameter), so theta are the
hyper parameters of A.
In general this parameter are the choices that algorithm that can make: pa-
rameter that de�ne a classi�er (example nodes and test in the internal nodes
and label in the leaves)

Hyper parameters are not determined by the training set→ chosen before
the training set.
I �x k for KNN and I choose an upper bound of number of nodes after the
training set is given.
So, some parameters are given after training set is given and some parameter
�xed before.
Now the idea is that parameter are determined after training set is given,
while hyper parameters are given before training set to get then a predictor.
I have a family of algorithms, so I choose a hyper parameters to get a one
algorithm.
Most algorithm are given as family. We have �rst decide hyper parameters
not determined on the training set.
One way to move is to take you dataset and the split that in 3 parts:

� Training set

� Development (or validation) test

� Test sets

There should not be a leak of information between test and train and devel-
opment.
We get family of algorithm, train with train set and then use dev set to test
the parameter and choice the parameters. Once i found the parameter I re-
train the algorithm with a part of train and dev set to being then tested.
Development set is like a fake test set → it usefull to choose parame-
ters.
Algorithm steps:

1. Train Aθ on training set for each θ ∈ Θ (grid search)
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2. Find θ such that ĥ = Aθ̂ (S) minimise developement error

3. Train Aθ̂ on training + development set

4. Test resulting predictor on test set

(There's theory about this but it's di�cult and we are not going to do that)

It's heuristic and kinda simple to do. This technics work for every learn-
ing algorithm.
One parameter: grid on this
Two parameters ecc..
It's quadratic!
Good learning algorithm should have small number of hyperpa-
rameters.

8.2 Cross-validation

Solving an easier problem: suppose you have a dataset and what you do is
that you can choose training set and test set.
Algorithm A with no hyper parameters and we would like to check how good
is the predictor: how good can A be? A is good if the predictor that generate
has low risk.
I split dataset in training and test set.

Figure 8.3: Splitting test and training set

h = A (A) ˆ̀
S′ (h) ≈ `D (h)

I can use Cross-validation! (CV). It helps estimate the risk.

CV: E [`D (A (S))]

I would like to average ....
How do i do this estimate? Super easy, take my data assuming CV as pa-
rameter not of the algorithm A, but intrinsic to cross validation.
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Parameter k-fold CV typically k = 5 or 10.
What do you do ? If i take a speci�c training set, i got a ru� estimate of A.
I shouldn't split one but several time.
There are di�erent way but he give us another:
split data in k folds randomly!

Figure 8.4: K-folds

For each k we de�ne S(k) take out k-st D

S(k) = S\Dk

S(1) = D2 ∪D3 ∪ ... ∪Dk

S(2) = D1 ∪D3 ∪ ... ∪Dk

For each k − 1, ...k folds S(k) training part and Dk test part

hK = A
(
S(k)

)
ˆ̀
DK (hK) =

k

m

∑
(x,y)∈Dk

` (y, hK (x))

Repeat the procedure for k = 1...k get h1, ..., hk

Compute
1

k
·
K∑
k=1

ˆ̀
DK (hk)

where CV is E [`D (A (S))] and this is called ..... �MANCA � Estimate

It's used a lot!
You get data from internet, then what to do? I want to try an algorithm,
try KNN so you do Cross validation and will give you the risk.
In some other cases you get a splitted dataset in training and testing set.
You don't use CV since the dataset is already splitted in training and test.
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8.3 Nested cross validation

The use of CV to solve the hyper parameters choice problem. If you are
given test and training set you can solve splitting in training set and dev set.
Suppose not given train and test, you can assign arbitrary .....
Now the idea: you give me a way to optimise splitting training set and test
set and then avoiding using a ...
This is what cross validation is doing.

Figure 8.5: Nested Cross Validation

{Aθ : θ ∈ Θ} which i run in each fold?
The idea is running interval CV for the folds
I have fold D1 and S(1) and i perform external validation, then i run internal
CV in S(1).
On each training part of the external CV, run a internal CV for each Aθ.
When θ ∈ grid (Θ):

� I have a CV-estimate and for each Aθ pick the θ with best CV-estimate

� Run Aθ̂ on the entire training part of current external fold

Basically what I'm choosing the best hyper parameter on each fold
of the external CV.
External CV is not testing Aθ̂ for a given θ̂ ∈ Θ
I am not measuring a goodness of predictor generate by algorithm for given
value of hyper parameters but what I'm estimating is the average risk of the
predictor output by learning algorithm when hyper parameters are optimise
on the training set. This optimisation on training set is done into a internal
CV. To avoid be depend i run and external CV.
Many platform like sklearn allow you to do that in two lines of code. So i
can specify the grid, predictor, number of falls for internal and external. It
took a bit but that's it in in two lines of code
Cross validation can be done in every order of D1 or D2 or Dk. So doesn't
matter the order we start fold D2 or D1.
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Lecture 9 - 06-04-2020

ĥ is ERM predictor

`D

(
ĥ
)
≤ min `D (h) +

√
2

m
ln

2H

δ
with prob. at least 1− δ

Now we do it with tree predictors

9.1 Tree predictors

X = {0, 1}d −→ Binary classi�cation

h : {0, 1}d −→ Binary classi�cation H1

How big is this class?
Take the size of codomain power the domain −→ |H| = 22d

Can we have a tree predictor that predict every H in this class?
For every h : {0, 1}d ←→ {−1, 1} ∃T

We can build a tree such that hT = h

Figure 9.1: Tree building

X = (0, 0, 1, ..., 1) h (x) = −1
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x1, x2, x3, ..., xd

I can apply my analisys to this predictors
If I run ERM on H

`D

(
ĥ
)
≤ min `D

(
ĥ
)

+

√
2

m
2d ln 2 + ln

2

δ
−→ ln |H|+ ln

2

δ

No sense! What we �nd about training set that we need?
Worst case of over�tting m >> 2D = |X| ⇒ training sample larger

PROBLEM: cannot learn from a class to big ( H is too big)
I can control H just limiting the number of nodes.

HN −→ tree T with at most N node, N << 2D

|HN | = ?

|HN | = (# of trees with ≤ N nodes)×(# of test on interval nodes )×( # labels on leaves)

|HN | =
⊗
× dM × 2N−M

N of which N −M are leaves

Figure 9.2: Tree with at most N node

⊗
# of binary trees with N nodes, called Catalan Number
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9.1.1 Catalan Number

*We are using a binomial *

1

N

(
2N − 2

N − 1

)
≤ 1

N

(
e

(2N − 2)

N − 1

)N−1

=
1

N
(2 e)N−1

(
N

K

)
≤

(e n
k

)k
from Stirling approximation

Counting the number of tree structure: a binary tree with exactly N nodes.
Catalan counts this number. −→ but we need a quantity to interpret
easily. So we compute it in another way.
Now we can rearrange everything.

|HN | ≤ 1

N
(2 e)N−1 HM 2N−M ≤ (2 e d)N

d ≥ 2 ≤ dN−M

where we ignore 1
N
since we are going to use the log

ERM on HN ĥ

`D

(
ĥ
)
≤ min

h∈HN

`D (h) +

√
2

m

(
N · (1 + ln (2 · d)) + ln

2

δ

)
were N · (1 + ln (2 · d)) = ln (HN)

In order to not over�t m >> N · ln d
N · ln d << 2d for reasonable value of N
We grow the tree and a some point we stop.

`D (h) ≤ ˆ̀
S (h) + ε ∀h ∈ HN with probability at least 1− δ

remove N in HN and include h on ε
we remove the N index in HN adding h on ε

`D (h) ≤ ˆ̀
S (h) + εh ∀h ∈ H6N

W : H −→ [0, 1]
∑
h∈H

w (h) ≤ 1

How to use this to control over risk?

P
(
∃h ∈ H : | ˆ̀S (h)− `D (h) | > εh

)
≤

63



where ˆ̀
S is the prob my training set cases is true

≤
∑
h∈H

P
(
| ˆ̀S (h)− `D (h) | > εh

)
≤
∑
h∈H

2 e−2mεh2 ≤

≤ δ −→ since w(h) sum to 1

(∑
h∈H

)
I want to choose 2 e−2mεh2 = δ w(h)

2 e−2mεh2 = δ w(h) ⇔ � MANCA PARTEEEE �

therefore:

`D (h) ≤ ˆ̀
S (h) +

√
1

2m
·
(

ln
1

w(h)
+ ln

2

δ

)
w. p. at least 1− δ ∀h ∈ H

Now, instead of using ERM we use

ĥ = argmin
h∈H

(
ˆ̀
S (h) +

√
1

2m
·
(

ln
1

w(h)
+ ln

2

δ

))

where
√
... term is the penalisation term

Since our class is very large we add this part in order to avoid over�tting.
Instead of minimising training error alone i minimise training error + penal-
isation error.

In order to pick w(h) we are going to use coding theory
The idea is I have my trees and i want to encode all tree predictors in H
using strings of bits.

σ : H −→ {0, 1}∗ coding function for trees
∀h, h′ ∈ H σ(h) not a pre�x of σ(h′)
h 6= h′ where σ(h) and σ(h′) are string of bits

σ is called istantaneous coding function
Istantaneous coding function has a property called kraft inequality∑

h∈H

2−|σ(h) | ≤ 1 w(h) = 2−|σ(h) |

64



I can design σ : H −→ {0, 1}∗ istantaneous |σ(h) |

ln |HN | = O (N · ln d)
number of bits i need = number of node in h

Even if i insist in istantaneous i do not lose ... � MANCA PARTE �

|σ(h) | = O (N · ln d)

Using this σ and w(h) = 2−|σ(h) |

`D (h) ≤ ˆ̀
S (h) +

√
1

2m
·
(
c ·N · ln d+ ln

2

δ

)
w. p. at least 1− δ

where c is a constant

ĥ = argmin
h∈H

(
ˆ̀
S (h) +

√
1

2m
·
(
c ·N · ln d+ ln

2

δ

))
where m >> N · h · ln d
If training set size is very small then you should not run this algorithm.

Figure 9.3: Algorithm for tree predictors

This blue curve is an alternative example. We can use Information criterion.

As I increase the number of nodes, Nh decrease so fast. You should take
a smaller tree because it gives you a better bound. It's a principle known as
Occam Razor ( if I have two tree with the same error, if one is smaller than
the other than i should pick this one).
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Having N∗
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Lecture 10 - 07-04-2020

10.1 TO BE DEFINE

10.2 MANCANO 20 MINUTI DI LEZIONE

E [z] = E [E [z |x] ] −→ E [Z |X = x]

E [X] =
m∑
t=1

E [x · Π (At) ] A1, ..., Am portion of sample law of total probability

x ∈ Rd P(YΠ(s,x) = 1) = E
[
ΠYΠ(s,x) = 1

]
= Law of total probability

=
m∑
t=1

E ( Π{Yt = 1} · Π · {Π(s, x) = t} ] =

=
m∑
t=1

E [E [ Π{Yt = 1} · Π · {Π(s, x) = t} |Xt ] ] =

given the fact that Yt ∼ η(Xt)⇒ give me probability

Yt = 1 and Π(s, x) = t are independent given XY ( e.g. E [Z X] = E [x] · E [z] )

=
m∑
t=1

E [E [ Π{Yt = 1} |Xt ] · E [ Π(s, x) = t|Xt ] ] =
m∑
t=1

E [ η(Xt) · Π · {Π(s, x) = t} ] =

= E
[
η (XΠ(s,x) )

]
P(YΠ(s,x)|X = x = E [ η(XΠ(s, x)) ]

P(YΠ(s,x) = 1, y = −1) = E
[

Π{YΠ(s,x) = 1} · Π{Y = −1|X}
]

] =

= E
[

Π{YΠ(s,x) = 1} · Π{y = −1}
]

= E
[
E
[

Π{YΠ(s,x) = 1} · Π{y = −1|X}
] ]

=

by independence i can split them

YΠ(s,x) = 1 y = −1 which is 1− η(x) when X = x
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= E [E [ Π{YΠ(s, x)} = 1|X ] · E [ Π{y = −1}|X ] ] = E
[
ηΠ(s,x) · (1− η(x))

]
=

similarly:

P
(
YΠ(s,x) = −1, y = 1

)
= E

[
(1− ηΠ(s,x)) · η(x)

]
E
[
`D(ĥs)

