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Lecture notes, readings and module objectives
The lecture notes that have been prepared contain many definitions and
basic results, so that time during the lectures can be devoted to listening
and understanding, rather than copying formulae. These notes are,
however, not intended to give detailed discussions with examples. Doing
examples and reading more detailed discussions will be needed to gain a
sound understanding of the topics to be covered. It is therefore important
to use a text, as well as the lecture notes.

Acknowledgements: These notes are in part based on notes of Les Godfrey,
whom I thank. All errors are mine.



Most introductory statistics book provide a useful and detailed reference to
review the material of these lectures. For example,
¾ Miller, I. and M. Miller, 2004. John E. Freund�s mathematical statistics
with applications, 7th edition, Pearson Prentice-Hall.

Many introductory econometrics texts also contain useful reviews of the
relevant statistical concepts. For example,
¾ Wooldridge, J., 2003. Introductory econometrics, 2nd ed., South Western
College Publishing.



This course is designed to provide an introduction to topics that will be
very useful in the Econometrics core module. As such, we will only give an
introductory presentation of probability and probability techniques. We
will not include, for example, foundations of probability (measure) theory,
or applications of probability to economics or other applications such as
Bayes� theory. We will only present a few of the well known distributions
that are routinely used in statistics. In inferential statistics, we will focus on
estimation and testing hypothesis on finite dimensional parameters in an
independent random sample.



Structure
The course is in two parts: in the first one we describe the foundations of
probability and distributional theory, and in the second one we apply these
to statistical inference. We divided the course in ten sections:
1. Preliminary mathematics and introduction to the probability model;
2. Random variables and distributions;
3. Mathematical expectations;
4. Some useful distributions;
5. Asymptotic / large sample distribution theory;
6. Sampling distributions;
7. Point estimation;
8. Maximum likelihood estimation;
9. Interval estimation;
10. Hypothesis testing.



Section 1
Preliminary mathematics and the probability

model

¾ Objectives: to introduce ideas concerning probability
¾ References: Miller and Miller, Chapter 2; Wooldridge, Appendix A
(section A.1)



Preliminary mathematics - Some mathematical
operators

Suppose we want to measure some characteristics, say weight, in kg, of 50 people. It is then useful to
have some shorthand notation.
We will use x1 , ..., x50 , where xi is the characteristic for the individual i, i = 1, ..., 50. For a generic
set of n values, we write x1 , ..., xn or áx1, . . . , xnâ.
If two characteristics are measured simultaneously, for example weight and height, we can use
Ýx1,y1 Þ, ..., Ýxn,yn Þ, with xi and yi being the characteristics (weight and height) for the
individual i, i = 1, ..., n.
If one characteristic is measured form classes of n individuals, for example gender and weight, we
use x11 , ..., x1n , x21 , ..., x2n , ..., xm1 , ..., xmn, so for example x11 , ..., x1n is the weight of the n female
individuals, and x21 , ..., x2n is the weight of the nmale individuals.
We are often interested in summarising the characteristics of the whole sample in one single
number, or in other transformations of numbers. This may require the application of new
mathematical operators (such as, the summation or the product operator).



Summation operator
For a sequence of values X1, X2, ..., Xn, the summation operator> is
defined by

>
i=1

n

Xi = X1 + X2 +. . .+Xn

¾ nmay be finite or infinite (K);
¾ sometimes we do not show the limits of the summations, and use
either> i Xi or>Xi;

¾ Using the summation operator, we can also define the sample mean
(also known as sample average), denoted X:

X = 1
n >

i=1

n

Xi



l An example
X1 = 3, X2 = ?2, X3 = 1

Then,

>
i=1

3

Xi = Ý3 + Ý?2Þ + 1Þ = 2

X = 1
3 Ý3 + Ý?2Þ + 1Þ = 2

3



Properties of the summation:
¾ if a and b are constant,

>
i=1

n

a = na, >
i=1

n

bXi = b>
i=1

n

Xi;

Verify this directly:

>
i=1

n

a =

n times

Ýa + a +. . .+aÞ = na; >
i=1

n

bXi = ÝbX1 +. . .+bXn Þ = b>
i=1

n

Xi

l An example. Let a = 2, then

>
i=1

3

a = Ý2 + 2 + 2Þ = 6.

l An example. Let b = 2, and X1 = 3, X2 = ?2, X3 = 1, then

>
i=1

3

bXi = Ý2 × 3 + 2 × Ý?2Þ + 2 × 1Þ = Ý6 ? 4 + 2Þ = 4 = b>
i=1

3

Xi



Properties of the summation (continued):
¾ for any Xi, Yi, (1 ² i ² n)

>
i=1

n

ÝXi + Yi Þ = >
i=1

n

Xi +>
i=1

n

Yi;

l An example.
X1 = 3, X2 = ?2, X3 = 1

Y1 = 3, Y2 = 1, Y3 = ?2

Then> i=1
3 Xi = Ý3 + Ý?2Þ + 1Þ = 2 and> i=1

3 Yi = 3 + 1 ? 2 = 2 and

>
i=1

3

ÝXi + Yi Þ = Ý3 + 3Þ + Ý?2 + 1Þ + Ý1 ? 2Þ = 4 = 2 + 2 = >
i=1

3

Xi +>
i=1

3

Yi



l An application:

>
i=1

n

ÝXi ? XÞ = 0

Proof:

>
i=1

n

ÝXi ? XÞ = >
i=1

n

Xi ?>
i=1

n

X = >
i=1

n

Xi ? nX = n 1
n >

i=1

n

Xi ? X

and 1
n > i=1

n Xi ? X = 0 .



Further applications of the summation operator:
¾ double summation: for Xij (1 ² i ² n, 1 ² j ² m)

>
i=1

n

>
j=1

m

Xij = >
i=1

n

ÝXi1 + Xi2 +. . .+Xim Þ = >
j=1

m

ÝX1j + X2j +. . .+Xnj Þ

l An example. For Xij such that, for 1 ² i ² 2, 1 ² j ² 3,
X11 = 1, X12 = ?3, X13 = 3, X21 = ?4, X22 = 2, X23 = ?1.

Then

>
i=1

2

>
j=1

3

Xij = Ý1 ? 3 + 3 ? 4 + 2 ? 1Þ = ?2

We can organise the data in a table

1 ?3 3
?4 2 ?1



It is easy to see that
fix i = 1 (first line of the table):

X11 = 1, X12 = ?3, X13 = 3, >
j=1

3

Xij = ÝXi1 + Xi2 + Xi3 Þ = 1

fix i = 2 (second line of the table):

X21 = ?4, X22 = 2, X23 = ?1, >
j=1

3

Xij = ÝXi1 + Xi2 + Xi3 Þ = ?3

Sum across all lines,

>
i=1

2

>
j=1

3

Xij = 1 ? 3 = ?2



Or, fix j = 1 (first column):

X11 = 1, X21 = ?4, >
i=1

2

Xij = ÝX1j + X2j Þ = ?3

in the same way, fixing j = 2 or j = 3, respectively,

j = 2: X12 = ?3, X22 = 2, >
i=1

2

Xij = ÝX1j + X2j Þ = ?1

j = 3: X13 = 3, X23 = ?1, >
i=1

2

Xij = ÝX1j + X2j Þ = 2

Summing all columns,

>
j=1

3

>
i=1

2

Xij = ?3 ? 1 + 2 = ?2



This corresponds to summing the columns and the rows of the table, so
that

> j=1
3 Xij

1 ?3 3 1

?4 2 ?1 ?3

> i=1
2 Xij ?3 ?1 2 > i=1

2 > j=1
3 Xij = ?2



Further operations with the Summation operator
¾ We can also combine these operations.
For example for

Zi = a + bXi + cYi,
for a, b, c constants,

>
i=1

n

Zi = na + b>
i=1

n

Xi + c>
i=1

n

Yi

l An example.
For X1 = 3, X2 = ?2, X3 = 1; Y1 = 3, Y2 = 1, Y3 = ?2; a = 4, b = 2, c = ?1:

>
i=1

3

Zi = 3 × 4 + 2 × 2 ? 1 × 2 = 14



¾ We can also apply the operator> i=1
n to non-linear functions, gÝXi Þ:

>
i=1

n

gÝXi Þ = gÝX1 Þ +. . .+gÝXn Þ

If, for example,

gÝXi Þ = Xi2, then >
i=1

n

Xi2 = X12 +. . .+Xn2

gÝXi Þ = ÝXi + aÞ2, then >
i=1

n

ÝXi + aÞ2 = >
i=1

n

Xi2 + 2a>
i=1

n

Xi + na2.

l An example. For X1 = 3, X2 = ?2, X3 = 1,> i=1
n Xi2 = 32 + Ý?2Þ2 + 12 = 14

>
i=1

3

ÝXi ? 2Þ2 = Ý3 ? 2Þ2 + Ý?2 ? 2Þ2 + Ý1 ? 2Þ2 = 18

or, >
i=1

3

ÝXi ? 2Þ2 = 14 + 2 × Ý?2Þ × 2 + 3Ý?2Þ2 = 18



Product operator
For a sequence of values X1, X2, ..., Xn, the product operator< is defined
as

<
i=1

n

Xi = X1 × X2 ×. . .×Xn

¾ nmay be finite or infinite (K);
¾ sometimes either<

i
Xi or< Xi are used;

l An example.
For X1 = 3, X2 = ?2, X3 = 1,

<
i=1

3

Xi = 3 × Ý?2Þ × 1 = ?6



Relation between product and summation
¾ if every value of Xi is positive, then

ln <
i

Xi = >
i

lnÝXi Þ.

l An example.
For

X1 = 3, X2 = 2, X3 = 1,
then

<
i

Xi = 6, ln <
i

Xi = 1.7918. . .

and
lnX1 = 1.0986. . . , lnX2 = 0.69315. . . , lnX3 = 0

>
i

lnXi = 1.0986. . .+0.69315. . .+0 = 1.7918



Factorial operator
For any positive integer k, the factorial operator is defined so that

k! = k × Ýk ? 1Þ ×. . .×1

¾ for k = 0, 0! = 1 is defined.

l An example.
2! = 2 × 1 = 2, 3! = 3 × 2 × 1 = 6, 4! = 4 × 3 × 2 × 1 = 24



Errors to avoid:

>
i=1

n

Xi2 =1 >
i=1

n

Xi
2

>
i=1

n

XiYi =1 >
i=1

n

Xi>
i=1

n

Yi

>
i=1

n
Xi
Yi

=1
> i=1

n Xi
> i=1

n Yi



l Errors to avoid, examples:

>
i=1

n

Xi2 =1 >
i=1

n

Xi
2

Verify this setting n = 2, X1 = 1, X2 = 9,
then> i=1

n Xi2 = Ý12 + 92 Þ = 82; > i=1
n Xi

2
= Ý1 + 9Þ2 = 100.

>
i=1

n

XiYi =1 >
i=1

n

Xi>
i=1

n

Yi

Verify this setting n = 2, ÝX1 = 1,Y1 = 2Þ, ÝX2 = 2,Y2 = 5Þ,
then> i=1

n XiYi = Ý1 × 2 + 2 × 5Þ = 12;
> i=1

n Xi> i=1
n Yi = Ý1 + 2Þ × Ý2 + 5Þ = 21.