]
= P

(
YΠ(s,x) 6= y

)
= P

(
YΠ(s,x) = 1, y = −1

)
+P
(
YPi(s,x) = −1, y = 1

)
= E

[
ηΠ(s,x) · (1− eta(x))

]
+ E

[
(1− ηΠ(s,x)) · η(x)

]
Make assumptions on Dx and η:

1. ∀X drawn from Dx max |Xt| ≤ 1
Feature values are bounded in [−1, 1]
all my points belong to this:

X = [−1, 1]d

2. η is such that ∃c <∞ :

η(x)− η(x′) ≤ c · ‖X − x′‖ ∀x, x′ ∈ X
It means that η is Lipschitz in X c <∞⇔ η is continous

using two facts:

η(x′) ≤ η(x) + c ||X − x′|| −→ euclidean distance

1− η(x′) ≤ 1− η(x) + c ||X − x′||
X ′ = XΠ(s,x)

η(X) · (1− η(x′)) + (1− η(x)) · η(x′) ≤
≤ η(x) · ((1− η(x)) + η(x) · c ||X − x′||+ (1− η(x)) · c ||X − x′|| =

= 2 · η(x) · (1− η(x)) + c ||X − x′||

E
[
`d · (ĥs)

]
≤ 2 · E [ η(x)− (1− η(x)) ] + c · (E)

[
||X − xΠ(s,x)||

]
where ≤ mean at most
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Figure 10.1: Point (2) - where y = cx+ q y = −cx+ q

10.3 Compare risk for zero-one loss

E [ min{η(x), 1− η(x)} ] = `D(f ∗)

η(x) · (1− η(X)) ≤ min{ η(x), 1− η(x) } ∀x

E [ η(x) · (1− η(x) ] ≤ `D(f ∗)

E
[
`d(l̂s)

]
≤ 2 · `D(f ∗) + c · E

[
‖X −XΠ(s,x)‖

]
η(x) ∈ {0, 1}

Depends on dimension: curse of dimensionality

`d(f
∗) = 0 ⇐⇒ min{η(x), 1− η(x)} = 0 with probability = 1

to be true η(x) ∈ {0, 1}

69



Figure 10.2: Point
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Lecture 11 - 20-04-2020

11.1 Analysis of KNN

E
[
`D(ˆ̀

s)
]
≤ 2 · `D (f ∗) + c · E

[
‖X = xΠ(s,x)‖

]
At which rate this thing goes down? If number of dimension goes up then a
lot of point are far away from X.
So this quantity must depend on the space in which X live.
Some dependence on number of depends and incresaing number of traning
points close to X
This expecation is fucniton of random variable X and Xπ(s,x)

We are going to use the assumption that:
|Xt| ≤ 1 ∀ cordinates i = 1, ..., d

Figure 11.1: Example of domain of KNN

Hyper box in bydimension. All point live in this box and we exploit that.
Look at the little suare in which is divided and we assume that we are di-
viding the box in small boxes of size ε. Now the training points will be a
strincle of point distributed in the big square.
Our training points are distribuited in the box (this is our S).
Now we added a point x and given this two things can happned: falls in the
square with training points or in a square without training points.
What is going to be the distance Xπ(s,x) in this two cases?
We have c1 up to cr How big is this when we have this two cases? (We
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lookjing at speci�c choices of x and s)

‖X −Xs,x‖ ≤

{
ε
√
d Ci ∪ S 6= 0√

d Ci ∪ S = 0

were X ∈ Ci
We have to multiply by the lenght of the cube. Will be ε

√
d

Figure 11.2: Diagonal length

If things go badly can be very far away like the length of the domain. Lenght
is 2 and diagonal is

√
d

if close they are going to be εclose or far as domain.
We can split that the expression inside the expectation according to the two
cases.

E
[
‖X −XΠ(s,x)‖

]
≤

E

[
ε ·
√
d ·

r∑
i=1

I{X ∈ Ci} · I{Ci ∩ S 6= 0}

]
+ 2 ·
√
d ·

r∑
i=1

I{X ∈ Ci}·I{Ci∩S 6= 0} =

= ε·
√
d· E

[
r∑
t=1

I{X ∈ Ci}I · {Ci ∩ S 6= 0}

]
+2·
√
d ·

r∑
i=1

E [ I{X ∈ C1} · I{C1 ∩ S 6= 0} ] ≤

I don't care about this one
∑r

t=1 I{X ∈ Ci} · I{Ci ∩ S 6= 0}
Can be either 0 or 1 (if for some i, X belong to some Ci
So at most 1 the expectation

≤ ε ·
√
d+�

We can bound this square. Are the event I in the summation of the term
after +. If they are indepednt the product will be the product of the two
expectation. If I �x the cube. X and S are independent.
Now the two events are independent
X ∈ Ci is independent of Ci ∩ S 6=

E [ I{X ∈ Ci} · I{Ci ∩ S 6= 0}] = E [I{X ∈ Ci}] · E [I{Ci}]
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MANCAAAAAAA 9.26

P (Ci ∩ S) = (1− P (X ∈ C1))m ≤ exp(−m · P(x ∈ C1))

The probability of the point fall there and will be the probability of falling
in the cube.
Probability of Xs to fall in the cube with a m (samples?)
Now use inequality (1− p)m ∈ e−pm −→ 1 + x ≤ ex

Figure 11.3: Shape of the function

r∑
t=1

E [P (X ∈ C1) · P (C1 ∩ S 6=) ] ≤
r∑
i=1

pi · e−mpi ≤

given that pi = P(X ∈ Ci) I can upper bound this

≤
r∑
t=1

(
max
0≤p≤1

p e−mp

)
≤ r max

0≤p≤1
p e−mp =

where p e−mp is F (p) it is concave function so i'm going to take �rst order
derivative to maximise it.

F ′(p) = 0⇔ p =
1

m
check!

F ′′(p) ≤ 0

Check this two condition!
=

r

em

Now get expectation

E
[
‖X −XΠ(s,x)‖

]
≤ ε ·

√
d+

(
2 ·
√
d
) r

em
=

I have (2
ε
)2 squares. This bring ε in the game

ε ·
√
d+

(
2 ·
√
d
) 1

em
·
(

2

ε

)d
=
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=
√
d

(
ε+

2

em
·
(

2

ε

)d)
HE MISS THE "c" costant from the start we can choose ε to take
them balanced
set ε = 2m

−1
(d+1) (

ε+
2

em

)
·
(

2

ε

d
)
≤ 4m

−1
(d+1) =

E
[
`d(ĥs)

]
≤ 2`d(f

∗) + 4 · c ·
√
d ·m−

1
d+1

We have that:
if m −→ ∞ `D(f ∗) ≤ E

[
`D(ĥs

]
) ≤ 2`D(f ∗)

I want this smaller than twice risk + some small quantity

E
[
`d(ĥS)

]
≤ 2`D(f ∗) + ε

How big m ?
Ignore this part since very small (4 · c ·

√
d)

m−
1
d+1 ≤ ε⇔ m ≥

(
1

ε

)d
+ 1

So 1-NN require a training set size exponential "accuracy" 1− ε

We show that 1−NN can approach twice based risk 2 · `D(f ∗)
but it takes a training set exponential in d.

11.1.1 Study of KNN

Maybe we can use the KNN .

E
[
`D(ĥs)

]
≤

(
1 +

√
8

k

)
`D(f ∗) + 0

(
km−

1
d+1

)
So is not exponential here.
Learning algorithm A is consistent for a certain loss `
If ∀D(distribution) of data we have that A(Sm) predictor output by A
Now have the risk of that in `D(A(Sm)) and we look at the expectation
E [`D(A(Sm))]
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If we give a training set size large ( limm→∞ E [`D(A(Sm))] = `D(f ∗) ) risk
will converge in based risk.

KNN where K = Km (is a function of training set size). K, →∞ as m→∞.
Only way K goes to in�nity is sublinearly of training set size. (in�nity but
so as quicly as m Km = O(m)

For instance Km =
√
m

Then:

lim
m→∞

E [`D (A′ (Sm))] = `D(f ∗) where A′ is Km-NN

Increasing the size we will converge to this base risk for any distribution and
that's nice.

11.1.2 study of trees

Algorithm that grow tree classi�ers can also be made consistent provided two
condition:

� The tree keeps growing

� A non-vanishing fraction of traning example is routed to each leaft

Tree has to keep growing but not so fast.
Second point is: suppose you have a certain number of leaves and you can
look at the fraction. Each leaf ` gets N` examples. You want that this frac-
tion at any point of time is not going to 0. The fraction of point every leaf
receive a split we are reducing the smallest number of examples.
Example keep growing and leaves too and we want that N`

manca
this not going

to 0. . since not showed the formula.

Given A, how do I know wheter A could be consistent?

HA ≡ { h : ∃S A(S) = h}

S can be any size. If A is ERM then HA = H, so where ERM minimise it.
If ∃f ∗ : X −→ such that f ∗ 6∈ HA and ∃D such that f ∗ is Bayes optimal for
some distribution D.
This cannot be consistent because distribution will not be able to generate
the Bayes optimal predictor. Maybe is there another predictor f which is

75



not equal to f ∗ risk.

What's the intuition?
Every time A is such that HA is "restricted" in some sense, then A cannot
be consistent. (e.g ERM).

Another way of restricting? Could be tree classi�ers with at most N nodes
(bound number of nodes).
How do i know N is enought to approximate well f ∗. I want to converge the
risk of f ∗.
We can introduce a class of algorithm potentially consistent in which space
predictor is not restricted.

11.2 Non-parametric Algorithms

When they are potentially consistent.
What does it mean?
Non-parametric algorithm have the potential of being consistent and do we
know if algorithm is parametric or not?
A is non-parametric if:

� the description of A(Sm) grows with m

Your predictor is a function and let's assume i can store in any variable a
real number with arbitrary precition.

Any algorithm with bias is incosistent. So ability to converge to
base risk is this.
How do i know if i have bias or not? this is where non parametric algorithm
came.
Let's consider KNN , how i can describe it? I have to remember distance is
maded by training points and if i give you more S the m will increase. So
this is parametric.
More training set for tree, then will grow more, even more larger will be ever
growing more.
Any algorithm as a give training points is no parametric, while growing with
parametric will stop a some point.
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Figure 11.4: Parametric and non parametric growing as training set getting
larger

If algorithm is more parametric as i give training points
If a certain point stop growing, f ∗ will be out and i will grow more.
If algorithm is able to generate � MANCA � Then the algorithm is non-
parametric and can be potentially consistent and incluse f ∗ as it grows.
If set of predictor stops because I'm not enlarging my set of predictor since
description of algortim will not depend on training size at some point →
to be consistent.
If bias vanashes as i increase the S, then i can be consistent. I generating
predictor that description depends on how much points i give them.

Parametric is not precise as consistency.
One class of algorithm that has consistency has a predicotr size growing with
S growing.
De�nition of non parametric is more fuzzy, consistency is precise (we demon-
strate that mathematically).

11.2.1 Example of parametric algorithms

Neural network is parametric since i give structure of the network. If i give
S small or big S my structure will be the same (will �t better on the training
points).
Other example are algorithm with linear classi�er in which number of pa-
rameter are just the idmension of the space.
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Lecture 12 - 21-04-2020

12.1 Non parametrics algorithms

We talk about consistency: as the training size grows unbounded the ex-
pected risk of algorithms converge to Bayes Risk.

Now we talk about non parametric algorithm: the structure of the model
is determined by the data.
Structure of the model is �xed, like the structure of a Neural Network but
in non parametric algorithm will change structure of the model as the data
grows (KNN and tree predictor).
If I live the tree grow unboundenly then we get a non parametric tree, but if
we bound the grows then we get a parametric one.

The converve rate of Bayes Risk (in this case doubled) was small. Converge

of 1-NN to 2 `D(f ∗) is m−
1
d+1 so we need an esponential in the dimension.

And we need this is under Lips assumption of η.
It's possible to converge to Bayes Risk and it's called No free lunch.

12.1.1 Theorem: No free lunch

Let a sequenece of number a1, a2 ... ∈ R such that they converge to 0.
Also 1

22222222
≥ a1 ≥ a2 ≥ ... ∀A for binary classi�cation ∃D s. t.

`D(f ∗) = 0 (zero-one loss) so Bayes risk is zero and E [ `D (A(SM)) ] ≥
am ∀m ≥ 1
Any Bayes Optimal you should be prepared to do so on long period of time.
This means that:

� For speci�c data distribution D, then A may converge fast to Bayes
Risk.

� If η is Lipschitz then it is continous. This mean that we perturb the
input by the output doesno't change too much.

� If Bayes Risk is 0 (`D(f ∗) = 0) function will be discontinous

This result typically people think twice for using consistent algorithm be-
cause

I have Bayes risk and some non conssitent algorithm that will converge to
some value (`D(ĥ∗)). Maybe i have Bayes risk and the convergence takes a
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Figure 12.1: Tree building

lot on increasing data points. Before converging was better non parametric
(?..)

Picture for binary classi�cation, (similar for other losses)

� Under no assumption on η, the typicall "parametric" converge rate to
risk of best model in H (including ERM) is m−

1
2 . (Bias error may be

high)

� Under no assumption on η there is no guaranteed convergence to Bayes
Risk (in general) and this is no-free-lunch that guaranteed me no
convergence rate.

� Under Lipshtiz assunption on η the typical non parametric convergence

to Bayes Risk ism−
1
d+1 . This is exponentially worst than the parametric

convergency rate.

The exponential depencendece on d is called Curse of dimnsionality.
But if I assume small number of dimension −→ KNN is ok if d is small (and
η is "easy")
If you have a non parametric algorithm (no Bayes error but may have expo-
nentially in�nity training error). I want them to be balanced and avoid bias
and variance. We need to introduce a bit of bias in controlled way.
Inserting bias to reducing variance error. So we sacrify a bit to get a better
variance error.

It could be good to inject bias in order to reduce the variance error. In
practise instead of having 0 training error i want to have a larger training
error and hope to reduce over�tting sacri�ng a bit in the training error.
I can increase bias in di�erent technics: one is the unsamble methods.
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12.2 Highly Parametric Learning Algorithm

12.2.1 Linear Predictors

Our domain is Euclidean space (so we have points of numbers).

X is Rd x = (x1, .., xd)

A linear predictor will be a linear function of the data points.

h : Rd −→ Y h (x) = f(wT x) w ∈ Rd

f : R −→ Y

And this is the dot product that is

wT x =
d∑
t=1

wixi = ‖w‖ ‖x‖ cos Θ

Figure 12.2: Dot product

Suppose we look a regression with square loss.

Y = R h(x) = wT x w ∈ Rd

f ∗(x) =E [Y |X = x ]
Binary classi�cation with zero-one loss Y = {−1, 1}We cannot use this since
is not a real number but i can do:

h(x) = sgn
(
wT x

)
sgn(x) =

{
+1 if z > 0

−1 if z ≤ 0

where sgn is a sign function. Linear classi�er.
‖X‖ cos Θ is the length of the projection of x onto w
Now let's look at this set:

{x ∈ Rd : wTx = c}
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Figure 12.3: Dot product

This is a hyperplane.

‖w‖‖x‖ cos Θ = c ‖x‖ cos Θ =
c

‖w‖

Figure 12.4: Hyperplane

So (w, c) describe an hyperplane.
We can do binary classi�cation using the hyperplane. Any points that lives
in the positive half space and the negative. So the hyperplane is splitting in
halfs. H ≡ {x ∈ Rd : wTx = c}

H+ ≡ {x ∈ Rd : wTx > c} positive hs

H− ≡ {x ∈ Rd : wTx ≤} negative hs

h(x) =

{
+1 if x ∈ H+

−1 if x 6∈ H−
h(x) = sgn(wT − c)
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Figure 12.5: Hyperplane

h1 is non-homogenous linear classi�er.
h2 is homogenous linear classi�er. Any homogenous classi�er is equivalent to

Figure 12.6: Hyperplane

this:

{x ∈ Rd : X = c} is equivalent to {x : Rd+1 : νTx = 0}

ν = (w1, .., wd,−c) x′ = (x1, ..., xd, 1)

So we added a dimension.

wTx = c ⇔ νTx′ = 0∑
i

w1x1 = c ⇔
∑
i

w1x1 − c = 0

Rule:
When you learn predictor just add an extra feature to your data
points, set it ot 1 and forget about non- homogenous stu�.
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One dimensional example

Figure 12.7: Example of one dimensional hyperplane

I have negative (left of (x, 1) and positive point (left of (z, 1) classi�ed

Now i want to learn linear classi�er. How can i do it?

Hd = { h : ∃w ∈ Rd h(x) = sgn(wTx) }

Parametric!
We expect high bias a low variance.

ERM ĥS = arg min
h∈Hd

1

m
·
m∑
t=1

I{h(xt) 6= yt} =

= arg min
w∈Rd

1

m
·
m∑
t=1

I { ytwTxt ≤ 0 }

A bad optimisation problem!

FACT:
It is unlikely to �nd an algorithm that solves ERM for Hd and zero-one loss
e�ciently.
NP completeness problems!
It's very unlikely to solve this problem.
This problem is called MinDisagreement

83



12.2.2 MinDisagreement

Instance: (x1, y1)...(xm, ym) ∈ {0, 1}d x {−1, 1}, k ∈ N
Question: Is there w ∈ xDd

s.t ytw
Txt ≤ 0 for at most k indices t ∈ {1, ...m}

This is NP-complete!
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Lecture 13 - 27-04-2020

13.1 Linear prediction

We had ERM ĥ

S = {(x1, y1)...(xn, yn)} xt ∈ Rd yt ∈ {−1,+1} `t(w) = I{ytwTxt ≤ 0}

ĥS = arg min
h∈HD

1

m

m∑
t=1

I{ytwTxt} ≤ 0

The associated decisio problem is a NP problem so cannot be camputed ef-
�cientiy unless P ≡ NP
Maybe we can approximate it, so a good solution that goes close to minimise
error.
This is called MinDisOpt

13.1.1 MinDisOpt

Instance: (x1, y1)...(xn, yn) ∈ {0, 1}dx{0, 1}
Solutio:

w ∈ QDminimising the number of indicest = 1, ...m s.t. htw
Txt ≤ 0

Opt(S) is the smallest number of mislcassi�ed example in S by any linear
classi�er in HD

where Opt(S)
m

is training error of ERM

Theorem : if P 6≡ NP , then ∀c > 0 there are no polytime algorithms
(with r. t. the input size Θ(md)) that approximately solve every istance S
of MinDisOpt with a number of mistakes bounded by C ·Opt(S).
If I am able to approximate it correclty this approximation will grow with
the size of the dataset.

∀A (polytime) and ∀C ∃S ˆ̀
S (A (S)) ≥ c·ˆ̀S

(
ĥS

)
(where ĥS is ERM)

Opt(S) = ˆ̀
S(ĥS)

This is not related with free lunch theorem (information we need to get base
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error for some learning problem). Free lunch: we need arbitrarirally informa-
tion to get such error. Here is we need a lot of computation to approximate
the ERM .

Assume Opt(S) = 0 ERM has zero training error on S
∃U ∈ Rd s.t. ∀t = 1, ...m ytU

Txt > 0 S is linearly separable

Figure 13.1: Tree building

We can look at the min

min
t=1,...m

ytU
Txt = γ(U) > 0 We called this marginn of U on (xt, yt)

We called in this way since γ(U)
‖U‖ = min tyt‖xt‖cos(Θ)

Figure 13.2: Tree building

where Θ is the angle
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Figure 13.3: Tree building

whereγ(U)
‖U‖ is the distance separating hyperplane on closest training example .

S linearly separable and if i look at the sistem of this linear inequality:{
ytwTxt > 0

ymwTxm > 0

We can solve it in polytime using a linear solver. So any package of linear
programming, and will be solved in linear time.

This is called feasibilty problem. We want a point y that satisfy all my
linear inequalities.

Figure 13.4: Feasibilty problem

When Opt(S) = 0 is we can implememtn ERM e�ciently using LP
(Linear programming).
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They may over�tting since a lot of bias. When this condition of Opt is no
satisfy we cannot do it e�ciently. LP algorithm can be complicated so we
�gure out another family of algorithm.

13.2 The Perception Algorithm

This came from late '50s and was designed for psicology but have a general
utility in othe �elds.

Perception Algorithm
Input : training set S = {(xt, yt)...(xm, ym)} xt ∈ Rd yt ∈ {−1,+1}
Init: w = (0, ...0)
Repcat
read next (xt, yt)
If ytw

Txt ≤ then w ←− w + ytxt
Until margin greater than 0 γ(w) > 0 // w separates S
Output w

We know that γ(w) = mint ytw
Txt ≤ 0 The question is, will it terminate

if S is linearly separable?
If ytw

Txt ≤ 0, then w ←− w + ytxt

Figure 13.5:

For simplicity our x are in this circle. Some are on the circonference on top
left with + sign and some in bottom right with − sign.
All minus �ipped to the other side and the we can deal the +.
U is a separating hyperplane, how can i �nd it?
Maybe i can do something like the average:

U =
1

m

m∑
t=1

ytxt ?

But actually don't take the average of all of them. So do not take average of
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all, instead take the one that satisfy ytw
Txt ≤ 0 condition.

ytw
Txt ≤ 0 is a violated consstraint and we want it > 0.

Does w ←− w + ytxt �x it?

yt(w + yt · xt)Txt = ytw
Txt + ‖xt‖2

We are trying to see what happen before and after the updates of w.
SInce ‖xt‖ > 0 so is positive, the update increase margins, thus going to-
wards �xing violated constraints.

13.2.1 Perception convergence Theorem

dated early 60s On a linearly separable S, perceptron will converge after at
most M updates (when they touch in the �gure) where:

M ≤
(

min
U : γ(U) = 1

‖U‖2

)(
max
t=1,..m

‖xt‖2

)
Algorithm is not able to do that. ALgorithm keeps looking till he get a vio-
lating constraint and then stops. This is bounded by the number of loops.

We said that γ(U) = mint ytU
Txt > 0 when U is separator.

∀t ytU
Txt ≥ γ(U) ⇔ ∀t yt

(
U

γ(U)

)T
xt ≥ 1

Figure 13.6:

If i rescale U i can make the margin bigger (in particolar > 1)
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The shortest min‖U‖ s.t. ytU
Txt ≥ 1 ∀t

Proof :
Wm is local variable after M updates, I have zero vector W0 = (0, ...0)
tM is the index of training example that causes the M -th update.

We want to upper bound M (deriving upper and lower bound
on a certain quantity ‖W‖ ‖U‖)
where U is any s.t. ytU

Txt ≥ 1 ∀t

‖WM‖2 = ‖WM−1 +ytMxtM‖2 = ‖WM−1‖2 +‖ytMxtM‖2 +2 ·ytMW T
M−1xtM =

= ‖WM−1‖2 + ‖xtM‖2 + 2 · ytMW T
M−1xtM ≤

where ytMW
T
M−1xtM ≤ 0

≤ ‖wM−1‖2 + ‖xtM‖2

‖WM‖2 ≤ ‖W0‖2 +
M∑
i=1

‖xt‖2 ≤M
(

max
t
‖xt‖2

)
........

.....

... MANCA ?????

‖WM‖ ‖U‖ ≤ ‖U‖
√
M
(

max
t
‖xt‖

)
since cos Θ ∈ [−1, 1]

‖WM‖ ‖U‖ ≥ ‖WM‖ ‖U‖ cos Θ = W T
MU = (WM−1 + ytMxtM)T U =

where last passage is the Inner product

W T
M−1U + ytMU

TxtM ≥ W T
M−1U + 1 ≥ W T

0 U +M = M

where ytMU
TxtM is ≥ 1

M ≤ ‖WM‖ ‖U‖ ≤ ‖U‖
√
M
(

max
t
‖xT‖

)
M ≤

(
‖U‖2

) (
max
t
‖xt‖2

)
∀U : min

t
ytU

txt ≥ 1

M =

(
min

U : γ(U)=1
‖U‖2

)(
max
t
‖xt‖2

)
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Some number depends on S
M can be exponential in md when the ball of positive and negative are very
closer and the length of U is super long and exponential in D.
If dataset barely separable then perceptron will make a number of mistakes
that is exponential in the parameter of the problem. U is a linear separator
and has exponential length
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Lecture 14 - 28-04-2020

14.1 Linear Regression

Yesterday we look at the problem of emprical risk minismisation for a linear
classi�er. 0-1 loss is not good: discontinuous jumping from 0 to 1 and it's
di�fcult to optimise. Maybe with linear regression we are luckier.
Our data point are the form (x, y) x ∈ Rd regression, (ŷ − y)2 square loss.
We are able to pick a much nicer function and we can optimise it in a easier
way.