>
i=1

n
Xi
Yi

=1
> i=1

n Xi
> i=1

n Yi
Verify this setting n = 2, ÝX1 = 1,Y1 = 2Þ, ÝX2 = 2,Y2 = 5Þ,

then> i=1
n Xi

Yi = Ý 12 + 2
5 Þ = 9

10 ;
> i=1

n Xi

> i=1
n Yi

= Ý1+2Þ
Ý2+5Þ = 3

7 .



The probability model

Set theory for probability.
Random experiment
an experiment that may result in two or more different outcomes with
uncertainty as to which will be observed, e.g. throwing a die.
Sample space
the set of all the potential outcomes of the experiment, usually denoted by
I. For throwing a regular die, I = á1,2,3, 4,5, 6â.
Event
a subset of the sample space, e.g., in the previous example,
A = score less than 4 = á1,2,3â, B = score even = á2,4,6â.



Intersection of sets
denoted by A V B, for A Ô I, B Ô I. Set of elements that belong to both A
and B. In the example of throwing a die, A V B = á2â.
Difference of sets
for A Ô I, B Ô I, indicated as A\B. The set of elements that are in A but not
in B. In the example of throwing a die, A\B = á1,3â.
Union of sets
denoted by A W B, for A Ô I, B Ô I. Set of elements that belong to A or to B
or to both, e.g. In the example of throwing a die, A W B = á1,2,3, 4,6â.
Complement set
denoted by Ac, for A Ô I. Set of elements in I but not in A (Ac = I\A). In
the previous example, Ac = á4,5,6â.



Empty set
a set with no elements in. Indicated as h.
Disjoint sets
for A Ô I, B Ô I. When A and B have no elements in common (so
A V B = h).
In probability theory, Two events that have no outcomes in common are
said to bemutually exclusive.
In the example of throwing a die, letting C = score at least 5 = á5,6â,
A V C = h.

We can also combine these set operations, for example Ac V B,...
Some interesting formulas (De Morgan)
ÝA V BÞc = Ac W Bc, ÝA W BÞc = Ac V Bc,
A V ÝB W CÞ = ÝA V BÞ W ÝA V CÞ, A W ÝB V CÞ = ÝA W BÞ V ÝA W CÞ.
Example: List the elements in these sets when A, B, C and I are the ones of
the example of throwing a die.



Defining the probability model
Intuitively, we want probability to replicate the percentage of occurrences
of an uncertain event when an experiment takes place many times.

The axioms of probability. Let I be a sample space composed of n < K
outcomes, and A, B are two generic events such that A Ô I, B Ô I.
Probability, denoted PÝ. Þ, is a function that associates to any A, B a number
in ß0,1à so that

A. 1 : PÝAÞ ³ 0
A. 2 : PÝIÞ = 1
A. 3 : PÝAUBÞ = PÝAÞ + PÝBÞ if A V B = h



Note. This definition requires n < K: the extension to n = K is possible but
in that case the collection of all the subsets of Imay be too large for
probabilities to be assigned reasonably to all its members. Probability is
then only defined for some sets A that satisfy further properties. Axiom A. 3
is also extended to allow an infinite union of disjoint sets.
In the rest of the notes we will assume that any event Awe consider is such
that PÝAÞ can be assigned, unless otherwise specified.



The addition rule:
PÝA W BÞ = PÝAÞ + PÝBÞ ? PÝA V BÞ

² PÝAÞ + PÝBÞ

Other properties of probability:
PÝAc Þ = 1 ? PÝAÞ
PÝhÞ = 0
if A Ô B, PÝAÞ ² PÝBÞ
PÝAÞ ² 1



Conditional probability
Consider the example of throwing a die, with the natural probability
assignment (PÝiÞ = 1/6 for i = 1, . . . , 6). In this case, PÝAÞ = PÝá1,2,3âÞ = 0.5.
However, suppose the die is thrown and, although you are not told the
result, you are informed that the score is even. What is the probability of a
score less than 4 in this case?

For any A, B, we are interested in PÝA|BÞ, the probability of "A given B " or
of "A conditional upon B":

PÝA|BÞ =
PÝA V BÞ
PÝBÞ .

Multiplicative rule
PÝA V BÞ = PÝA|BÞPÝBÞ
PÝA V BÞ = PÝB|AÞPÝAÞ



Independent events
Two events A and B are independent if and only if

PÝA V BÞ = PÝAÞPÝBÞ
which implies that

PÝA|BÞ = PÝAÞ, PÝB|AÞ = PÝBÞ.
Two mutually exclusive events A, B such that PÝAÞ > 0, PÝBÞ > 0 cannot be
independent.

Example. Consider an experiment composed of two parts: we toss a coin
and we throw a die. Let A = die score less than 4 , and B = coin is head .
Clearly, PÝAÞ = 0.5 but also PÝA|BÞ = 0.5: knowing the result of the coin
toss, is not informative about the die score.



Example: bookings at the indoor court
The indoor court of the Gym can be used for three activities: basketball
(BB), badminton (BM) and volleyball (VB); these are practised by two
groups of people: undergraduate students (UG) and postgraduate students
(PG). The percentage of bookings last year, divided per student and
activity, are

Activity

Student BB BM VB

UG 0.30 0.19 0.21

PG 0.09 0.12 0.09



For any given booking of that year,
What is the probability that a court was booked by PG to play BM?
What is the probability that a court was booked to play BM?
What is the probability that a court was booked to play BM given that the
booking was made by a PG?
Are the events "the court was booked by UG" and "the court was booked to
play BM" mutually exclusive?
Are the events "the court was booked by PG" and "the court was booked to
play BM" independent?



l Discussion of the example
gWhat is the probability that a court was booked by PG to play BM?

PÝPG V BMÞ = 0.12

gWhat is the probability that a court was booked to play BM?
PÝBMÞ = PÝUG V BMÞ + PÝPG V BMÞ = 0.19 + 0.12 = 0.31

gWhat is the probability that a court was booked to play BM given that the
booking was made by a PG?

PÝBM|PGÞ =
PÝBM V PGÞ
PÝPGÞ

PÝPGÞ = PÝPG V BBÞ + PÝPG V BMÞ + PÝPG V VBÞ
= 0.09 + 0.12 + 0.09 = 0.3

PÝBM|PGÞ = 0.12
0.3 = 0.4



g Are the events "the court was booked by UG" and "the court was booked
to play BM" mutually exclusive?

PÝUG V BMÞ = 0.19, so UG V BM =1 h

g Are the events "the court was booked by PG" and "the court was booked
to play BM" independent?

PÝBMÞ = 0.31
PÝBM|PGÞ = 0.40

(see above) so PÝBM|PGÞ =1 PÝBMÞ and therefore the events are not
independent.



Bayes� rule

PÝA|BÞ =
PÝB|AÞPÝAÞ

PÝB|AÞPÝAÞ + PÝB|Ac ÞPÝAc Þ
Proof:

PÝA|BÞ =
PÝA V BÞ
PÝBÞ

=
PÝA V BÞ

PÝB V AÞ + PÝB V Ac Þ

=
PÝB|AÞPÝAÞ

PÝB|AÞPÝAÞ + PÝB|Ac ÞPÝAc Þ

This is also known as Bayes� theorem.



Example: disease detection
A blood test is available, to detect the presence of a disease, which is
present in 0.5% of the population. The test gives a positive outcome in 99%
of the people who have the disease (it correctly detects the disease with
probability 99%), and in 5% of the people who do not have the disease (it
incorrectly detects the disease with probability 5%).
What is the probability of having the disease, if the outcome of the test is
positive?



Let A be the event the individual has the disease , and B the event
the outcome of the test is positive , then

PÝAÞ = 0.005, PÝB|AÞ = 0.99, PÝB|Ac Þ = 0.05,
and we are interested in PÝA|BÞ. We can compute PÝA vÞ = 0.995, so, by
Bayes� rule,

PÝA|BÞ =
PÝB|AÞPÝAÞ

PÝB|AÞPÝAÞ + PÝB|Ac ÞPÝAc Þ
0.99 × 0.005

0.99 × 0.005 + 0.05 × 0.995 u 0.0905



We can generalise Bayes� rule to sets Aj such that
S = W j=1n Aj, where Aj V Ai = h (for j =1 i).

Then,

PÝAk|BÞ =
PÝAk V BÞ
PÝBÞ

=
PÝAk V BÞ

> j=1
n PÝAj V BÞ

PÝAk|BÞ =
PÝB|Ak ÞPÝAk Þ

> j=1
n PÝB|Aj ÞPÝAj Þ



Section 2
Random variables and probability distributions

¾ Objectives: to introduce random variables and probability functions, to
facilitate calculating probabilities, and to model situations that are too
large for a small table

¾ Topics: Random variables; discrete and continuous distributions; joint,
marginal and conditional distributions.

¾ References: Miller and Miller, Chapter 3 (Sections 3.1 to 3.7);
Wooldridge, Appendix B (sections B.1 and B.2)



Random variables and probability distributions
In some experiments, the outcome is a number; otherwise, it may be
transformed into a number. In many cases, this may be advantageous,
because the probability tables may be summarised in a generic function.
Random variable, for a finite dimensional space I
The random variable is a function that associates the outcomes in I to
numbers.
Note: This definition may be generalised to comprise cases in which the
dimension of I is not finite, but still countable, and even cases in which the
dimension is not countable. When the dimension of I is finite or infinite
but countable, then the random variable is said to be discrete, otherwise it
is said to be continuous.
Notice that the random variable is neither a variable (it is a function) nor
random (the association is certain).



A random variable is indicated with the use of an uppercase letter.
The value the random variable takes when the experiment is run, is called
realisation and it is indicated with the use of a lowercase letter.

Example of throwing a fair die: X is "score"; the outcomes 1, 2, 3, 4, 5 or 6
are values of xwith non-zero probability.



Probability distributions for discrete random variables
Let X be a discrete random variable with realisations áx1,x2, . . . â, and

fXÝxj Þ = PÝX = xj Þ
for xj 5 áx1,x2, . . . â, where

fXÝxj Þ ³ 0, > fXÝxj Þ = 1.

Then áfXÝx1 Þ, fXÝx2 Þ, . . . â is the probability distribution, and the function
PÝX = xj Þ is the probability function.
Note. The individual fXÝxj Þ are probability masses, so the function
PÝX = xj Þ is sometimes known as probability mass function.
Sometimes the subscript is omitted, and fÝxj Þ = PÝX = xj Þ is also used. The
notation pj = PÝX = xj Þ is also used.

l Example. When X is the score from throwing a fair die, PÝX = xÞ = 1/6
when 1, 2, 3, 4, 5 or 6. For any other value of x, PÝX = xÞ = 0.



l Example: Number of Tails from tossing a fair coin twice.
Let I be the space of outcomes of two tosses. So, let HH be the outcome
"the both the first and second toss resulted in Head", HT the outcome "the
first toss resulted Head, the second in Tail"... The sample space I is

I : áHH,HT,TH,TTâ
(notice that HT and TH are different outcomes).
Then, let X be the random variable "number of tails". If we observe the
outcome HH, then X takes value 0, i.e. x = 0. In the same way, if observe the
outcomes HT or TH, x = 1, ... so

XÝHHÞ = 0,
XÝHTÞ = 1,
XÝTHÞ = 1,
XÝTTÞ = 2.