14.1.1 The problem of linear regression

Instead of picking -1 or 1 we just leave it as it is.

h(c) = wT x w ∈ Rd x = (x1, ..., xd, 1)

ŵ = arg min
w∈Rd

1

m

m∑
t=1

(wT xt − yt)2 ERM for (x1, y1)...(xm, ym)

How to compute the minimum?
We use the vector v of linear prediction
v = (wTx1, .., w

Txm)
and a vector of real valued labels
y = (y1, ..., ym) where v, y ∈ Rm

m∑
t=1

(wTxt − yt)2 = ‖v − y‖2

S is a matrix.

sT = [x1, ..., xm] d×m v = sw =

xt1...
xTm

w


So:
‖v − y‖2 = ‖sw − y‖2

ŵ = arg min
w∈Rd

‖sw − y‖2 where sw is the design matrix

F (w) = ‖sw − y‖2 is convex
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∇F (w) =6 2sT (sw − y) = 0 sT sw = sTy

where sT is d×m and s is m× d and d 6= m
If sT s invertible (non singular) ŵ = (sT s)−1 sT y
And this is called Least square solutions (OLS)

We can check sT s is non-singular if x1, ..., xm span Rd

sT · s may not be always invertible. Also Linear regression is high bias
solution. ERM may under�t since linear predictor introduce big bias.
ŵ = (sT · s)−1 · sT · y is very instable: can change a lot when the the dataset
is perturbed.
This fact is called instability : variance error
It is a good model to see what happens and then try more so�sticated model.
Whenever ŵ is invertible we have to prove the instability. But there is a easy
�x!

14.1.2 Ridge regression

We want to stabilised our solution. If sT · s non-singular is a problem.

We are gonna change and say something like this:

ŵ = argmin
w
‖s · w − y‖2  ŵα = argmin

w

(
‖sw − y‖2 + α · ‖w‖2

)
where α is the regularisation term.

ŵα → ŵ for α→ 0
ŵα → (0, ..., 0) for α→∞

Figure 14.1:
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ŵα has more bias than ŵ, but also less variance

∇
(
‖sw − y‖2 + α ‖w‖2

)
= 2

(
sT sw − sT y

)
+ 2αw = 0(

sT s+ α I
)
w = sT y

(d×m) (m× d) (d× d) (d×m) (d×m) (m× 1)

where I is the identity

ŵα =
(
sT s+ α I

)−1
sT y

where y1, ..., yα are eigen-values of sT s
y1, ..., yα + α > 0 eigenvalues of sT s+ αI
In this way we make it positive and semide�nite.
We can always compute the inverse and it is a more stable solution and stable
means do not over�t.

14.2 Percetron

Now we want to talk about algorithms.
Data here are processed in a sequential fashion one by one.
Each datapoint is processed in costant time Θ (d)
(check ytw

T ≤ 0 and in case w ← w + yt xt) and the linear model can be
stored in Θ(d) space.
Sequential processing scales well with the number of datapoints.
But also is good at dealing with scenarios where new data are generated at
all times.
Several scenario like:

� Sensor data

� Finantial data

� Logs of user

So sequential learning is good when we have lot of data and scenario in which
data comes in �ts like sensor.
We call it Online learning
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14.2.1 Online Learning

It is a learning protocol and we can think of it like Batch learning. We have
a class H of predictors and a loss function ` and we have and algorith that
outputs an initial default predictor h1 ∈ H.

For t = 1, 2...
1) Next example (xt, yt) is observed
2) The loss `(ht(xt), yt) is observed (ytw

T xt ≤ 0)
3) The algorithm updates ht generating ht+1 (w ← w + yt xt)

The algorithm generates s sequence h1, h2, ... of models
It could be that ht+1 = ht occasionally
The update ht → ht+1 is local (it only uses ht and (xt, yt))
This is a batch example in which take the training set and generate a new
example.

(x1, y1)→ A→ h2

(x1, y1)(x2, y2)→ A→ h3

But if I have a non-learning algorithm i can look at the updates:

Figure 14.2:

This is a most e�cient way and can be done in a costant time. The batch
learning usually have single predictor while the online learning uses a se-
quence of predictors.

How do I evaluate an online learning algorithm A? I cannot use a single
model, instead we use a method called Sequential Risk.
Suppose that I have h1, h2... on some data sequence.

1

m

T∑
t=1

`(ht(x), yt) as a function of T

The loss on the next incoming example.
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I would like something like this:

Figure 14.3:

We need to �x the sequence of data: I absorb the example into the loss
of the predictor.

`(ht(x), yt) −→ `t(ht)

I can write the sequential risk of the algorithm:

1

m

T∑
t=1

`t(ht)−min
h∈H

1

m

T∑
t=1

`t(h)

So the sequencial risk of the algorithm - the sequential risk of best predictor
in H (up to T ).
This is a sequential similar of variance error. −→ is called Regret.

h∗T = argmin
h∈H

1

T

∑
t

`t(h)
1

T
`t(ht)−

1

T

∑
t

`t(h
∗
T )
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14.2.2 Online Gradiant Descent (OGD)

It is an example of learning algorithm.
In optimisation we have one dimension and we want to minimise the function
i can compute the gradiant in every point.
We start from a point and get the derivative: as I get the derivative I can
see if is decreasing or increasing.

Figure 14.4:

f convex min
x
f(x) f Rd → R

xt+1 = xt + η∇f(xt) η > 0

wt+1 = wt + η∇`t(wt)

where η is the learning rate.

h(x) = wT x `t(w) = `(wT xt, yt) for istance `(wT xt, yt) = (wT xt−yt)2

Assumption `t is convex (to do optimisation easily) and di�erentiable (to
compute the gradiant)
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Lecture 15 - 04-05-2020

15.1 Regret analysis of OGD

We introduce the Regret.

1

m

T∑
t=1

`t(wt)−
1

T

T∑
t=1

`t(u
∗
t )

(x1, y1)...(xt, yt) `t(w) =
(
wT xt − yt

)2

we build a loss function for example with the square loss.
The important thing is that `1, `2, ... is a sequence of convex losses.

In general we de�ne the regret in this way:

RT (u) =
T∑
t=1

`t(wt)−
T∑
t=1

`t(ut)

The Gradiant descent is one of the simplest algorithm for minimising a convex
function. We recall the iteration did by the algorithm:

wt+1 ← wt − ηt∇f(wt) ηt > 0 learning rate f convex

f : Rd → R that's why use the gradiand instead of the derivative

Learning rate can depend on time and we approach the region of the function
f where the region is 0. We keep on moving in the X axes in the direction
where the function is decreasing.
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15.1.1 Projected OGD

2 parameters: η > 0 and U > 0
Initialisation: w1 = (0, ..., 0)
For t = 1, 2, ...

1) Gradiant step:

w′t+1 = wt −
η√
t
∇`t(wt) (xt, yt) `t

Figure 15.1:

2) Projection step:

wt+1 = arg min
w:‖w‖≤U

‖w − w′t+1‖

Projection of w′t+1 onto the ball of radius U .

Figure 15.2:

Now we de�ne the Regret:

U∗T = arg min
U∈Rd ‖U‖≤U

1

T

T∑
t=1

`t(U)

We are interested in bounding the regret RT (U∗T )

I will Fix `1, ...`t let U = U>
T for U .

Taylor's theorem for multivariate functions
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Let's look a univariate �rst f : R → R ( has to be twice di�erentiable)
w, u ∈ R

f(u) = f(w) + f ′(w) (u− w) +
1

2
f ”(x) (u− w)2

For the multivariate case:
f : Rd → R twice di�erentiable ∀u,w ∈ Rd

f(u) = f(w) +∇f(w)T (u− w) +
1

2
(u− w)T ∇2f(ξ) (u− w)

where ξ is some point on the segment goining u and w. We have the Hessian
matrix of f :

∇2f(x)ij =
∂2f(x)

∂xi ∂xj
|x = xi

If f is convex then, ∇2f is positive and semide�nite.
∀x ∈ Rd ∀z ∈ Rd zT ∇2f(x) z ≥ 0

Figure 15.3:

Now we can apply this results to our problem: in particular I rearrange the
factors

f(w)− f(u) ≤ ∇f(w)T (w − u)

This is Ok for f convex and di�erentiable.
I know that: u− wT∇2f(ξ) (u− w) ≥ 0 because f is convex.

`t(wt)− `t(u) ≤ ∇`t(wt)T (wt − u) Linear Regret

How do we proceed?
The �rst step of the algorithm is : w′t+1 = wt − ηt∇`t(wt) ηt = η√

t

= − 1

ηt
(w′t+1−wt)T (wt−u) =

1

ηt

(
1

2
‖wt − u‖2 − 1

2
‖w′t+1 − u‖2 +

1

2
‖wt+1 − wt‖2

)
≤
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≤ 1

ηt

(
1

2
‖wt − u‖2 − 1

2
‖wt+1 − u‖2 +

1

2
‖w′t+1 − wt‖2

)
w′ disappear and add minus sign. I am saying that ‖wt+1− u‖ ≤ ‖w′t+1− u‖

Figure 15.4:

So is telling us that wt+1 is closer to u than w′t+1

This holds since the ball is convex.

Now we go back adding and subtracting ± 1
2 ηt+1
‖wt+1 − u‖2

=
1

2 ηt
‖wt − u‖2 − 1

2 ηt+1

‖wt+1 − u‖2− 1

2 ηt
‖wt+1 − u‖2 +

1

2 ηt+1

‖wt+1 − u‖2+
1

2 ηt
‖wt+1−wt‖2

We group the 1,2 and 3,4 elements and sum them up.

RT (U) =
T∑
t=1

(`t(wt)− `t(u)) ≤

This is a telescopic sum: a1 − a2 + a2 − a3 + a3 − a4 + at − at + 1 and
everything in the middle cancel out and remains �rst and last terms.

≤ 1

2 ηt
‖w1−u‖2− 1

ηT+1

‖wT+1−u‖2+
1

2

T∑
t=1

‖wt+1−u‖2

(
1

ηt+1

− 1

ηt

)
+

1

2

T∑
t=1

‖w′t+1 − wt‖2

ηt

where w1 = 0 and ‖wt+1−u‖2 ≤ 4U2 and ‖w′t+1−wt‖2 = η2
t ‖∇`t(wt)‖2

We know that ηt = η√
t

so η1 = η√
1

= η

RT (U) ≤ 1

2 η
U2− 1

2 ηT+1

‖wT+1 − U‖2 + 2U2

T−1∑
t=1

(
1

ηt
− 1

ηt

)
+

+
‖wT+1 − U‖2

2ηT+1

− ‖wT − U‖
2

ηT
+

1

2

T∑
t=1

ηt‖∇`t(wt)‖2
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where red values cancel out.
I assume that square loss is bounded by some number G2: ‖∇`t(wt)‖2 ≤ G2

Also, it's a telescopic sum again and all middle terms cancel out.

max
t
‖∇t(wt)‖2 ≤ G

RT (U) ≤ 1

2 η
U2 + 2U2

(
1

ηT
− 1

η1

)
+
G2

2
η

T∑
t=1

1√
t

ηt =
1√
t

where red values cancel out.
Now how much is this sum

∑T
t=1

1√
t
?

It is bounder by the integral ≤
∫ T

1
dx√
x
≤ 2
√
T

RT (U) ≤ 2U2
√
T

η
+ η G2

√
T =

(
2U2

η
+ η G2

)√
T

η = U
G

√
2

So �nally:

1

T

T∑
t=1

`t(wt) ≤ min
‖U‖≤U

1

T

T∑
t=1

`t(u) + U G

√
8

T

RT (U) =
1

T

T∑
t=1

(`t(wt)− `t(u)) ∀u : ‖u‖ ≤ U : RT (U) = O

(
1√
T

)
Basically my regret is gonna go to 0.