(notice that indeed X is a function of Iwith images in §, i.e. X : I ¸ §, so
it really is a random variable).



As each outcome has the same probability, 1/4, the probability function is
PÝX = 0Þ = 1/4, PÝX = 1Þ = 1/2, PÝX = 2Þ = 1/4.

An alternative way to represent this probability function is

PÝX = xÞ =
?1/4x2 + 1/2x + 1/4 if x 5 á0,1,2â

0 otherwise

This function is not continuous: notice the gaps at 0, 1 and 2.



Note: this random variable is characterized by a special distribution called
"binomial". For n independent trials, letting X be the random variable
"number of tails" in n independent trials, the probability function is

PÝX = xÞ = n!
x!Ýn ? xÞ! 0. 5

x0.5n?x.



Cumulative distribution function
For any x, it is possible to define

FXÝxÞ = PÝ?K < X ² xÞ.
FXÝ. Þ is called cumulative distribution function.
l In the example of recording the number of tails after two coin toss trials,
the Cumulative distribution function is
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Note: The "square" is used to indicate that when a discontinuity takes place
FXÝxÞ takes the value indicated by the square, e.g., FXÝ0Þ = 0.25.



When I is not countable, it is possible to define the probability using sets
such as Ýa,bà (for b ³ a). In this case, the axioms of probability imply that,
for a suitable random variable X,

PÝ?K < X < KÞ = 1,
0 ² PÝa < X ² bÞ ² 1 for any b ³ a.

Notice that this imply that
PÝX = cÞ = PÝc ² X ² cÞ = 0

and that it is still possible to define a cumulative distribution function
FXÝ. Þ, where

FXÝxÞ = PÝ?K < X ² xÞ.



Continuous random variables

A random variable is continuous if there is a function fXÝ. Þ such that
(i) fXÝxÞ ³ 0 for any x

(ii) FXÝxÞ = X
?K

x
fXÝtÞdt.

The function fXÝ. Þ is called probability density function; FXÝxÞ is the
cumulative distribution function (when it is clear that these are functions
for random variable X, fÝxÞ and FÝxÞ is used instead).
For any two a, b, a ² b,

PÝa < X ² bÞ = X
a

b
fXÝtÞdt.



Example: on the beach.
Jasmine goes to the beach early in the morning. At around lunchtime,
David goes to the beach as well. The beach is 4 km long, and the
probability that Jasmine is in any part of the beach is continuously
distributed with

fXÝxÞ =
0.25 if 0 ² x ² 4,

0 otherwise.

What is the probability that David will find Jasmine if he looks for her
between the first and second km of the beach?

PÝa ² X ² bÞ = X
a

b
fXÝxÞdx = X

1

2
0. 25 dx = 0.25ßxà1

2 = 0.25Ý2 ? 1Þ = 0.25



l Example/Practice. Level of charge with one battery.
The level of charge in a battery is a random variable Xwhich may take
values between 0 and 1 (so, X = 0means that the battery has no charge,
and X = 1 that it is fully charged) with density

fÝxÞ = 3
2 ? x if x 5 ß0,1à

and 0 elsewhere.
Compute the probabilities PÝX ² 0.5Þ and PÝ0.1 < X ² 0.6Þ
Compute the value of x such that PÝX ² xÞ = 0.5



Before we start the discussion we plot fÝxÞ

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

x

y

the probability is allocated between 0 and 1, and more is allocated near 0.
Therefore:
Since X = 0.5 is the middle of ß0,1à, and the probability is more clustered
around 0, then we should get PÝX ² 0.5Þ > 1/2 and
PÝX ² 0.5Þ > PÝ0.1 < X ² 0.6Þ.
Moreover, the value of x such that PÝX ² xÞ = 0.5 should be in the interval
Ý0,1/2Þ.



g Compute the probabilities PÝX ² 0.5Þ and PÝ0.1 < X ² 0.6Þ.

PÝ0.1 < X ² 0.6Þ = X
0.1

0.6 3
2 ? x dx

= 3
2 × 0.6 ? 12 × 0.62 ? 3

2 × 0.1 ? 12 × 0.12 = 0.575

PÝX ² 0.5Þ = X
0

0.5 3
2 ? x dx = 3

2 x ?
1
2 x

2
0

0.5
= 0.625

g Compute the value of x such that PÝX ² xÞ = 0.5.

PÝX ² xÞ = X
0

x 3
2 ? s ds = 3

2 x ?
1
2 x

2

3
2 x ?

1
2 x

2 = 0.5

x = 0.38197
note that 3

2 x ?
1
2 x

2 = 0.5 is a second degree equation, so it has two
solutions, but the second solution, 2. 618, is discarded (because fÝxÞ = 3

2 ? x
only if x 5 ß0,1à)



Joint distribution of random variables
Sometimes we are interested in more than one event at the same time.
Example: stock and bond.
Let X be the return of a given stock, and Y the returns of a given bond. The
stock return may either take value x1 = 0 or x2 = 10, and the bond return
may either take value y1 = 0 or y2 = 2. Four outcomes are then possible,
and the probability of each outcome is

yj
0 2

xi 0 0.2 0.5

10 0.2 0.1

so fX,YÝxi,yj Þ = PÝX = xi V Y = yj Þ.
Notation pi,j = PÝX = xi V Y = yj Þ is sometimes also used.



Joint probability function. The list of the fX,YÝx,yÞ is the joint probability
function ("joint distribution") of the two discrete random variables X and Y.
The joint probability function for discrete random variables is such that

(i) fX,YÝx,yÞ ³ 0

(ii) >
x

>
y

fX,YÝx,yÞ = 1

It is also possible to define a joint cumulative distribution function,
FX,YÝx,yÞ = PÝX ² x,Y ² yÞ = >

i²x
>
j²y

fX,YÝx,yÞ.



Marginal probability functions. The list of the fXÝxi Þ = PÝX = xi Þ,
fYÝyj Þ = PÝY = yj Þ are the "marginal probability functions" ("marginal
distributions") of X and Y. They can be computed as

fXÝxÞ = >
y

fX,YÝx,yÞ, fYÝyÞ = >
x

fX,YÝx,yÞ.

for instance, in the Stock and Bond example,
PÝX = 0Þ = 0.2 + 0.5 = 0.7, PÝY = 2Þ = 0.5 + 0.1 = 0.6

i.e.

xi 0 10

fXÝxi Þ 0.7 0.3
and

yj 0 2

fYÝyj Þ 0.4 0.6



For two continuous random variables X and Y, there is a joint density
fX,YÝx,yÞ such that

PÝa < X ² b,c < Y ² dÞ = X
a

b X
c

d
fX,YÝx,yÞdydx

(replacing "<" with "²" has no effect).
A function fX,YÝ. Þ can serve as density if

(i) fX,YÝx,yÞ ³ 0

(ii) X
?K

K X
?K

K
fX,YÝx,yÞdxdy = 1

It is also possible to define a joint cumulative distribution function,

FX,YÝx,yÞ = PÝX ² x,Y ² yÞ = X
?K

x X
?K

y
fX,YÝs, tÞdsdt.

The marginal density functions, fXÝxÞ or fYÝyÞ, can be obtained ("integrating
out") as

fXÝxÞ = X
?K

K
fX,YÝx,yÞdy, fYÝyÞ = X

?K

K
fX,YÝx,yÞdx.



Given the joint cumulative distribution functions, it is also possible to
define the marginals.
For discrete random variables these are

FXÝxÞ = PÝX ² xÞ = >
t²x

fXÝtÞ = >
t²x
>
y

fX,YÝt,yÞ,

FYÝyÞ = PÝY ² yÞ = >
s²y

fYÝsÞ = >
x

>
s²y

fX,YÝx, sÞ

and, for continuous random variables,

FXÝxÞ = PÝX ² xÞ = X
?K

x
fXÝtÞdt = X

?K

x X
?K

K
fX,YÝt, sÞdtds,

FYÝyÞ = PÝY ² yÞ = X
?K

y
fYÝsÞds = X

?K

K X
?K

y
fX,YÝt, sÞdtds



Conditional probability functions: the list of the probabilities
PÝX = x|Y = yÞ, PÝY = y|X = xÞ, where

PÝX = x|Y = yÞ =
PÝX = x V Y = yÞ

PÝY = yÞ

PÝY = y|X = xÞ =
PÝX = x V Y = yÞ

PÝX = xÞ
are the "conditional probability functions" ("conditional distribution") of X
given Y and of Y given X. For instance, list the probabilities of Y when X = 0
in the Stock and Bond example:

0.2
0. 7 = 0.285. . .u 0.29, 0.50. 7 = 0.714. . .u 0.71

so

yj|X = 0 0 2

fY|X=0ÝyÞ 0.29 0.71

Note: this example also shows another thing: as we fixed X (to X = 0 in this
case), fY|X=0ÝyÞ is just a probability function for Y.



It is interesting to compare the conditional probability function fY|X=0ÝyÞ to
the marginal fYÝyÞ,

y 0 2

fYÝyÞ 0.4 0.6
,

y 0 2

fY|X=0ÝyÞ 0.29 0.71

We can see that the information on X is important to know something
about Y: for example we know that if X = 0 then the probability of Y = 2 is
higher (0.71 vs 0.6) than when we know nothing about X.
We could also compute fY|X=10ÝyÞ, and in particular,
PÝY = 2|X = 10Þ = 1/3 u 0.33, thus seeing that knowledge that X = 10 takes
the probability of Y = 2 to 0.33.
In economics we are mostly interested in establishing conditional
statements, so we are most interested in conditional probabilities and
conditional probability functions.



Conditional density functions. For two continuous random variables Y
and X, with joint probability density fX,YÝx,yÞ and marginals fXÝxÞ, fYÝyÞ, the
conditional density functions fX|YÝx|yÞ, fY|XÝy|xÞ are

fX|YÝx|yÞ =
fX,YÝx,yÞ
fYÝyÞ

, fYÝyÞ =1 0

fY|XÝy|xÞ =
fX,YÝx,yÞ
fXÝxÞ

, fXÝxÞ =1 0

Note: The conditional density functions are density functions, and meet all
the characteristics of density functions.



l Example/Practice. Level of charge with two batteries.
The levels of charge in two batteries are two random variables X and Y with
joint density

fX,YÝx,yÞ = Ý2 ? Ýx + yÞÞ if x 5 ß0,1à and y 5 ß0,1à
and 0 elsewhere.

g Compute the probability PÝX ² 0.5,Y ³ 0.5Þ

PÝX ² 0.5,Y ³ 0.5Þ = X
0

0.5 X
0.5

1
Ý2 ? Ýx + yÞÞdy dx = X

0

0.5
2y ? xy ? 12 y

2
0.5

1
dx

= X
0

0.5
2 ? x ? 12 ? 2 × 0.5 ? x × 0.5 ? 12 × 0.52 dx

= X
0

0.5
Ý0.625 ? 0.5xÞdx = 0.625x ? 0.5 12 x

2
0

0.5

= 0.625 × 0.5 ? 0.5 12 0.5
2 = 0.25



g Compute the marginal density fXÝxÞ

fXÝxÞ = X
0

1
Ý2 ? Ýx + yÞÞdy = 2y ? xy ? 12 y

2
0

1
= 2 ? x ? 12 = 3

2 ? x

g Compute the conditional density fY|XÝy|0. 25Þ

fY|XÝy|0. 25Þ =
Ý2 ? Ý 14 + yÞÞ

3
2 ? 1

4
= 7
5 ? 45 y

g Compute the conditional probability PÝY < 0.5|X = 0.25Þ

FY|XÝ0.5|0.25Þ = X
0

0.5 7
5 ? 45 y dy = 0.6



Independently distributed random variables.
Two discrete random variables X and Y with joint probability function
fX,YÝx,yÞ and marginals fXÝxÞ and fYÝyÞ are independent if and only if

fX,YÝx,yÞ = fXÝxÞfYÝyÞ for all x,y.
Notice that the reference to "all x,y" is important, because
fX,YÝx,yÞ = fXÝxÞfYÝyÞmay hold for some combinations of x,y, and yet fail to
hold for all of them.

In the same way, when X and Y are continuous random variables, with
joint probability density fX,YÝx,yÞ and marginals fXÝxÞ and fYÝyÞ,
independence implies and is implied by

fX,YÝx,yÞ = fXÝxÞfYÝyÞ for all x,y.

¾ When X1, ..., Xn are n independently, identically distributed random
variables, we also write X1, ..., Xn i i. i.d. .



Example. To verify that in the Stock and Bond example that the returns X
and Y are not independent, consider for instance x = 0, y = 0. Then,
0.2 =1 0.7 × 0.4.

Notice that for discrete random variables this definition is just the
application of the definition of independence for two events: when two
events A and B are considered, we know that they are indendendent if

PÝA V BÞ = PÝAÞPÝBÞ
so we have just applied this formula to the events A = áX = xâ,
B = áY = yâ.
However, we may change the values of x or of y: the definition of
independent random variables requires that PÝA V BÞ = PÝAÞPÝBÞ holds for
all the eligible values.



Transformations of identically distributed random variables
Let X and Y be identically distributed random variables. Then, for any
continuous function g, gÝXÞ and gÝYÞ are also identically distributed
random variables.

Transformations of independent random variables
Let X and Y be independently distributed random variables. Then, for any
continuous function g, gÝXÞ and gÝYÞ are also independently distributed
random variables.



Section 3
Mathematical expectations

¾ Objectives: to introduce summary numbers to summarize the
information in probability functions.

¾ Topics: mean, variance and higher moment; covariance and
correlation; conditional moments.

¾ References: Miller and Miller, Chapter 4 (sections 4.1 to 4.9) and
Chapter 8 (section 8.2); Wooldridge, Appendix B (sections B.3 and B.4)



It is often desirable to summarise some properties of a distribution in just a
few numbers (for example, to compare random variables with different
distributions).

Example. Suppose that you have a ticket of a lottery with prize value of
50£, and that 100 tickets have been sold. Calling X the value of the ticket,
the probability function is

x 0 50

fÝxÞ 0.99 0.01

There is also another lottery, that awards a second prize, with value 10£.
Calling Y the value of the ticket, the probability function is

y 0 10 50

fÝyÞ 0.98 0.01 0.01

How can we compare lotteries X and Y?



Example: In the Accident and Emergency room of a hospital, 0, 1, 2, 3, or 4
people injured arrive each hour, distributed according to the probability

x 0 1 2 3 4

fÝxÞ 0.10 0.77 0.08 0.03 0.02

How can we summarize the number of injured per hour?



We will introduce the mean and the variance as two summary measures.

Mean (expected value)
For a discrete random variable Xwith PÝX = xj Þ = fXÝxj Þ, the expected
value EÝXÞ is

EÝXÞ = >
j

fXÝxj Þxj

For a continuously distributed random variable with density fXÝxÞ, the
expected value is

EÝXÞ = X
?K

K
xfXÝxÞdx.

The expected value is often denoted as WX
Note: do not confuse the mean (EÝXÞ) with the sample mean (X).



In the example of the two lotteries, EÝXÞ = 0.5 and EÝYÞ = 0.6.

In the example of throwing a fair die, EÝXÞ = 3.5.

In the example ER,
EÝXÞ = 0.10 × 0 + 0.77 × 1 + 0.08 × 2 + 0.03 × 3 + 0.02 × 4 = 1.1.

In the example of the level charge of a battery,

EÝXÞ = X
0

1
x 3
2 ? x dx = 3

4 x
2 ? 13 x

3
0

1
= 5
12



The expected value is a weighted average of the possible values xj with the
weights being the corresponding fXÝxj Þ.
The expected value is not necessarily the most frequent outcome, indeed it
may not be an outcome at all; it is informative about the "middle" of the
distribution, but does not necessarily split the distribution in two parts;
sometimes it is said that it is a measure of the central tendency, or the
"centre" of gravity of the distribution, because if we repeat the experiment
many times and we average the realisations, under regularity conditions
that average should be very close to the expected value.



Expectations for functions of random variables.
When X is a random variable with probabilities assigned by fÝxÞ, then gÝXÞ
(for a given function g : § ¸ §) is also a random variable, with
probabilities (still) assigned by fÝxÞ. We can then define, for discrete
random variables,

EÝgÝXÞÞ = >
x

fÝxÞgÝxÞ

or, for continuous random variables and for a generic function g,

EÝgÝXÞÞ = X
?K

K
fÝxÞgÝxÞdx.



The variance VarÝXÞ is
VarÝXÞ = EÝX ? EÝXÞÞ2

or, recalling EÝXÞ = WX,
VarÝXÞ = EÝX ? WXÞ2.

The variance is often denoted by aX2 .

¾ For a discrete random variable Xwith PÝX = xj Þ = fXÝxj Þ, this is
VarÝXÞ = >

j

fXÝxj ÞÝxj ? WXÞ
2

¾ For a continuous random variable with density fXÝxÞ, this is

VarÝXÞ = X
?K

K
Ýx ? WXÞ2fXÝxÞdx

¾ The formula is equivalent to
VarÝXÞ = EÝX2 Þ ? WX2



l Example: up and down
Consider the two random variables, X and Y, with probability distributions
fXÝxj Þ and fYÝyj Þ respectively, as in

xj ?1 0 1

fXÝxj Þ 1/3 1/3 1/3
,

yj ?1 0 1

fYÝyj Þ 1/4 1/2 1/4

Here both the random variables have the same support (i.e., may take the
same realisations), and in both cases the expected value is 0.
VarÝXÞ = 1/3 × Ý?1Þ2 + 1/3 × 02 + 1/3 × Ý1Þ2 = 2/3
VarÝYÞ = 1/4 × Ý?1Þ2 + 1/2 × 02 + 1/4 × Ý1Þ2 = 1/2



The variance is a weighted average of the squared spreads xj ? WX with the
weights being the corresponding fXÝxj Þ.
The variance is a measure of the dispersion of the random variable around
WX. Notice that it is scaled by squares of xj and of WX, so for comparison
purposes it is usually more interesting to use the standard deviation, aX,
instead. This is defined as aX = VarÝXÞ .

Theorems for the mean and the variance
For a random variable Xwith EÝXÞ = WX, VarÝXÞ = aX2 , and for constant a, b,

(i) EÝa + bXÞ = a + bWX
(ii) VarÝa + bXÞ = b2aX2 .



Standardisation
Let X be such that EÝXÞ = W, VarÝXÞ = a2, and let Z ¯ ? W

a + Ý 1a ÞX, so that

Z =
X ? W
a

Then,
EÝZÞ = 0, VarÝZÞ = 1.

g Proof of EÝZÞ = 0

EÝZÞ = E X ? W
a = E X

a ? W
a = 1

a EÝXÞ ?
W
a = 1

a W ? W
a = 0

using Theorem (i), as W and a are constants.
g Proof of VarÝZÞ = 1

VarÝZÞ = Var X ? W
a = Var X

a = 1
a2
VarÝXÞ = 1

a2
a2 = 1

using Theorem (ii), as W and a are constants.



Higher moments
The third moment about the mean is also called skewness, and it often
denoted as W3

W3 = EÝX ? WÞ3.
When W3 = 0, the function is symmetric; when W3 > 0, it is "skewed to the
right" (the right tail of the distribution is longer), when W3 < 0, it is "skewed
to the left" (the left tail of the distribution is longer). For comparison
purposes, the normalised measure

J3 =
W3
a3

is more of interest.
In the example of the ER,

W3 = 0.618, a2 = 0.47, J3 = 1. 9180



The fourth moment about the mean is also called kurtosis, and it often
denoted as W4

W4 = EÝX ? WÞ4.
The kurtosis measures the peakedness of the distribution or of the density.
For comparison purposes, the normalised measure J4 = W4

a4
is more of

interest.

The rth moment about the mean, often denoted as Wr, is
Wr = EÝX ? WÞr.

Why this form for the moments? Why, for example, not taking E|X ? W| as
measure of dispersion?
¾ Uniqueness Theorem Under some regularity conditions, the moments
characterise the distribution univocally, i.e., if we know all the
moments, then we know the distribution.



Using conditional distributions, we can also define conditional moments.
For two random variables, X and Y,

WY|X=x = EÝY|X = xÞ
aY|X=x
2 = VarÝY|X = xÞ = EÝY2|X = xÞ ? ÝEÝY|X = xÞÞ2.

Of course, conditional moments for Xmay be defined in the same way.
For discrete random variables, EÝY|X = xÞ = > j yjfY|xÝyj|xÞ;

For continuous random variables, EÝY|X = xÞ = X
?K

K yfY|xÝy|xÞdy;

In the Stock and Bond example,
EÝY|X = 0Þ = 0 × 0.29 + 2 × 0.71 = 1.42.

For comparison, notice that EÝYÞ = 1.2, and EÝY|X = 10Þ = 0.66. . . .

(In the same way, VarÝY|X = 0Þ u 0.82 and VarÝY|X = 10Þ u 0.89
whereas VarÝYÞ = 0.96. It is also interesting to notice here that conditioning
has reduced the variance)



Covariance of random variables.
Let X and Y two random variables with joint probability function fX,YÝxiyj Þ,
and marginal probability functions fXÝxi Þ and fYÝyj Þ respectively, and such
that EÝXÞ = WX, EÝYÞ = WY, VarÝXÞ = aX2 , VarÝYÞ = aY2 . Then

CovÝX,YÞ = EÝÝX ? WXÞÝY ? WY ÞÞ

is the covariance between X and Y (often indicated as aXY).

Theorems for the covariance
For constant a, b,

(i) CovÝa + X,b + YÞ = CovÝX,YÞ

(ii) CovÝX,YÞ = EÝXYÞ ? WXWY

(iii) CovÝaX,bYÞ = abCovÝX,YÞ

(iv)If X and Y are independent, then CovÝX,YÞ = 0



Correlation of random variables
The covariance is informative of the association between two random
variables. However, it is affected by the unit of measurement. The
correlation is a measure of the association between two random variables
that is not affected by the unit of measurement. For two random variables
X, Y, the correlation _XY is defined as

_XY = aXY
aXaY .