For ERMinH where |H| <∞, variance error vanishes at rate 1√
m

The bound U G2
√

8
T

on regret holds for any sequence `1, `2, ... of convex

and a�ordable losses, If `t(w) = `(wT xt, yt) then the bound holds for any
sequence of data points (x1, y1), (x2, y2)..
This is not a statistical assumption but mathematical so stronger.
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Lecture 16 - 05-05-2020

16.1 Analysis of Perceptron in the non-separable

case using OGD framework.

We are �nishing up the part of online learning and gradiant descent.
Concrete example for the parameter G:

G = max
t
‖∇`t(wt)‖2 `t(w) = (wT xt − yt)2 ‖xt‖ ≤ X, |yt| ≤ U X

‖w‖ ≤ U, |wT xt| ≤ ‖w‖ ‖xt‖

where ‖w‖ U and ‖xt‖ X (so are bounded by U and X)

Now we want to �nd the gradiant.

‖∇`t(w)‖ ≤ 2 |wT xt − yt| ‖xt‖ ≤ 4U X‖xt‖ ≤ 4U X2

where wT xt bounded U X and yt bounded by U X

RT (u) = U G
√

8T ≤ 8(UX)2
√

2T

How about OGD for classi�cation?
The problem is that zero-one loss is not convex (also non-continous).

I{ytwT xt ≤ 0}

This is zero-one loss for linear classi�cation.

Figure 16.1:

w ← w − η∇`t(w) OGD

w ← w + yt xt I{ytwT xt ≤ 0} Perceptron
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We want to make this equal with loss that is convex and also tell us bound
with zero one loss. So there is a bunch or problem.
So we want to make this equal but how?

`t(w) =
[
−ytwT xt

]
+

[z]t = max{0, z}
If we take the gradiant of this with respect to w:

∇`t(w) = −yt xt I{ytwT xt ≤ 0}

Now - this gradiant is exactly this `t(w) =
[
−ytwT xt

]
+

The problem is not comparable with the number of mistakes so I am not
going to have the number of mistakes.

How do I do it?
What if I just shift to the right?
Now this loss is an upper bound of the zero-one loss. And this is called
Hinge loss (where hinge take the door attached to the frame of the wall)

Figure 16.2: Hinge loss

Hinge loss: ht(w) =
[
1− ytwT xt

]
+
≥ I{ytwT xt ≤ 0}

∇ht(h) = −yt xt I{ytwT xt ≤ 1}
The problem is that it becames 0 later on than the original one.

w ← w − η∇ht(w) I{ytwTxt ≤ 0}
ytw

T xt ≤ 0 ⇒ ytw
Txt ≤ 1

We now apply OGD analysis to ht considering only the steps T where
I{ytwTt xt ≤ 0} and we do not perform projection.

T∑
t=1

(ht (wt)− ht(u)) I{ytwTt xt ≤ 0} ≤
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≤ 1

2 η
‖U‖2+

1

2

T∑
t=1

‖wt+1 − u‖
(

1

η
− 1

η

)
I{ytwTt xt ≤ 0}+η G

2

2

T∑
t=1

I{ytwTt xt ≤ 0}

where second factor cancel out

− 1

2 η
‖wT+1 − u‖2 ‖∇ht(w)‖ = |yt|‖xt‖ ≤ X G = X = max

t
‖xt‖

where yt in {−1, 1}
ytw

T
t xt ≤ 0 ⇒ ht(wt) ≥ 1

Figure 16.3:

T∑
t=1

I{ytwTt xt ≤ 0} ≤
T∑
t=1

ht(wt)I{ytwTt xt ≤ 0} ≤

T∑
t=1

ht(u) I{ytwTt xt ≤ 0}+
1

2 η
‖u‖2 +

η

2
x2

T∑
t=1

I{ytwTt xt ≤ 0}

where I.. cancel out to have a "nicer" upper bound.

MT =
T∑
t=1

I{ytwTt xt ≤ 0}

MT ≤
T∑
t=1

ht(u) +
1

2 η
‖u‖2 +

η

2
x2 MT

This is not a regret anymore! Here MT is the number of mistakes and I
compare it with the hinge loss (ht(u)).

I CAN'T USE THIS η = ‖u‖
x
√
MT

but we can replace it in MT .

MT ≤
T∑
t=1

ht(u) + ‖u‖X
√
MT
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MT ≤
T∑
t=1

ht(u) + (‖u‖x)2 + ‖u‖x
√∑

t

ht(u)

w ← w + η yt xt I{ytwTt xt ≤ 0} w = (0, ...0)

If I choose η > 0?

wt = η

t−1∑
s=1

ys xs I{yswTs xs ≤ 0} ∀ η > 0

Also holds because it's true ∀η > 0

MT =
T∑
t=1

I{ytwTt xt ≤ 0} invariant with respect to η > 0

It does not matter which η we choose. The number of mistakes is going to
be the same. This mean that the state of the algorithm (which depends on
mistakes) is gonna be the same.
I can run perceptron with η = 1 and pretend (in the analysis) it was run

with η = ‖U‖
X
√
MT

We go back to the bound of MT . We are actually free to choose any number
of U.
If (x1, y1), (x2, y2) is linearly separable then:
∃U s.t. yt U

Txt ≥ 1 ⇒ ht(u) = 0 ∀t

MT ≤ ( ‖U‖ X )2 the perceptron convergence theorem.

MT ≤ min
u∈Rd

 T∑
t=1

ht(u) + (‖U‖X)2 + ‖U‖X
√∑

t

ht(u)


This are called Oracle bounds, the perceptron knows which is the best U .
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16.1.1 Strongly convex loss functions

We use this to analyse all class of algorithms that regularise the ERM which is
the support vector machine. We want to explain what happen using Support
vector Machine. For neural networks we cannot do this since NN are not
convex and there is not way to "convexify". Convexifying we lose the power
of NN.
We said that `t have to be convex. But i have a lot of types of convexity.

Figure 16.4: Example of more type of convex function

This two for example are both convex. In the left this always has a positive
curvature, while the right one we have a 0 curvature since is two straight
line and not di�erentiable. In other word, Hessian on the left positive and
de�nite. On the right Hessian is 0.
We are looking for strongly convex losses.
` di�erentiable is σ-strongly convex if:

∀u,w `(w)− `(u) ≤ ∇`(w)T (w − u)− σ

2
‖w − u‖2 σ > 0

σ-SC is equivalent to the Hessian having all strictly positive eigeinvalues.

Example, check if strictly convex:

`(w) =
1

2
‖w‖2 1

2
‖w‖2 − 1

2
‖u‖2 ≤? wT (w − u)− σ ‖w − u‖

2

2
whehre σ = 1

1

2
‖w‖2 − 1

2
‖u‖2 ≤? ‖w‖2 − wT u− ‖w − u‖

2

2

where 1
2
‖w‖2 cancel out

0 ≤ 1

2
‖w‖2 +

1

2
‖u‖2 − ‖w − u‖

2

2
− wT u
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I put 0 = ...

0 =
1

2
‖w‖2 +

1

2
‖u‖2 − ‖w − u‖

2

2
− wT u

So this function is 1-strongly convex

Next lecture we are going to show that we can run OGD with strongly convex
functions. We are going to get a better bound. Our regret is gonna vanish
much faster than the case of simple convexity.
You can prove that if Hessian is 0, your regret is vanishing with a rate of U G√

T
.

We will shows with strong convexity the OGD will converge much faster with
a rate of lnT

T
.

This is what happen in optimisation, we prefer strictly convex function.
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Lecture 17 - 11-05-2020

17.1 Strongly convex loss functions

We will saw with OGD but we will see Support Vector Machine(SVM). Very
popular learning model.
We will see SVM next to see the part of linear predictor and also speak about
Kernel function used with linear predictor to obtain non -linear classi�er from
a linear classi�er.

` is σ-SC if ∀u,w:

`(w)− `(u) ≤ ∇`(w)T (w − u)− σ

2
| w − u‖2

17.1.1 OGD for Strongly Convex losses

Init: w1 = (0, ..., 0)
For t = 1, 2...
wt+1 = wt − 1

σ t
∇`t(wt) ηt = 1

η t

(no projection steps)

`t(wt)− `t(u) ≤ ∇`t(wt)T (w − u)− σ

2
‖wt − u‖2 =

= − 1

ηt
(wt+1 − wt)T (wt − u)− σ

2
‖wt − u‖2 =

=
1

ηt

(
1

2
‖wt − u‖2 − 1

2
‖wt+1 − u‖2 +

1

2
‖wt+1 − wt‖2

)
− σ

2
‖wt − u‖2

RT (u) ≤ 1

2 η1

‖w1 − u‖2− 1

2 ηT+1

‖wT+1 − u‖2 − σ

2
‖w1 − u‖2+

+
1

2

T−1∑
t=1

‖wt+1 − u‖2

(
1

ηt+1

− 1

ηt
− σ

)
+

1

2
‖wT+1 − u‖2

(
1

ηT+1

− 1

ηT

)
+
G2

2

T∑
t=1

ηt

where red terms cancel out, blue (sum) instead is 0 since σ(t+ 1)− σ t− σ

G = max
t
‖∇`t(wt)‖

RT (U) ≤ 1

2
(σ − σ) ‖w1 − u‖2 +

G2

2

T∑
t=1

1

σ t
=
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RT (U) ≤ G2

2

T∑
t=1

1

σ t

We know that
∑T

t=1
1
T
≤ ln (T + 1) so:

RT (U) ≤ G2

2σ
ln (T + 1)

RT (U)

T
vanishes at rate

ln T

T
<<

1√
T

provided maxt‖∇`t(wt)‖ remains bounded

We assume it in special case.

Where are these SC losses?
Minimising strongly convex version of standard convex losses helps a lot.
We will see how Regularitation imply Stability. Before studing SVM and
stability we going to do something before.

17.1.2 Relate sequential risk and statistical risk

It is important: I have this algorith that control sequential risk and regret
but I am also courious to use this algorithms.

We assume:
Data (xt, y) drawm i.i.d. from �xed unknown D.
Convex loss function `.
For example compare square loss and hinge loss(convex upper bound on 0-1
loss:

`(ŷ, y = (ŷ, y)2 `(ŷ, y) = [1− ŷ y]+

We will focus on linear predictors h(x) = f(wT x) (easily to analise with
OGD framework).
Risk `D(w) = E

[
`(wT X, Y )

]
where ŷ = wT X
Assume we have a training set S of example (X1, Y1)...(Xm, Ym) (in
maiusc since are random sequence of data point from a distribution)

Convex `t(w) = `(wT Xt, Yt) t = 1, ...m

Became a sequence of convex losses.
I run OGD on `1, `2, ..., `m and get w1, ..., wm ‖wt‖ ≤ U
OGD projects onto:

{U ∈ Rd : ‖u‖ ≤ U} U∗ = arg min
u:‖u‖≤U

`D(u)
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where U∗ is the best linear predictor in class.
So i take a bunch of predictors but i need one, so I take the average of those
(since the expected value is convex):

w̄ =
1

m

m∑
t=1

wt

I want to study the variance error:

`D(w̄)− `D(u∗) ?

I am using Online Learning.
Using Jensen inequality:

`D(w̄) = E
[
`(w̄T X, Y

]
≤ E

[
1

m

m∑
t=1

`(wTt X, Y )

]
=

1

m

∑
t

E
[
`(wTt X, Y )

]
where E

[
`(wTt X, Y )

]
is equals to `D(wt)

`D(w̄) ≤ 1

m

n∑
t=1

`D(wt) for any given training set (x1, y1)...(xm, ym)

I want to look at the di�erence:

`D(wt)− `(wTt Xt, Yt)

`D = E
[
`(wTt X, Y )

]
Now I �x t− 1 example in the training set (X1, Y1)...(Xt−1, Yt−1)
wt is determined by (X1, Y1), ...(Xt−1, Yt−1)
(Xt, Yt) is distribuited like any (X, Y ) ∼ D

Et−1 [ · ] = E [ · |(X1, Y1)...(Xt−1, Yt−1] zt = `D(wt)− `(wTt Xt, Yt)

1

m

m∑
t=1

Et−1 [Zt] = 0

I want to show the average of `D(wt) is equal to average of `(wTt Xt, Y )
I want to prove:

1

m

m∑
t=1

`D(wt) ≤
1

m

m∑
t=1

`(wTt Xt, Yt)+

√
1

m
ln

1

δ
with high probability w.r.t. S
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where (red part) is the sequential risk of OGD.