It can be shown that ?1 ² _XY ² 1, and that the absolute value of the _XY
coefficients are not affected by linear transformations, so if A = J1 + J2X,
B = K1 + K2Y, where J1, J2, K1, K2 are constant, then _AB = signÝJ2,K2 Þ_XY,
where signÝJ2,K2 Þ = 1 if J2K2 > 0, signÝJ2,K2 Þ = ?1 if J2K2 < 0.



In the example of Stock and Bond,
EÝXYÞ = 0 × 0 × 0.2 + 0 × 2 × 0.5 + 10 × 0 × 0.2 + 10 × 2 × 0.1 = 2.

Since WX = 3, WY = 1.2,
aXY = 2 ? 3 × 1.2 = ?1.6.

Since aX2 = 21, aY2 = 0.96,
_XY = ?1.6

21 D 0.96
= ? 0.35635.



Sum of random variables
Let

W = X + Y,
where EÝXÞ = WX, VarÝXÞ = aX2 , EÝYÞ = WY, VarÝYÞ = aY2 , CovÝX,YÞ = aXY.
Then,

EÝWÞ = EÝX + YÞ = EÝXÞ + EÝYÞ = WX + WY,
and

VarÝWÞ = EÝW ? EÝWÞÞ2

= EÝX + Y ? ÝWX + WY ÞÞ2 = EÝX ? WX + Y ? WY Þ2

= EÝX ? WXÞ2 + EÝY ? WY Þ2 + 2EÝÝX ? WXÞÝY ? WY ÞÞ = aX2 + aY2 + 2aXY.

In the Stock and Bond example, consider the portfolio W = 1
10 X + 9

10 Y.
Then, EÝWÞ = 1

10 × 3 + 9
10 × 1.2 = 1.38 and

VarÝWÞ = 1
10

2
× 21 + 9

10
2
× 0.96 ? 1

10
9
10 × 2 × 1.6 = 0.6996



Sum of more than two random variables

The results for the mean and variance of two random variables can be
extended to a generic number n of random variables. This is particularly
interesting when the random variables are independently, identically
distributed.
Let X1,...,Xn be n independently, identically distributed random variables
with EÝXi Þ = WX, VarÝXi Þ = aX2 , then

E > i=1
n Xi = nWX

Var > i=1
n Xi = naX2



Further results concerning moments. Chebyshev�s inequality.

Let Y be a random variable with EÝY2 Þ < K. Then

PÝ|Y| ³ PÞ = PÝY2 ³ P2 Þ ²
EÝY2 Þ
P2

for all P > 0.

Note. An interesting implication is that, letting EÝYÞ = W, VarÝYÞ = a2, then

PÝ|Y ? W| ³ PÞ ² a2
P2

so the variance is an upper bound of the measure of the probability on the
tails (defined as the support that is at least P away from W).



Further results concerning moments. Law of iterated
expectations
For random variables X, Y

EÝEÝY|XÞÞ = EÝYÞ and EÝEÝX|YÞÞ = EÝXÞÞ.

Example: EÝEÝY|XÞÞ and EÝYÞ in the Stock and Bond example.
Recall that the we computed EÝYÞ = 1.2, EÝY|0Þ = 1.42 and EÝY|10Þ = 0.66.
So, EÝY|xÞ changes with the as we change X = x, and we know the
probabilities PÝX = xÞ are PÝX = 0Þ = 0.7 and PÝX = 10Þ = 0.3.
EÝY|XÞ is therefore a random variable (in X) with distribution

EÝy|xÞ 0.66 1.42

fÝxÞ 0.3 0.7



We can then compute the expectation
EÝEÝY|XÞÞ u 0.66 × 0.3 + 1.42 × 0.7 = 1.19

Note: the apparent difference between EÝEÝY|XÞÞ and EÝYÞ in this example
is only due to rounding errors.
Note: notice that EÝY|XÞ, is a random variable, but EÝY|xÞ is not a random
variable. In EÝY|xÞwe fixed X = x; it is only when we allow X to take all the
values x1,...,xm, that we have the random variable EÝY|XÞ.



Further results concerning moments. Jensen�s inequality
For a random variable X, and for a a convex function g,

EÝgÝXÞÞ ³ gÝEÝXÞÞ

Example: consider the function gÝXÞ = X2, and suppose that X is distributed
as

x 0 1 2 3

fÝxÞ 0.25 0.25 0.25 0.25

so that

gÝxÞ 0 1 4 9

fÝgÝxÞÞ 0.25 0.25 0.25 0.25

Then, EÝXÞ = 3
2 and gÝEÝXÞÞ = Ý 32 Þ

2 = 9
4 while EÝgÝXÞÞ = 14

4 .



Note:
taking gÝXÞ = X2 we can also see that, for a generic random variable X,

EÝX2 Þ ³ ÝEÝXÞÞ2

Rearranging terms,
EÝX2 Þ ? ÝEÝXÞÞ2 ³ 0.

Since EÝX2 Þ ? ÝEÝXÞÞ2 = VarÝXÞ, we verified that the variance is
non-negative (we already knew that the variance is non-negative; this
application of Jensen�s inequality gives an alternative proof).



Section 4
Some special parametric distributions

¾ Objectives: to introduce some special parametric distributions that are
routinely used in econometrics.

¾ Topics: Bernoulli, binomial, normal, e2, t and F distributions. Joint and
conditional normal distributions.

¾ References: Miller and Miller, Chapter 5, Sections 5.1, 5.3, 5.4 and 5.7;
Chapter 6, Sections 6.1 - 6.3, 6.5 - 6.8 and Chapter 8, Sections 8.4 - 8.6;
Wooldridge, Appendix B (section B.5)



Bernoulli distribution
Let X be a random variable that can only take values 1 or 0, and such that

PÝX = 1Þ = p, 0 < p < 1.
Then, X is Bernoulli distributed. For x = 0, x = 1, the probability function is

fÝx;pÞ = pxÝ1 ? pÞ1?x

(of course, PÝX = xÞ = fÝx;pÞ but here we have made explicit reference to
the parameter p) and

EÝXÞ = p, VarÝXÞ = pÝ1 ? pÞ.

The Bernoulli is used for events with two outcomes which can be classified
as "success" or "failure" (e.g., tossing a coin, classifying "head" as "success").
Each Bernoulli experiment is also called a "bernoulli trial".
A random variable that can only take values 0 and 1 is also often called
"indicator function", and it is often indicated as I.



Binomial distribution
The binomial distribution is appropriate if
1. the experiment can be regarded as of n independent trials
2. each trial can have one of the two mutually exclusive outcomes:
success or failure

3. the probability of a successful outcome is p for each trial
Notice that the trials are identically distributed as well.

Let X be the number of successes, then
PÝX = xÞ = BÝx;p,nÞ = n!

x!Ýn ? xÞ! p
xÝ1 ? pÞn?x

and
EÝXÞ = np, VarÝXÞ = npÝ1 ? pÞ.



Mike Walters is an estate agent. At the moment, he has a portfolio of 6
houses, and he knows that he will sell before the end of the month each one
of those with probability p = 0.6. For each house, the sale is independent
from the other ones.
Using the binomial distribution, with p = 0.6 and n = 6,

xi 0 1 2 3 4 5 6

fXÝxi Þ 0.004096 0.036864 0.13824 0.27648 0.31104 0.18662 0.046656

As np = 3.6, Mike expects to sell 3.6 houses.



Normal distribution

Let X be a continuous random variable with density (pdf)

fXÝxÞ = 1
2^a2

e? 12 Ý
x?W
a Þ2

then X is Normally distributed with mean W and variance a2, and we
indicate this with the notation

X C NÝW,a2 Þ.
The density is
¾ defined for all x
¾ symmetric around W
¾ bell shaped (shape depending on a2)
When W = 0, a2 = 1, the distribution is usually referred as Standard
Normal, and the random variable is often indicated as Z. The pdf of Z is
usually indicated as dÝzÞ, the cdf is usually indicated as ®ÝzÞ.



Some examples: pdf and cdf of the standard normal
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1
2^
e? 12 x2 and 1

2^
e? 12 Ýx?1Þ2 (W = 0 and W = 1)
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Standardisation
When X C NÝW,a2 Þ, direct calculation of probabilities, such as for example
in PÝX ² cÞ, is not possible, because X

?K

c 1
2^a2

e? 12 Ý
x?W
a Þ2dx does not have close

form solution.
Calculation would then only be possible via numeric approximation,
which of course is not practical in general.
Tables could be produced, but they would depend on Wand on a2: this too
would be practically infeasible.



Instead, tables are only produced for Z C NÝ0,1Þ: in order to dares
probability statements for X, we will transform the statement using the fact
that

X ? W
a C NÝ0,1Þ.

Then, for X C NÝW,a2 Þ,
PÝc ² X ² dÞ = PÝc ? W ² X ? W ² d ? WÞ

= P c ? W
a ² X ? W

a ² d ? W
a

= P c ? W
a ² Z ² d ? W

a = ® d ? W
a ? ® c ? W

a .



l Practice. Let X have a Normal distribution with W = 1 and a2 = 16.
Making approximations when necessary, calculate the following
probabilities: PÝX ² 0.052Þ; PÝX ² 10.44Þ; PÝX > 2.72Þ; PÝX > ?1.04Þ;
PÝ?2.0 < X < 7.0Þ.
Find c such that PÝX < cÞ = 0.25; PÝX > cÞ = 0.05.

X i NÝ1,16Þ and so standardization yields
Z = X ? 1

4 i NÝ0,1Þ.

Therefore,
PÝX ² 0.052Þ = PÝZ ² Ý0.052 ? 1Þ/4Þ = PÝZ ² ?0.237Þ = 0.4063.

PÝX ² 10.44Þ = PÝZ ² Ý10.44 ? 1Þ/4Þ = PÝZ ² 2.36Þ = 0.9909.

PÝX > 2.72Þ = PÝZ > Ý2.72 ? 1Þ/4Þ = PÝZ > 0.43Þ = 0.3336.



PÝX > ?1.04Þ = PÝZ > Ý?1.04 ? 1Þ/4Þ = PÝZ > ?0.51Þ = 0.6950.

PÝ?2.0 < X < 7.0Þ = PÝX < 7.0Þ ? PÝX ² ?2.0Þ
= PÝZ < Ý7.0 ? 1Þ/4Þ ? PÝZ ² Ý?2.0 ? 1Þ/4Þ
= PÝZ < 1.5Þ ? PÝZ ² ?0.75Þ
= 0.9332 ? 0.2266 = 0.7066.

PÝX < cÞ = P X ? 1
4 < c ? 1

4 = P Z < c ? 1
4

from tables, PÝZ < ?0.67Þ = 0.25, so c ? 14 = ?0.67, c = ?1.68.

PÝX > cÞ = P X ? 1
4 > c ? 1

4 = P Z > c ? 1
4

from tables, PÝZ > 1.64Þ = 0.05, so c ? 14 = 1.64, c = 7.56.



l Practice. Let Z have a Standard Normal distribution (i.e., with W = 0 and
a2 = 1).
Calculate PÝ|Z| > 1.6Þ

PÝ|Z| > 1.6Þ = PÝZ < ?1.6Þ + PÝZ > 1.6Þ
= 2 × PÝZ < ?1.6Þ = 2 × 0.0548 = 0.1096

Find c such that PÝ|Z| > cÞ = 0.05.

PÝ|Z| > cÞ = 2 × PÝZ < ?cÞ so

PÝZ < ?cÞ = 0.025, so ? c = ?1.96,
c = 1.96



Bivariate Normal distribution
Let

X C NÝW1,a12 Þ, Y C NÝW2,a22 Þ
then X and Y are jointly distributed according to a bivariate normal
distribution. Letting

CovÝX,YÞ = a12, CorÝX ,YÞ = _,
the bivariate normal has density

fÝx,yÞ = 1
2^a1a2 1 ? _2

exp ?
Ý x?W1a1 Þ2 ? 2_Ý x?W1a1 ÞÝ y?W2a2 Þ + Ý y?W2a2 Þ2

2Ý1 ? _2 Þ



¾ If _ = 0, then fXYÝx,yÞ = fXÝxÞfYÝyÞ, so X and Y are independent.
¾ If _ =1 0,

Y|x C N W2 + _ a2
a1 Ýx ? W1 Þ,a22Ý1 ? _2 Þ

¾ Recalling that _ = a12
a1a2 , the conditional mean (W2 + _ a2

a1 Ýx ? W1 Þ) is also
indicated as

W2 +
a12
a12

Ýx ? W1 Þ;

¾ The conditional mean is linear in x;
¾ The conditional variance (a22Ý1 ? _2 Þ) is smaller than a22.



Sum of normally distributed random variables
We already know how to compute the expected value or the variance of
sums of random variables. In some cases we also verified that some
random distributions may be seen as the distribution of a sum of random
variables (example, the binomial is the distribution of the sum of n
independent bernoulli trials).
Moreover:
¾ If X1 and X2 are normally distributed, then X1 + X2 is also normally
distributed.

¾ As for the moments of X1 + X2, if X1 i NÝW1,a12 Þ, if X2 i NÝW2,a22 Þ,
covÝX1,X2 Þ = a12, then

X1 + X2 i NÝW1 + W2,a12 + a22 + 2a12 Þ

This is a very special result: it is not usually true that the sum of two
random variables with a certain distribution is a random variable with the
same distribution.



Other important distributions.
¾ e2. If Z1,...,Zk are such that
i) Zi are identically distributed, Zi C NÝ0,1Þ for any i = 1, . . . ,k;
ii) Zi is independent from Zj for any j =1 i, for any i, j = 1, . . . ,k,
then Ck = > i=1

k Zi2 is ek2 (chi-squared with k degrees of freedom)
distributed.

Densities of C1 C e12, C3 C e32, C6 C e62
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¾ t. If Ck C ek2 and Z C NÝ0,1Þ, and Ck and Z are independently
distributed, then Tk = Z

Ck/k
is tk (twith k degrees of freedom)

distributed.
Densities of Z and T3
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i) the density fT3 has thicker tails than fZ
ii) As k ¸ K, fTk ¸ fZ.



¾ F. If Ck C ek2 and Bh C eh2, and Ck and Bh are independently
distributed, then Ck/k

Bh/h
is Fk,h (Fwith k and h degrees of freedom)

distributed.

l Practice. Using tables,
e2: PÝC1 > 3.84Þ = 0.05, PÝC2 > 5.99Þ = 0.05, PÝC4 > 9.49Þ = 0.05

t: PÝT3 > 2.353Þ = 0.05, PÝT3 < ?2.353Þ = 0.05, PÝ|T3 | > 3.182Þ = 0.05

t: PÝT10 > 1.812Þ = 0.05, PÝT10 < ?1.812Þ = 0.05, PÝ|T10 | > 2.228Þ = 0.05

t: PÝT120 > 1.658Þ = 0.05, PÝT120 < ?1.658Þ = 0.05, PÝ|T120 | > 1.98Þ = 0.05

F: PÝF1,10 > 4.96Þ = 0.05, PÝF2,20 > 3.49Þ = 0.05, PÝF4,120 > 2.45Þ = 0.05



Section 5
Asymptotic / large sample properties

¾ Objectives: to provide an introduction to approximations that are
based on consideration of the behaviour of functions of random
variables as the number increases;

¾ Topics: Probability limits, Central limit theorems, the normal
distribution as an approximation of the binomial

¾ References: Miller and Miller, Section 8.2; Wooldridge, Appendix C
(section C.3).



Asymptotic / Large sample theory

We are interested in results for the random variables hn, n = 1,2, . . .
where hn = hÝX1, . . . ,Xn Þ.
For example, hn could be the sample mean X.

Sometimes we cannot obtain exact results for hn with n of finite size, and
we have to resort to approximations. Many approximations are derived by
considering what happens as n ¸ K.



Probability limits.
Consider the sequence hn, n = 1,2, . . . where hn = hÝX1, . . . ,Xn Þ, and a
random variable h. If

limn¸KPÝ|hn ? h| ³ PÞ = 0 for any P > 0

then hn has probability limit h and we can write
p limn¸K hn = h

or
hn ¸p h as n ¸ K.

The condition PÝ|hn ? h| ³ PÞ = 0 -P > 0means that "hn is close to h in a
probabilistic sense". Notice that "hn =1 h" (or, to be more precise, that
|hn ? h| ³ P) is actually possible, but the probability of it is zero.



Law of large numbers

Let X1,...,Xn be independent, identically distributed random variables, with
EÝXi Þ = WX, VarÝXi Þ = aX2 ÝaX2 < KÞ, and let X be the sample mean ,
X = Ý1/nÞ> i=1

n Xi. Then
p limn¸KX = WX.

Proof:
Notice that VarÝXÞ = aX2 /n. Then, by the Chebyshev inequality,

PÝ|X ? W| ³ PÞ ² aX2

nP2
for all P > 0, and notice that

aX2

nP2
¸ 0 as n ¸ K.



Discussion.
¾ X is "close enough" to WX, in a probabilistic sense, as n ¸ K, regardless of
the distribution of Xi.

¾ The hypotheses of the Law of large numbers can be generalised, to
allow for heterogeneity in the distribution, and for some types of
dependence. For example, for any sequence áhnâ, and for any h, if
EÝhn ? hÞ2 ¸ 0 as n ¸ K, then by the Chebyshev�s inequality
p limn¸K hn = h.



Example
Consider the experiment of tossing a fair coin, recording Xi = 1 if we
observe head, Xi = 0 if tail, and let X be the sample mean. Recall that Xi is
bernoulli distributed, with EÝXi Þ = 1/2, VarÝXi Þ = 1/2Ý1 ? 1/2Þ = 1/4.
We can find bounds for PÝ|X ? 1/2| ³ PÞ depending on the number of tosses.
For example let P = 0.1, and
¾ suppose we did 100 tosses:

PÝ|X ? 1/2| ³ 0.1Þ ² 1/4
100 × 0.12

= 0.25;

¾ suppose we did 1000 tosses:

PÝ|X ? 1/2| ³ 0.1Þ ² 1/4
1000 × 0.12

= 0.025.

Notice that these bounds only depend on the Chebyshev inequality, and do
not depend on the distribution of X. Sharper bounds may sometimes be
computed, if we know that the distribution of X: however, the bounds from
the Chebyshev inequality are sufficient to show p limn¸KX = 1/2.



Probability limits often give convergence to constants, which may be
considered variables with a degenerate distribution. Convergence to
non-trivial random variables (i.e., random variables having a
non-degenerate distribution) is obtained by the central limit theorem.
Central limit theorem
Let X1, . . . ,Xn be independent, identically distributed random variables,
with EÝXi Þ = WX, VarÝXi Þ = aX2 (0 < aX2 < K), and

Zn = n
ÝX ? WXÞ

aX ,

then the distribution of Zn converges to a NÝ0,1Þ as n ¸ K, and we indicate
this as

Zn ¸d NÝ0,1Þ as n ¸ K.
This result may be generalised to allow for heterogeneity in the means and
in the variances in the distributions, and to allow for some types of
dependence.



Example. In the case of the example of the houses of Mike Walters, we may
use the normal approximation of the binomial.
Letting X the number of houses sold, then X is binomial(6,0.6) distributed.
Moreover, X = > i=1

6 Xi where Xi is the sale of the individual house, which is
bernoulli(0.6) distributed. So, letting X = 1

n X = 1
n > i=1

6 Xi, we know that
n ÝX?WXÞ

aX ¸d NÝ0,1Þwhere in this example WX = EÝXi Þ = p (which is 0.6)
and aX2 = VarÝXi Þ = pÝ1 ? pÞ (which is 0.36) so

n
ÝX ? pÞ
pÝ1 ? pÞ

¸d NÝ0,1Þ

Substituting X = nX, we can approximate Xwith
Y C NÝnp,npÝ1 ? pÞÞ

as n ¸ K.



Here we approximate points of the binomial by intervals of the normal: to
get the best approximation it is convenient in this case (approximation of
the binomial with the normal) to have the point of the binomial in the
middle of the interval of the normal (except for the smallest and largest
number). Thus, we could approximate the case X = 0with Y ² 0.5, X = 1
with 0.5 < Y ² 1.5, ... up to the approximation of X = 6with with Y > 5.5.
Setting n = 6, p = 0.6, then Z = Y?np

npÝ1?pÞ
= Y?3.6

1.44
= Y?3.6

1.2 .

PÝY ² 0.5Þ = PÝZ ² 0.5?3.6
1.2 Þ = PÝZ ² ?2.5833Þ = 0.049

PÝ0.5 < Y ² 1.5Þ = PÝ?2.5833 < Z ² ?1.75Þ = 0.0352, ...

xj 0 1 2 3 4 5 6

fXÝxj Þ 0.0049 0.0369 0.1382 0.2765 0.3110 0.1866 0.0467

y Ý?K, 0.5à Ý0.5,1. 5à Ý1.5,2. 5à Ý2.5,3. 5à Ý3.5,4. 5à Ý4.5,5. 5à Ý5.5,KÞ

fXDÝxj Þ 0.0049 0.0352 0.1396 0.2871 0.3066 0.1700 0.0567

(fXÝxj Þ = n!
x!Ýn?xÞ! p

xÝ1 ? pÞn?x, fXDÝxj Þ is obtained by the approximation).



Section 6
Sampling distributions

¾ Objectives: to discuss the idea that statistics that are calculated from
samples have distributions

¾ to examine such distributions for important combination of statistics
and parent population from which the sample is selected

¾ Topics: Sampling distributions, some results for statistics from samples
taken from normal population.

¾ References: Miller and Miller, Chapter 8; Wooldridge, Appendix C
(Section C.1).