1

m

m∑
t=1

Zt ≤
√

1

m
ln

1

δ
with prob. at least 1− δ

I know that Et−1 [Zt] = 0

|Zt| ∈ [0,M ] ⇒ 1

m

m∑
t=1

Zt ≤M

√
2

m
ln

1

δ
w.p 1− δ

Version of Cherno�-Ho�diwg bounds for sums of dependent random vari-
ables.

1

m

m∑
t=1

`D(wt) ≤
1

m

m∑
t=1

`t(wt) +M

√
2

m
ln

1

δ
w.p 1− δ

This tells me that`D(w̄) is controlled by the sequential risk of OGD + O
(

1√
m

)
Variance Error for (wT x− y)2 ‖xt‖ ≤ X, |yt| ≤ U X

G = max
t
‖∇`t(wt)‖ ≤ 4 (U X)2

`D(w̄) ≤ min
u:‖u‖≤U

1

m

m∑
t=1

`D(u) + 8 (U X)2

√
2

m
+ 4 (U X)2

√
2

m
ln

1

δ

where red is OGD analysis

`D(w̄) ≤ min
1

m

m∑
t=1

`t(u) + 12 (U X)2

√
2

m
ln

1

δ
with prob. 1− δ

By C-H bounds:

where min
1

m

m∑
t=1

`t(u) ≤ 1

m

m∑
t=1

`t(u
∗) ≤ `D(u∗) + 4 (U X)2

√
1

2m
ln

1

δ

where the sum is the test error of u∗

At the end:

`D(w̄) ≤ `D(u∗) + 16 (U X)2

√
1

m
ln

1

δ
w.p 1− δ

Even with m large, I can run it since i bounded in the small "ball".
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Lecture 18 - 12-05-2020

18.1 Kernel functions

We use a notion of feature expansion. They are di�erent but somehow they
reach something similar. In fact Linear classi�er have high bias.
Linear predictor use hyper plane as basic brick to build prediction.

18.1.1 Feature expansion

Given φ : Rd −→ V V is typically RN N >> d

For example:
d = 2 N = 6 φ = R2 −→ R6

φ(x1, x2) = (1, x2
1, x

2
2, x1, x2, x1x2)

We have a homogenous hyper plane.
w ∈ R6 {z ∈ R6 : wT z = 0} z = φ(x) x ∈ R2

∀x ∈ R2 wtφ(x) = w1 + w2x
2
1 + w3x

2
2 + w4x1 + w5x

2 + w6x1x2 = 0

wTφ(x) = 0

Figure 18.1:

φ : Rd −→ RN ΠM
s=1xV s v ∈ {1, ...d}k k = 0, ..., n

h(x) = sgn(wTφ(x)) wTφ(x) =
N∑
i=1

wiφ(x)i

113



The problem of this feature expansion is the degree of the monomials!

N =
n∑
i=0

|{1, ...d}k| =
n∑
k=0

dk =
dn+1 − 1

d− 1
= Θ(dn)

So it's exponential! But this feature expansion can be implemented in a
e�cient way.

18.1.2 Kernels implements feature expansion (E�ciently

wTφ(x) Perception w ↔ w + ytxtI{ytwTxt ≤ 0} MANCA quadlcosa

w =
∑
s∈S

ysxs  
∑
s∈S

ysφ(xs)

where S is a subset of traning set where updates occurred.
Every time i make a mistake i add some of this product of data points.
If I run this using example that are images accourding to some feature ex-
pansion map (φ), I will get the perceptron after the mapping.

wTφ(x) =
∑
s∈S

ysφ(x)Tφ(xs)

It's a inner problem and can have exponentially degree of the component.
Kernels help me compute this inner product φ(x)Tφ(xs) quickly

φ : R2 −→ R6 φ(x1, x2) = (1, x2
1, x

2
2,
√

2x1,
√

2x2,
√

2x1x2)

φ(x)Tφ(z) = 1 + x2
1z

2
1 + x2

2z
2
2 + 2x2z2 + 2x1x2z1z2 = (1 + xT z)2 = k(x, z)

wTφ(x) =
∑
s∈S

ys k(x, x2)

k(x, z) implements φ(x)Tφ(z) ∀x, z and φ de�ned as before

How to we generalise this?

kn (x, x′) = (1 + x2x′)n

This is called polynomial kernel.
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I want to check now what is the φ for Kn?
I want to compute φ s.t. φ(x)Tφ(x′) = kn(x, x′) = (1 + xTx′)n

We can use Newtons bynomial theorem:

(1 + xTx′)n =
n∑
k=0

(
n

k

)
(xtx′)k

(xTx′)k =

(
d∑
i=1

xix
′
i

)k

=
∑

v∈{1,...d}k

(
k∏
s=1

xV sx
′
V s

)

φ(x) =

(√(
n

k

) k∏
s=1

xV s

)
k = 0, ..., n v ∈ {1, ...d}k

When I am using polynomial kernel I am implicitely using the feature ex-
pansion ...
Can an algorithm work using kernel?
Perceptron works!

S = 0
For t = 1, 2, ...
1) Get (xt, yt)
2) ŷt = sgn

(∑
s∈S ys K(x, xs

)
3) If ŷt 6= yt S ←− S ∪ {t} w ← w + ytφ(xt)

So I am representing y as a sum and not as a vector. In fact, w =
∑
s∈S

ysφ(xs)

ù

18.2 Gaussian Kernel

γ > 0 kγ(x, x
′) = exp

(
− 1

2 γ
‖x− x′‖2

)
e−

1
2 γ

(x−x′)2

I can controll the distribution changing the value of γ
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Figure 18.2:

ŷt = sgn

(∑
s∈S

ys Kγ(x, xs)

)

Figure 18.3:

Negative or positive gaussin component looking at the distance.
Now I want to compute: φγ : Rn −→ V

exp

(
− 1

2 γ
‖x− x′‖2

)
= exp

(
− 1

2 γ

(
‖x‖2 + ‖x′‖2

))
· exp

(
1

γ
xTx′

)
=

where e = x+ x2

!2
...

= exp

(
− 1

2 γ
‖x‖2

)
· exp

(
− 1

2 γ
‖x′‖2

)
·
∞∑
n=0

1

n!

(
xTx′

)2

γn
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Gaussian Kernel is a linear combination of in�nitely many poly kernels.
The higher I go the small is n!. Gaussian kernel mapping into a space that
is very large. So large that it has in�nitely many dimension. Why? Because
each polynomial kernel maps to in�nitely dimensions.

φγ maps Rd into a space of in�nitely many dimensions.

φγ : Rd → V kγ (x, x′) = φγ(x)Tφγ(x)

It maps to in�netely many dimension, so it maps to a function!
φγ(x) is a function.
In general, when I learn a linear predictor using kγ
I learn

∑
s αs k(xs, ·) = f

wTφ(x)

Hγ ≡ {
N∑
i=1

αi k (xi, ·) : x1, ..., xN ∈ Rd, α1, ..., αN ∈ R, N ∈ N }

Theorem
∀γ > 0 ∀f : Rd → R continous, ∀ε > 0
∃g ∈ Hγ that approximates f with error ε
We de�ne a function with H. We see the · and this tell us is a function. So
we can evaluate every kind of x point in · position.

We are able to get a super parametric algorithm and transform it in a non-
parametric algorithm. Parametric algorithms is de�ned by an arbitrary num-
ber of parameter we cannot adapt it for every case.

Gaussian Kernels enable consistency by using feature expansion with in-
�nitely many components.
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Lecture 19 - 18-05-2020

k(x, x′) =< φ(x), φ(x′) > φ : X → H

where X → R2 and H → barraRN

Hδ = {
N∑
i=1

αi kδ(xi, ·), x1, ..., xN ∈ Rd, α1, ...αN , N ∈ N}

Inner product measures "similarities" between data points.

xT x′ = ‖x‖ ‖x′‖ cos Θ x ∈ X k(x, x′)

k sais how much similar are the structure (tree, documents etc).
I would like to learn a predictor based on the notion of similarity.

k(x, x′) =< φ(x), φ(x′) >

where <> is the inner product.
So we have Data → Kernel → Kernel learning Algortithm
Kernels o�er a uniform interface to data in such way they algoriithm can
learn from data.
Given K on X, I need to �nd ∃Hk φk X → Hk

∃ < ... >k s.t k(x, x′) =< φk(x), φk(x
′) >k

Theorem
Given K : X ×X → R, symmetric
Then K is a Kernel iif ∀m ∈ N ∀x1, ..., xm ∈ X
The m×m matrix K Kij = k(xi, xj) is positive semide�nite
∀α ∈ Rm αT K α ≥ 0
In general, given a Kernel K there is not unique representation for φk and
< ... >k (inner product).
However, there is a "canonical" representation: φk(x) = K(x, ·)

φk : X → H Hk = {
N∑
i=1

αi k(xi, ·), α1, ..., αN ∈ R, x1, ..., xN ∈ X,N ∈ N}

We have to de�ne an inner product like:

< φk(x), φk(x
′) >k = k(x, x′)

This is the canonical representation that helps mapping.
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What happen to use this mechanism to perform predictions?
x ∈ Rd w ∈ Rd wT x where g =

∑N
i=1 αi k(xi, ·)

φk(x) g ∈ Hk < g, φk(x) >k = <
∑
i

αik(xi, ·), φk(x) > =

We have to satisfy allinearity

=
∑
i

αi < k(xi, ·), k(x, ·) >k =
∑
i

αi < φ(xi), φk(x) >k =
∑
i

αik(xi, x) = g(x)

At the end we have:
< g, φk(x) >k = g(x)

Now, if i have two functions:

f =
N∑
i=1

αi k(xi, ·) g =
M∑
j=1

βj k(x′j, ·) f, g ∈ Hk

< f, g >k=<
∑
i

αi k(xi, ·),
∑
j

βj k(x′j, ·) >k =
∑
i

∑
j

αi βj < k(xi, ·), k(x′j, · >k =

=
∑
i

∑
j

αi βj k(xi, xj)

‖f‖2 =< f, f >k=
∑
ij

αi αj k(xi, xj)

Perceptron convergence theorem in kernel space:

M ≤ ‖U‖2(max
t
‖xt‖2) ∀u ∈ Rd yt u

T xt ≥ 1quad∀g ∈ Hk yt g(xt) ≥ 1

we know that:

‖xt‖2  ‖φk(xt)‖2
k = < φk(xt), φk(αt) >k = k(xt, xt)

so
.... MANCA ULTIMA FORUMA

Ridge regression:

w =
(
α I + ST S

)−1
ST y
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S is m× d matrix whose rows are the training points x1, ..., xm ∈ Rd

y = (y1, ..., ym) yt ∈ Rd training labels α > 0(
α I + ST S

)−1
ST = ST

(
α Im + S ST

)−1

where d× d and d×m = d×m and m×m(
S ST

)
ij

= xTi xj  < φ(xi), φ(xj) >k= k(xi, xj) = Kij

ST = [x1, ..., xm]  [ φk(xi), ..., φk(xm) ] = [ k(x1, ·), ..., k(km, ·) ] = k(·)

k(·)T (α Im +K)−1 y = g

where 1×m and m×m and m× 1

How to compute prediction?

g(x) = yT (α Im +K)−1 k(x)

1×m and m×m and m× 1
In fact, is the evaltuation of g in any point x.
The drawback is that we pass from d× d matrix to a m×m matrix that can
be huge. So it is not really e�cient in this way, we need to use addictional
"tricks" having a more compact representation of the last matrix prediction.
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19.1 Support Vector Machine (SVM)

It is a linear predictor and is a very popular one because has better perfor-
mance than perceptron and we will see it for classi�cation but there are also
version for regression.

The idea here is that you want to come up with an hyperplane that is de�ned
as a solution of an optimisation problem.
We have a classi�cation dataset (x1, y1)...(xm, ym) xt ∈ Rd yt ∈ {−1, 1}
and it is linearly separable.
Sum as the solution w∗ (optimisation problem) to this problem:

min
w∈Rd

1

2
‖w‖2 s.t ytw

T xt ≥ 1 t = 1, 2, ...,m

Geometrically w∗ corresponds to the maximum marging separating hyper-
plane like:

γ∗ = max
u:‖u‖=1

yt u
t xt t = 1, ...,m

u∗ is achieving γ∗ is the maximal margin separator.