Sampling
Suppose we want to know the average income in town. We could go and
ask each person, and compute the average, but this is not really feasible,
because we cannot really ask hundreds of thousands of people (there is
also another, and more important factor to take into account, and this is the
fact that people in town change as well, day by day, but for the moment we
neglect it).
As an alternative, consider asking the first 100 people we meet in the street,
and then take the sample mean: this number is not the number we would
like (the average income of the whole town) but it is fair to conjecture that
it is actually informative about that number. The number we compute
asking 100 people in the street may be higher, as it is if we meet many
people wealthier than the average, and it may be lower, if we meet people
less affluent than the average.
The action of asking 100 people is "sampling".



We now cast the problem in statistical form.
We are interested in some characteristics of a population: an observation X
from this population is a random with distribution FXÝx;SÞ (the population
distribution), and it is assumed that we do not know S and want to find out
about it. In the example of the income in town, Smay be the mean and we
want to estimate it.
Let X1, . . . ,Xn be n observations with common distribution FXÝx;SÞ (e.g.,
when we enquire about the income with 100 individuals in town):
X1, . . . ,Xn is a sample of dimension n, and the joint distribution of X1, . . . ,Xn
is the Sampling distribution of X1, . . . ,Xn.



independent random sample

Now suppose that our survey is made so that the income of each
individual is distributed independently from the income of the other
individuals. Then, X1, . . . ,Xn is an independent random sample.
If Xi (1 ² i ² n) is continuously distributed,

PÝX1 ² x1,X2 ² x2, . . . ,Xn ² xn Þ = <
i=1

n

PÝXi ² xi Þ

If Xi (1 ² i ² n) is discretely distributed,

PÝX1 = x1,X2 = x2, . . . ,Xn = xn Þ = <
i=1

n

PÝXi = xi Þ.



Sample statistics
Usually, we are interested in functions

hÝX1, . . . ,Xn Þ
of our sample. Functions hÝX1, . . . ,Xn Þ of the sample are called sample
statistics.
Because X1, . . . ,Xn are random variables, hÝX1, . . . ,Xn Þ is a random variable
too, and hÝx1, . . . ,xn Þ is its realisation.
For example, one such function is the sample average, or sample mean

X = 1
n >

i=1

n

Xi.



If Xi, i = 1, . . . ,n are
¾ independently and
¾ identically distributed variables,
¾ with EÝXi Þ = WX, VarÝXi Þ = aX2 ,
then

EÝXÞ = WX

VarÝXÞ = 1
n aX

2 .
The Standard Deviation of X is often called standard error, and it is
indicated as SEÝXÞ.
Notice that the two results for EÝXÞ and VarÝXÞ do not depend on the
distribution of Xi (except for the fact that Xi is iid and EÝXi2 Þ < K).
The distribution of X however depends on Xi.



Some results from sampling from a normal distribution.
¾ If Xi are iid and Xi C NÝW,a2 Þ, then

X C N W, 1n a
2

1
a2

>
i=1

n

ÝXi ? XÞ2 C en?12

X and 1
a2

>
i=1

n

ÝXi ? XÞ2are independent.

So, letting

Zn = n
ÝX ? WÞ

a , Cn?1 = 1
a2

>
i=1

n

ÝXi ? XÞ2, Tn?1 = Zn
Cn?1/Ýn ? 1Þ

Zn C NÝ0,1Þ, Tn?1 C tn?1.
Notice that Tn?1 does not depend on a2.



Some results from sampling from an unknown distribution.
¾ If Xi are iid with EÝXi Þ = W, VarÝXi Þ = a2, then

X ¸d N W, 1n a
2

a2 = 1
n >

i=1

n

ÝXi ? XÞ2 ¸p a2.

So, letting

Tn = Zn
a2

then
Tn ¸d NÝ0,1Þ.



Section 7
Point estimation

¾ Objectives: to calculate a single number from a sample to obtain
information on an unknown quantity

¾ to examine the criteria that can be applied to evaluate and choose
between different approaches to estimation

¾ to provide some important results for finite samples and asymptotic
behaviour

¾ Topics: finite sample properties of point estimators, asymptotic
properties of point estimators

¾ References: Miller and Miller, Ch. 11; Wooldridge, Appendix C.



Estimation
Suppose we have a random sample X1, . . . ,Xn from a population, with
distribution FX1,...,Xn x1, . . . ,xn; ÝS1, . . . ,Sp Þ

v
, in which the distribution is

known, but the parameters are not. The true value of the unknown
parameter is assumed to be in a set B Ð §p.

Example
If Xi for i = 1, . . . ,n is independently and identically distributed as
NormalÝW,a2 Þ, then, p = 2, and S1 = W, S2 = a2.
If Xi may only have two outcomes, and Xi is iid with probability of success
p, so that>Xi is binomially distributed, then p = S.



An estimator is a known function of the random variables X1, . . . ,Xn, denoted
as

å
SÝX1, . . . ,Xn Þ.

As such, an estimator is a random variable. For given set of realisations,
x1, . . . ,xn, it is possible to compute an estimate

å
SÝx1, . . . ,xn Þ.

Both the notations
å
SÝX1, . . . ,Xn Þ and

å
SÝx1, . . . ,xn Þ are routinely shortened toå

S n: the difference between the random variable and the realisation should
be clear from the context.



Example
In the example of tossing a coin, assume we had n independent trials, and
for each i let Xi = 1 for head, Xi = 0 for tail. Let S be the probability of
observing head: a possible estimator for S could be

å
S n = 1

n >
i=1

n

Xi.

Suppose we had 7 trials, and we observed 1, 0, 1, 1, 1, 1, 0, then the estimate
is
å
S n = 0.71429.



Unbiasedness
An estimator is a random variable, and as such it has a distribution. If

E
å
S n = S

then the estimator is said to be unbiased. Conversely, E
å
S n ? S is called

bias.

Unbiasedness is often regarded as a desirable properties for estimators.
Intuitively, an unbiased estimator should, on average, return the parameter
S. However, this is certainly not sufficient. In the example of estimating the
probability of a tail when tossing a coin n times, consider another
estimator:

æ
S n = Xn. Because EÝXn Þ = S, this estimator too is unbiased.

However,
æ
S n discards all the information in X1, . . . ,Xn?1. We then need

another property to complement unbiasedness, in order to help us
choosing between

æ
S n and

å
S n.



Relative efficiency
Let

æ
S n and

å
S n be two unbiased estimators of S:

å
S n is efficient relative to

æ
S n if

Var
å
S n ² Var

æ
S n .

Intuitively, from the Chebyshev inequality, an efficient estimator clusters
more probability in a suitable neighbourhood of S. Further information is
conveyed by the variances if the conditions for the Central Limit Theorem
hold.

In the example in which two alternative estimators are used to estimate the
probability of tossing a coin on the head, Var

å
S n = 1

n SÝ1 ? SÞ,
Var

æ
S n = SÝ1 ? SÞ, so

å
S n is more efficient.



Best /Minimum Variance Estimator
If
å
S n is an unbiased estimator, and no other estimator has a smaller

variance, then
å
S n is the "best" (minimum variance) estimator. Often

denoted as "
å
S n is MVUE".

Linear estimator. If
å
S n is a linear function of X1, . . . ,Xn, then it is a linear

estimator (
å
S n = >

i=1

n

aiXi for some known ai).

Best Linear Estimator
If
å
S n is an unbiased linear estimator, and no other linear estimator has a

smaller variance, then
å
S n is the "best linear" (minimum variance) estimator.

Often denoted as "
å
S n is BLUE".



Example.
Let Xi be iid and Xi C NÝS,a2 Þ, and consider n = 2, and

æ
S n = a1X1 + a2X2, so

E
æ
S n = EÝa1X1 + a2X2 Þ = a1EÝX1 Þ + a2EÝX2 Þ = a1S + a2S.

If a1 + a2 = 1, then E
æ
S n = S. Let

å
S n = aX1 + Ý1 ? aÞX2 for 0 ² a ² 1:

å
S n is

unbiased. Furthermore,
Var

å
S n = a2a2 + Ý1 ? aÞ2a2 = a2Ý1 ? 2a + 2a2 Þ.

In order to minimise the variance, compute
/Ý1 ? 2a + 2a2 Þ

/a = 4a ? 2

so from the first condition we derive
a = 1

2
and 1

2 X1 +
1
2 X2 is the BLUE.

If n observations are used to estimate S, 1n > i=1
n Xi is BLUE.



Mean Square Error

MSE
å
S n = E

å
S n ? S

2

= E
å
S n ? E

å
S n

2
+ E

å
S n ? S

2

= Var
å
S n + bias2

So, MSE
å
S n = Var

å
S n for unbiased estimates.



MSE provides a criterion to compare estimates that may also be biased.
This is because there may be estimates that are biased and yet cluster much
information around the parameter of interest. (MSE weights bias and
variance, although notice that the choice of how to weight them is
arbitrary).

Example. Consider two estimators,
æ
S n and

å
S n such that

E
æ
S n = S + 12 , Var

æ
S n = 1

E
å
S n = S, Var

å
S n = 2

then

MSE
æ
S n = 1 + 1

2
2
= 1.25

MSE
å
S n = 2 + 0 = 2.



Asymptotic / Large Sample Properties
Sometimes we cannot obtain the properties of the estimators in finite
samples, but it may be possible to describe them as n gets large.

Consistency
å
S n is a consistent estimator of S if

p limn¸K
å
S n = S.



Consistency and unbiasedness do not imply each other:
(counter)example.
Let Xi be iid and Xi C NÝS,a2 Þ, and consider

æ
S n = Xn

å
S n =

Swith pr 1 ? 1
n

nwith pr 1
n

Then,
æ
S n is unbiased, but it is not consistent, while

å
S n is consistent but it is

not unbiased (limn¸KE
å
S n = limn¸K S ? S

n + 1 = S + 1).



However, if
å
S n is unbiased and Var

å
S n ¸ 0 as n ¸ K, then

å
S n is consistent

(by the Chebyshev inequality). Also, notice that for consistency of
å
S n, it is

sufficient that MSE
å
S n ¸ 0 as n ¸ K.

Example: Let Xi be iid and Xi C NÝS,a2 Þ and consider
å
S n = 1

n > i=1
n Xi. Since

E
å
S n = S, Var

å
S n = a2

n , MSE
å
S n ¸ 0 as n ¸ K, so the sample mean is a

consistent estimator of the population mean in this situation.



Slutzky�s theorem
If
å
S n is a consistent estimator of S and gÝ. Þ is a continuous function, then

g
å
S n ¸p gÝSÞ as n ¸ K.

Example. Let Xi be i.i.d. random variables with EÝXi Þ = W, VarÝXi Þ = a2 and

X = 1
n > i=1

n Xi, a2 = 1
n > i=1

n ÝXi ? XÞ2. Then, let a = a2
1/2
: by Slutzky�s

theorem, p limn¸K a = a.

(NOTE: this property does not hold for the expectations. Example: let
å
S n be

such that E
å
S n = S (and Var

å
S n > 0) and p limn¸K

å
S n = S, and consider

the function gÝSÞ = S2. Slutzky Theorem says that p limn¸K
å
S n
2
= S2; on the

other hand, we know that E
å
S n
2

> S2 : this follows by Jensen�s inequality,

or using property of the variance Var
å
S n = E

å
S n
2

? E
å
S n

2
> 0).