Figure 19.1: Draw of SVG

So I want to maximise this distance.

max
γ>0

γ2 s.t ‖u‖2 = 1 yt u
t xt ≥ γ t = 1, ...,m

So we can maximise instead of minimising.
What is the theorem? The equivalent between this two.

Theorem:
∀ linear separator (x1, y1)...(xm, ym)
The max margin separator u∗ satis�es u∗ = γ∗w∗ where w∗ is the SVM
solution and γ∗ is the maximum margin.
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Lecture 20 - 19-05-2020

20.1 Support Vector Machine Analysis

min
w∈R

1

2
‖w‖2 s.t ytw

T xt ≥ 1 t = 1, ...,m

max
γ>0

γ2 s.t. ‖u‖2 < 1(?) yt u
T xt ≥ γ t = 1, ...,m

The two are kinda equivalent

yt

(
u

γ

2
)
xt ≥ 1 t = 1, ...,m w =

u

γ
‖u‖2 = ‖w‖2γ2 = 1, γ2 =

1

‖w‖2

max
1

‖w‖2
 min ‖w‖2 w∗ =

u∗

γ∗

γ2‖w‖2 = 1 is redundant! ytw
Txt ≥ 1 t = 1, ...,m

What we do with w∗?

20.1.1 Fritz John Optimality Conditions

min
w∈Rd

f(w) s.t gt(w) ≤ 0 t = 1, ...,m f, g1, .., gm all di�erentiable

If w0 is optimal solution, then ∃α = (α1, ..., αm) ∈ Rm

∇f(w0) +
∑
t∈I

αt∇gt(w0) = 0 I = {t : gt(w0) = 0}

f(n) =
1

2
‖w‖2 gt(w) = 1− ytwT xt, ∇gt(w∗) = −yt xt

w∗ SVM solution

w∗ −
∑
t∈I

αtytxt = 0 ⇔ w∗ =
∑
t∈I

αtytxt

where f(n) = ∇f(w∗)

I = { t : yt(w
∗)T xt = 1} support vectors

We want a generalisation of this two non separable training set.
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20.1.2 Non-separable case

min
w∈Rd

1

2
‖w‖2 s.t ytw

T xt ≥ 1

We cannot satisfy all the constraints since are inconsistent. Maybe we can
try to satisfy the most possible constrain so:

min
w∈Rd

1

2
‖w‖2 +

1

2

m∑
t=1

ξt ytw
T xt ≥ 1− ξt

where ξt slack variables and ξ > 0 We want ξt given w:

ξt =

{
1− ytwT xt if ytw

Txt < 1

0 otherwise
ξt =

[
1− ytwT xt

]
= ht(w) hinge loss

We replate this in the �rst equation and we get a convex function plus λ-SC
function:

min
w∈Rd

F (w) F (w) =
1

m

m∑
t=1

ht(w) +
1

2
‖w‖2

And this is unconstrained and F (W ) is λ-S.C.

I also want to check my shape of the function is not changing.
Assume I can write the solution as:

w∗ =
m∑
t=1

αt yt xt + u

where u is orthogonal to each of x1, ..., xm
∑m

t=1 αt yt xt = v

w∗ = v + u v = w∗ − u ‖v‖ ≤ ‖w∗‖

Figure 20.1:
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Now I can check the hinge loss:

ht(v) =
[
1− yt(w∗)∗xt + yt u

T xt
]

+
= ht(w

∗)

Since yt u
T xt = 0 this cancel out and we get the hinge loss.

F (v) =
1

m

∑
t

ht(w
∗) +

1

2
‖w‖2 ≤ F (w∗)

w∗ =
m∑
t=1

αtytxt αt 6= 0 ⇔ ht(w
∗) > 0

Including t : yt(w
∗)Txt = 1

Figure 20.2:

Support vector are those in which I need slack variables in order to be satis-
�ed.

Figure 20.3:

F (w) =
1

m

m∑
t=1

ht(w) +
1

2
‖w‖2 =

1

m

m∑
t=1

`t(w)

MANCA FORMULAA
We need to minimise the hinge loss and we use Pegasos.
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20.2 Pegasos: OGD to solve SVM

Stochastic gradiant descent.

Parameters: λ > 0, T number of rounds
Set w1 = (0, ..., 0)
For t = 1, ..., T
1) Draw (xzt, yzt) at random from training set
2) wt+1 = wt − ηt∇`zt(wt)
Output w̄ = 1

T

∑
twt

`zt(w) = hzt(w) +
1

2
‖w‖2 w∗ = arg min

w∈R∗

(
1

m

m∑
t=1

ht(w) +
λ

2
‖w‖2

)

∀s1, ..., sT realisation of z1, ..., zT

1

T

m∑
t=1

`st(wt) ≤
1

T

m∑
t=1

`st(w
∗) +

G2

2λT
ln(T + 1) OGD Analysis

G = max
t
‖∇`st(wt)‖

In general G is random.

F (w̄) ≤ F (w∗) + ε ‖w̄ − w∗‖ ≤? |F (w̄)− F (w∗)| ≤ L‖w̄ − w∗‖

where F is the average of the losses: F (wt) = 1
m

∑m
s=1 `s(wt)

So we use Liptstik solution.

E [`zt(wt)|z1, ..., zt−1] =
1

m

m∑
s=1

`s(wt) E [X ] = E [E [X|Y ] ]

Now we use Jensen inequality:

E [F (w̄)] ≤J E

[
1

T

T∑
t=1

F (wt)

]
= E

[
1

T

T∑
t=1

E [ `zt(wt) | z1, ..., zt−1 ]

]
=

= E

[
1

T

T∑
t=1

`zt(wt)

]
≤ E

[
1

T

T∑
t=1

`zt(w
∗)

]
+

E[G2]

2λT
ln(T + 1) =

= E

[
1

T

T∑
t=1

E[`zt(w
∗)|z1, ..., zt−1]

]
+

E[G2]

2λT
ln (T + 1) =
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= E

[
1

T

T∑
t=1

F (w∗)

]
+
E[G2]

2λT
ln(T + 1) = = F (w∗) +

E[G2]

2λT
ln(T + 1)

E[G2] ≤? We are bounding G2 ∀s1, .., sT

∇`st(wt) = −yst xst I{hst(wt) > 0}+ λw `s(w) = ht(w) +
1

2
‖w‖2

vt = yst xst I{hst(wt) > 0}, ∇`st(wt) = −vt + λwt ηt =
1

λ t

wt+1 = wt − ηt∇`t(wt) = wt + ηt vt − ηt λwt =

(
1− 1

t

)
wt +

1

λ t
vt =

‖∇`st(wt)‖ ≤ ‖vt‖+ λ‖wt‖ ≤ X + λ‖wt‖ X = max
t
‖xt‖

wt+1 =

(
1− 1

t

)
wt +

1

λ t
vt w1 = (0, ...0) wt =

∑
t

βtvt

Fix s < t 1
λ s

√
s

βs =
1

λ s

t∏
r=s+1

(
1− 1

r

)
=

1

λ s

t∏
t=s+1

r − 1

r
=

1

λ s

s

t

s

s+ 1

s+ 1

s+ 2
...
t− 1

t
wt+1 =

1

λ t

t∑
s=1

√
s

I know now that:

‖∇`st(wt)‖ ≤ X + λ‖wt‖ ≤ Xt‖
1

t

t∑
s=1

√
s‖ ≤ X +

1

t

t∑
s=1

‖vs‖

‖∇`st(wt)‖ ≤ 2X G2 ≤ 4x2

E[F (w̄] ≤ F (w∗) +
2x2

λT
ln(T + 1)

General picture: Stochastic OGD, I can write my objective is an average of
strongly convex function. I sample for w

F (w) =
1

m

m∑
t=1

`t(w)

Then i get the expectation to links OGD to minisation of the objective.
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Lecture 21 - 25-05-2020

21.1 Pegasos in Kernel space

Objective function was

Fλ(w) =
1

m

m∑
t=1

ht(w) +
1

2
‖w‖2 w ∈ Rd

wT+1 =
1

λT

T∑
t=1

yst xst I{hst(wt) > 0} s1, ..., st (realised draws in training)

K Hk = {
∑
i

αik(xi, ·), αi, xi} g ∈ Hk

Fλ =
1

m

m∑
t=1

ht(g) +
1

2
‖g‖2 ht(g) = [1− yt g(xt) ]+

gT+1 =
1

λT

T∑
t=1

yst k(xst, ·) I{hst(gt) > 0}

where red part is vst

21.2 Stability

A way to bound the risk of a predictor.
Controlling the variance error and leave to the user the job to minimise the
bias.
Variance error is due to the fact that the predictor an algorithm generate
from the training set will depends strongly on the training set itself. If we
perturb the training set our predictor will change a lot.

Minimisation of training error ⇒ predictor changes if training set if per-
turbed. ⇒ risk of over�tting
Stability is the opposite since avoid over�tting when we perturbing the train-
ing set.

� S Training set (xt, yt)...(xm, ym)

� loss function `
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� distribution D

h : X → Y `D(h) risk of h
zt = (xt, yt) `(ht, zt) = `(h(xt), yt)

ˆ̀
s(h) =

1

m

m∑
t=1

`(h, zt)

Perturbation z′t = (x′t, y
′
t) also drawn from D

S(t)is S where zt is replaced by z′t hs = A(S)

A learning algorithm is ε-stable (ε > 0) h
(t)
s = A(S(t))

`(h(t)
s , zt)− `(hs, zt)

we expect this subtraction result to be positive.

E
[
`(h(t)

s , zt)− `(hs, zt)
]
≤ ε ∀t = 1, ...m

where E[ ]→ s, z′t
zt and z

′
t come from D both

E
[
`(hs, z

′
t)− `(h(t)

s , z
′
t)
]
≤ ε

Theorem
If A is ε-stable, then

E
[
`D(hs)− ˆ̀

s(hs)
]
≤ ε

Proof: S zt = (xt, yt) s′ z′t = (x′t, y
′
t) D

E
[
ˆ̀
s(hs)

]
= E

[
1

m

m∑
t=1

`(hs, zt)

]
=

1

m

m∑
t=1

E [`(hs, zt)] =
1

m

m∑
t=1

E
[
`(h(t)

s , z
′
t)
]

`D(hs) = E [`(hs, z
′
t)|S] =

1

m

m∑
t=1

E [`(hs, z
′
t)]

Average with respect to random draw of S
E [`D(hs)] = 1

m

∑m
t=1 E [`(hs, z

′
t)]

E
[
`D(hs)− ˆ̀

s(hs)
]

=
1

m

m∑
t=1

E
[
`(hs, z

′
t)− `(h(t)

s , z
′
t

]
≤ ε

A stable algorithm is not over�tting (but they still under�t!).
So if an ERM algorithm is ε-stable, it would be pretty good.
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Theorem
If A is ε-stable and it approximates ERM in a class H:

ˆ̀
s ≤ min

h∈H
ˆ̀
s(h) + γ ∀s, hs = A(S)

for some γ > 0, then:

E [`D(hs)] ≤ min
h∈H

`D(h) + ε+ γ

Proof

E [`D(hs)] = E
[
`D(hs)− ˆ̀

s(hs)
]

+ E
[
ˆ̀
s(hs)− ˆ̀

s(h
∗)
]

+ E [`s(h
∗)]

h∗ = argmin
h∈H

`D(h)

E
[
ˆ̀(h∗)

]
= `D(h∗) −→ E

[
1

m

∑
t

`(h∗, zt)

]
=

1

m

∑
t

E [`(h∗, zt)]

where red is `D(h∗)

`(·, z) is a convex function `(w, z)
∃L > 0 |`(w, z)− `(z, z)| ≤ L‖w − w′‖
z = (x, y)
In the case of SVM, `(w, z) =

[
y wT x

]
+
∃L > 0 ∀z ∀w,w′

|`(w, z)− `(w′, z)| ≤ L‖w − w′‖

where ell is Lipschitz

Theorem
Let ` be convex, Lipschitz and di�erentiable.
Consider A A(S) = ws where

ws = arg min
w∈Rd

(
ˆ̀
s(w) +

λ

2
‖w‖2

)
If ` is hinge loss, then A is SVM .

then A is (2L)2

λm
-stable ∀λ > 0

Proof
Fix λ > 0 Fs(w) = ˆ̀

s(w) + λ
2
‖w‖2

ws = arg min
w∈Rd

Fs(w) w(t)
s = arg min

w∈Rd
F (t)
s (w)
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`(ws, z
′
t)− `(w(t)

s , z
′
t) ≤ ε ∀s, z′t ∀t

Use Lipschtiz
|`(ws, z′t)− `(w(t)

s , z
′
t)| ≤ L‖ws − w(t)

s ‖

w = ws, w
′ = w

(t)
s

Fs(w
′)− Fs(w) = ˆ̀(w′)− ˆ̀(w) +

1

2
‖w′‖2 − λ

2
‖w‖2 =

= ˆ̀(t)
s (w′)−ˆ̀(t)

s +
1

m
(`(w′, zt)− `(w, zt))−

1

m
(`(w′, z′t)− `(w, z′t))+

λ

2
(‖w′‖2−‖w‖2) =

= F (t)
s (w′)− F (t)

S (w) +
1

m
(`(w′, zt)− `(w, zt))−

1

m
(`(w′, z′t)− `(w, z′t)) ≤

where red is ≤ 0

≤ | 1
m
`(w′, zt)− `(w, zt)|+

1

m
|`(w′, z′t)− `(w, z′t)| ≤

�� MANCAAAAAAA �-

Fs(w)− Fs(w′) ≤
2L

m
‖w − w′‖

Fs is λ-SC Fs(w
′) ≥ Fs(w) +∇Fs(w)T (w′ −w) + λ

2
‖w−w′‖2 Since w is

minimiser of Fs the gradiant ∇Fs(w)T = 0 Therefore:

Fs(w
′)− Fs(w) ≥ 1

2
‖w − w′‖2

λ

2
‖w − w′‖2 ≥ 2L

m
‖w − w′‖ ⇒ ‖w − w′‖ ≤ 4L

λm

`(ws, z
′
t)− `(w(t)

s , z
′
t) ≤

4L2

λm

We now know the stability of the SVM.
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Figure 21.1:
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Lecture 22 - 26-05-2020

22.1 Continous of Pegasos

ws = argmin(ˆ̀
s(w) +

λ

2
‖w‖2 (2L)2

λm
− stable

`(w, (x, y)) =
[
1− ywTx

]
+

Figure 22.1:

∇`(w, (x, y)) = −yxI{wT x ≤ 1} ‖∇`(w, z)‖ ≤ ‖x‖ ≤ X

`(w, z)− `(w, z) ≤ ∇`(w′, z)T (w − w′) ≤ ‖∇`(w′, z)‖‖w − w′‖

where red is equal to X

ˆ̀
s(ws) ≤ ˆ̀(ws) +

1

2
‖ws‖2 ≤ ˆ̀

s(u) +
1

2
‖u‖2 ∀u ∈ Rd

E[`D(ws)] ≤ E[ˆ̀(ws)] +
4x2

λm
≤ E[ˆ̀s(u) +

1

2
‖u‖2] +

4X2

λm
=

= `D(u) +
λ

2
‖u‖2 +

4x2

λm

E[`D(ws)] ≤ min(`D(u) +
λ

2
‖u‖2) +

4x2

λm

`0−1
D (ws) ≤ `D(ws)

0− 1 loss ≤ hinge

E[`D(ws)] + `D(u) +
λ

2
‖u‖2 +

4x2

λm
λ ≈ 1√

m
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We can run SVM in a Kernel space Hk:

gs = arg min
g∈Hk

(ˆ̀
s(g)− λ

2
‖g‖2k)

g =
N∑
i=1

αi k(xi, ·) ht(g) = [1− ytg(xt)]+

If Hk is the kernel space induced by the Gaussian Kernel, then elements of
g can approximate any continous function ⇒ consistency
SVM with Gaussian Kernel is consistent if λ = λm (with 0-1 loss)
1) λm = o(λ)

2) λm = w(m−
1
2 )

λm ≈
lnm√
m

√

22.2 Boosting and ensemble predictors

Examples:

� Stochastic gradiant descent (SGD)

A h1, ..., hT Given S, example from S: 1, ..., ST
h1 = A(S1) is the output 1
Assume we are doing binary classi�cation with 0-1 loss.
h1, ..., hT : X → {−1, 1} (We go for a majority vote classi�er)

x h1(x), ..., hT (x) ∈ {−1, 1} f = sgn
(∑T

t=1 ht

)
Ideal condition Z is the index of a training example from S drawn at random
(uniformly):

P (h1(x2) 6= yz ∧ ... ∧ ht(xz) 6= yz) =
T∏
i=1

P (hi(xz) 6= yz)

The error probability of each hi is independent from the others.
De�ne the training error of the classi�er:

ˆ̀
s(hi) =

1

m

m∑
t=1

I{ht(xt) 6= yt} = P (ht(xz) 6= yz)
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We can assume ˆ̀
s(hi) ≤ 1

2
∀i = 1, ..., T

(Take hi or any hT )

I want to bound my majority vote f

ˆ̀
s(f) = P (f(xz) 6= yz) = P

(
T∑
i=1

I{hi(xz) 6= yz} >
T

2

)

If half of them are wrong

ˆ̀
ave =

1

T

T∑
i=1

ˆ̀
s(ht) = P

(
1

T

T∑
i=1

I{hi(xz) 6= yz} > ˆ̀
ave +

(
1

2
− ˆ̀

ave

))

B1, ..., BT B1 = I{hi(xz) 6= yz}
And because of our independence assumption, we know that B1, .., BT are
independent

E [Bi] = ˆ̀
s(hi)

We can apply Cherno�-Ho�ding bounds to B1, ..., Bt even if they don't have
the same expectations

P

(
1

T

T∑
i=1

Bi > ˆ̀
ave+ ε

)
≤ e−2 ε2 T ε =

1

2
− ˆ̀

ave ≥ 0

P (f(xz) 6= yz) ≤ e−2 ε2 T γi =
1

2
− ˆ̀

s(hi)
1

T

∑
i

γi =
1

2
− ˆ̀

ave

ˆ̀(f) ≤ exp

−2T

(
1

T

∑
i

γi

)2


where γi is the edge of hi
If γi ≥ γ∀i = 1, ..., T , then the training error of my majority vote is:

ˆ̀(f) ≤ e−2T γ2

How do we get independence of hi(xz) 6= yz?
We can't guarantee this!
The subsampling of S is attempting to achieve this independence.
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22.2.1 Bagging

It is a meta algorithm!
Si is a random (with replacement) subsample of S of size |si| = |S|.
So the subsample have the same size of the initial training.

|Si∇S| |Si ∩ S| ≤
2

3

N = # of unique points in Si (did non draw them twice from S)
xt = I{(xt, yt) is drawn in Si} P (xt = 0) = (1− 1

m
)

E[N ] =
m∑
t=1

P (xt = 1) =
m∑
t=1

(1− (1− 1

m
)m) = m−m(1− 1

m
)m

Fraction of unique points in S :

E[N ]

m
= 1− (1− 1

m
)m =m→∞ 1− e−1 ≈ 0, 63

So 1
3
will be missing.

22.2.2 Random Forest

Independence of errors helps bias.
randomisation of subsampling helps variance.

� 1) Bagging over Tree classi�ers (predictors)

� 2) Subsample of features

Figure 22.2:

Control H of subsample features depth of each tree.
Random forest is typically good on many learning tasks.
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Boosting is more recent than bagging and builds independent classi�ers "by
design".

ˆ̀(f) ≤ e−2Tγ2 γi > γ

γi =
1

2
− ˆ̀

s(hi) edge of hi

where ˆ̀
s(hi) is weighted training error
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Lecture 23 - 08-06-2020

Bagging
h1, ..., ht ˆ̀(f) ≤ e−2Tγ2 γt > γ > 0

Under the assumption that {ht(xz) 6= yz} γt = 1
2
− ˆ̀

s(ht) are independent

f = sgn(
T∑
i=1

hi) Bagging

23.1 Boosting

f = sgn(
T∑
i=1

wihi) Boosting

The hard thing here is how to compute the weights.
h1, ..., ht X → {−1,+1}

Figure 23.1:

ˆ̀(f)
m∑
t=1

I{ytg(xt) ≤ 0} ≤ 1

m

m∑
t=1

e−g(xt)yt =

g =
T∑
i=1

wihiand we substitute g and f = sgn(g)

=
1

m

m∑
t=1

e−yt
∑T
t=1 wihi(xi) Li(t) = hi(xt)yt ∈ {−1,+1}i = 1, ..., T

Li(z) where Z uniform over {1, ...,m}

(̂`)(f) ≤ 1

m

m∑
t=1

e−
∑T
t=1 wiLi(t) = E

[
e−

∑T
t=1 wiLi(t)

]
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E

[
T∏
t=1

e−wiLi

]
=?

T∏
t=1

E
[
e−wiLi

]
Ok if Li are independent
E [XY ] = E[X]E[Y ]
X, Y are independent
Ei is a probability Pi and Pi is sum {1, ...m}

ˆ̀(f) ≤
T∏
i=1

Ei
[
e−wiLi

]
=

T∏
i=1

(ewiPi(Li = 1) + ewiPi (Li = 1)) =
T∏
i=1

(
e−wi(1− εi) + e−wiεi

)
Li(z) z ∼ Pi

εi = Pi(Li = −1) =
m∑
t=1

I{ythi(xt) ≤ 0}Pi(t) weighted training error of hi

F (w) = e−w(1− ε) + ewε F ′(w) = 0⇔ w =
1

2
ln

1− ε
ε

0 < ε < 1

Pi(t) > 0 ∀i, t εi =
1

2
⇒ wi = 0

εi >
1

2
⇒ wi < 0 εi <

1

2
⇒ wi > 0

ˆ̀(f) ≤
T∏
i=1

√
4 εi(1− εi)

γi =
1

2
− εi edge over random guessing 0 < εi < 1

1 + x ≤ ex ∀x ∈ R ˆ̀(f) ≤
T∏
i=1

√
4 εi(1− εi) =

T∏
i=1

√
1− 4γ2 =

=
T∏
i=1

4(
1

2
− γi)(

1

2
+ γi) =

T∏
i=1

e−2γ2i = e−2
∑T
i=1 γ

2
i ≤ e−2Tγ2

If |γi| > γ > 0 i = 1, ..., T

ˆ̀
s(f) = 0 ⇔ e−εTγ

2

<
1

m
⇔ T >

lnm

2γ2

E

[∏
i

e−wiLi

]
=
∏
i

E
[
e−wiLi

]
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Pi, ..., PT P1(t) = 1
m

t = 1, ...m

Pi+1(t) =
Pi(t)e

−wiLi(t)

Ei [e−wiLi ]

∑
t

Pi+1(t) =
1

Ei[e−wiLi ]

∑
t

Pi(t)e
...

MANCAaaa

e−wiLi(t) = Ei[e
−wiLi ]

Pi+1

Pi(t)

E[
T∏
i=1

e−wiLi ] =
1

m

m∑
t=1

T∏
i=1

e−wiLi(t) =
1

m

∑
t

l

(∏
i

E[e−wiLi ]
Pt+1(t)

Pi(t)

)
=

1

m

∑
t

(∏
i

Ei[e
−wiLi

)
Pt+1(t)

P1(t)
=

(∏
i

Ei[e
−wiLi ]

)
1

m

∑
t

Pt+1(t)

ym

where red cancel out since = 1
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23.2 Adaboost

It is a meta learning algorithm.

Figure 23.2:

Initialize Pi(t) = 1
m

t = 1, ...,m
For i = 1, ..., T
1) Feed A with S wrighted by Pi and get h1

2) wi = 1
2

ln εi
1−εi

3) Compute Pi+1

Output
∑

iwihi

What should A do?
1) A should pay attention to Pi
2) More precisely A should output hi s.t. |γi| is as big as possible
where |γ| → 1

2
εi

Figure 23.3:

Pi+1 =
Pi(t)e

−wiLi(t)

Ei[ ]

Li(t) = 1 ⇔ ht(xt) = yt wi > 0
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Figure 23.4:

Typically hi (classi�ers) are simple
Decision stamps:

h(x) = ± sgn(xi − τ)

i if is feature index, τ ∈ R
At the end boosting is gonna look like this

Figure 23.5:
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Lecture 24 - 09-06-2020
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