Consistent and asymptotically normal (CAN) estimators
(definition for scalar

å
S n). If there is an estimator

å
S n for Swhich is

¾ consistent (p limn¸K
å
S n = S)

¾ there is a scaling factor nJ and V > 0 such that
nJ

å
S n ? S ¸d NÝ0,VÞ as n ¸ K

then
å
S n is CAN.

The definition can be extended to vector estimators.
It is often the case that J = 1/2.

Example: Let Xi be i.i.d. random variables with EÝXi Þ = W, VarÝXi Þ = a2 and
X = 1

n > i=1
n Xi. Then, by the Central Limit Theorem,

n ÝX ? WÞa?1 ¸d NÝ0,1Þ as n ¸ K. Therefore, X is a CAN estimator of S,
with scaling factor n1/2.



Asymptotic efficiency
Consistency and limit normality are desirable properties for an estimator.
However, how can we choose among two CAN estimators?
1. Compare the rate of convergence.
2. Compare the asymptotic variances.

Best Asymptotic Normal (BAN)
If
å
S n is CAN, and there is no other CAN estimator having higher rate of

convergence or smaller asymptotic variance, then
å
S n is BAN.



Section 8
Maximum likelihood estimation

¾ Objectives: to provide an introduction to a very general approach to
the estimation of parameters

¾ References Miller and Miller, Section 10.8; Wooldridge, Appendix C
pp. 746-747.



Maximum likelihood estimation
The Maximum likelihood principle is based upon a reinterpretation of the
joint pdf/probability mass function for a sample (of size n).
The pdf fX1,...,Xn x1, . . . ,xn; ÝS1, . . . ,Sp Þ

v
and the probability mass function

fX1,...,Xn x1, . . . ,xn; ÝS1, . . . ,Sp Þ
v
are functions computed in each point of the

support, x1, . . . ,xn, for a given set of parameters: for example, when
X1, . . . ,Xn are iid normally distributed with EÝXi Þ = 0, VarÝXi Þ = 1, then the

pdf is<
i=1

n
1
2^
e? 12 xi2for ?K < xi < K; when X = > i

n Xi is binomially

distributed with parameter 1/2, the probability mass function is
n!

x!Ýn?xÞ! 1/2
xÝ1 ? 1/2Þn?x for x = > i

n xi, x = 0, . . . ,n.



In maximum likelihood on the other hand these are treated as unknown
functions of ÝS1, . . . ,Sp Þ

v
, and are computed for given values of the

realisations x1, . . . ,xn. For each set of parameters ÝS1, . . . ,Sp Þ
v
, we denote the

likelihood function by LÝSÞ.

The Maximum Likelihood Estimator (MLE) is the value that maximises
LÝSÞ or, equivalently, lÝSÞ = lnÝLÝSÞÞ, over a suitable parameter space B, i.e.

å
S n = arg max

S5B
LÝSÞ.

(We may drop n to shorten the notation and use
å
S instead).



In the example of estimating the probability of tossing head, when head
was observed in 5 out 7 independent trials,

if p = 0.25, PÝX = 5Þ = 7!
5!2! 0. 25

5Ý1 ? 0.25Þ2 = 0.011
if p = 0.5, PÝX = 5Þ = 7!

5!2! 0. 5
5Ý1 ? 0.5Þ2 = 0.164

if p = 0.75, PÝX = 5Þ = 7!
5!2! 0. 75

5Ý1 ? 0.75Þ2 = 0.311
For the generic p = S,

LÝSÞ = 7!
5!2! S

5Ý1 ? SÞ2, 0 ² S ² 1,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

theta

L(theta)

(in this example, the estimated value is
å
S = 5

7 ).



Example.
Let Xi be i.i.d. NÝS0, 1Þ, and assume that x1 = 2, x2 = 3, x3 = ?1, x4 = 0were
observed. The likelihood function is then

LÝSÞ = 1
2^

4

e? 12 Ý2?SÞ2+Ý3?SÞ2+Ý?1?SÞ2+ÝSÞ2

and, taking logarithm,
? 4/2 lnÝ2^Þ ? 12 Ý2 ? SÞ2 + Ý3 ? SÞ2 + Ý?1 ? SÞ2 + ÝSÞ2

= ?2 lnÝ2^Þ + 4S ? 2S2 ? 7.
Solving for S,

/Ý?2 lnÝ2^Þ + 4S ? 2S2 ? 7Þ
/S = 4 ? 4S,

å
S = 1.



Examples.
In the example of estimating the probability of tossing a head, when a
generic x heads is observed,

lÝSÞ = ln n!
x!n ? x! + x lnS + Ýn ? xÞ lnÝ1 ? SÞ

/lÝSÞ
/S = x

S + 1
S ? 1 Ýn ? xÞ,

å
S = x

n .

In the example of estimating the mean of n i.i.d. NÝS0,a2 Þ distributions,
when a generic x1, . . . ,xn is observed,

lÝSÞ = ?n/2 lnÝ2^a2 Þ ? 1
2a2 >i=1

n

Ýxi ? SÞ2

/lÝSÞ
/S = ? 1

2a2 >i=1

n

Ý?2ÞÝxi ? SÞ,
å
S = 1

n >
i=1

n

xi.



While the likelihood function is computed using the observations, these are
realisations of random variables, so changing the realisation of the sample
x1, . . . ,xn, we obtain a different estimate. The functional form, however,
does not change: the estimator, is, then, a function of the random variables,
and a random variable itself; the estimate is the value that we compute
with observations x1, . . . ,xn. For example, in both previous cases the
estimator is the sample mean,

å
S = 1

n > i=1
n Xi.

We only introduced maximum likelihood using an intuitive argument, but
we did not show if it is consistent nor any other properties. Under weak
conditions, however, it may be shown that the maximum likelihood
estimator is indeed consistent, and in fact also best asymptotically normal.
Moreover, if

å
S n is a maximum likelihood estimator and gÝ. Þ is a continuous

function, then g
å
S n is the MLE estimator of gÝSÞ (invariance property).



In many cases the MLE estimator is biased.
Example. Let X1, . . . ,Xn be i.i.d., NÝW0,a02 Þ. The maximum likelihood
estimator of a02 is obtained from

/l ÝW,a2Þv

/W = ? 1
2a2

> i=1
n Ý?2ÞÝxi ? WÞ,

/l ÝW,a2Þv

/a2
= ? 1

2
n
a2

+ 1
2Ýa2Þ2

> i=1
n Ýxi ? WÞ2,

åW = 1
n >

i=1

n

xi = x, a2 = 1
n >

i=1

n

Ýxi ? xÞ2,

and notice that a2 = 1
n > i=1

n ÝXi ? XÞ2 is a biased estimator of a2 (the
unbiased estimator is S2 = 1

n?1 > i=1
n ÝXi ? XÞ2).



Other methods of estimation.
Maximum Likelihood (ML) gives one approach to estimating parameters.
It is not the only approach. Two other popular approaches are Least
Squares (LS) and Method of Moments (MM). These approaches have the
advantage of often being computationally simpler than ML

Method of Moments
In the MM we use the sample moments to estimate the population
moments: for example, for Xi iidÝW,a2 Þ, we could estimate W and a2 as
åW = 1

n >
i=1

n

Xi, a2 = 1
n >
i=1

n

ÝXi ? åWÞ2 (Note that these are the same estimators

that we would compute if we knew that Xi is normally distributed. In
general, however, the MM does not necessarily yield the same formula as
ML).



Least Squares (LS)
In LS we estimate parameters minimizing an ad-hoc loss function. For
example, for Xi iidÝW,a2 Þwe estimate Wminimizing

1
n >

i=1

n

ÝXi ? WÞ2.

This yields again åW = 1
n >
i=1

n

Xi, but notice that again we did not assumed

normality in this case. In view of the similarity between the loss function
and the Gaussian likelihood, the LS is usually similar to the ML estimator if
normality is assumed. However, LS gives a way to compute an estimator
even if normality is not assumed.
LS is the most commonly used estimator in econometrics.



Section 9
Interval estimation

¾ Objectives: to discuss how interval estimates may be used to provide
an idea on the strength of the information in a sample for estimating a
parameter

¾ Topics: Confidence intervals
¾ References: Miller and Miller, Ch. 11; Wooldridge, Appendix C
(Section C.5).



Interval estimation
May wish to give not just a point estimate but also an interval estimate that
helps to reflect the precision of the estimation.

Let C1ÝX1, . . . ,Xn Þ and C2ÝX1, . . . ,Xn Þ be two random functions such that
¾ C2ÝX1, . . . ,Xn Þ > C1ÝX1, . . . ,Xn Þ for any X1, . . . ,Xn
¾ PÝC1ÝX1, . . . ,Xn Þ ² S ² C2ÝX1, . . . ,Xn ÞÞ = 1 ? L
i.e. the probability that the random interval from C1 to C2 includes S is
1 ? L.

then the random interval ßC1ÝX1, . . . ,Xn Þ,C2ÝX1, . . . ,Xn Þà is a confidence
interval estimator of S, for a confidence coefficient of 1 ? L.

It is often used L = 0.05, so 1 ? L = 0.95. Sometimes confidence intervals
are expressed in percentage terms, "Ý1 ? LÞ100 per cent".



Because C1ÝX1, . . . ,Xn Þ and C2ÝX1, . . . ,Xn Þ are a function of X1, . . . ,Xn, then
C1ÝX1, . . . ,Xn Þ and C2ÝX1, . . . ,Xn Þ are random variables, so
ßC1ÝX1, . . . ,Xn Þ,C2ÝX1, . . . ,Xn Þà is a random interval.
The true value of S is an unknown constant, and it may, or may not, be in
the interval ßC1ÝX1, . . . ,Xn Þ,C2ÝX1, . . . ,Xn Þà.
The definition states that the probability that S is in the confidence interval
is 1 ? L. However, notice that we do not have the interval
ßC1ÝX1, . . . ,Xn Þ,C2ÝX1, . . . ,Xn Þà: at most, we can compute an estimate of it, by
evaluating the functions C1ÝX1, . . . ,Xn Þ and C2ÝX1, . . . ,Xn Þ at for the sample
x1, . . . ,xn. Letting

c1 = C1Ýx1, . . . ,xn Þ, c2 = C2Ýx1, . . . ,xn Þ
be the realisation of the confidence interval in a given sample, then Ýc1,c2 Þ
is a confidence interval estimate (notice that this changes with the realisation
of the sample).



Notice that more than one confidence interval may meet the conditions
stated in the definition: for example, when estimating W for a sample
X1, . . . ,Xn of independent observations, identically distributed as a NÝW, 1Þ,
then both the following intervals meet the definition ÝL = 0.05Þ:

C1ÝX1, . . . ,Xn Þ = ?K, C2ÝX1, . . . ,Xn Þ = 1
n X + 1.65

C1ÝX1, . . . ,Xn Þ = 1
n X ? 1.96, C2ÝX1, . . . ,Xn Þ = 1

n X + 1.96,

i.e. ?K, 1
n X + 1.65 and 1

n X ? 1.96, 1
n X + 1.96 . How do we choose

between these two (and the infinite other ones that still meet the definition
in this example)? Unless more information is available, the standard
criterion is to choose the interval with smaller measure of the subset of
Ý?K,+KÞ. Since 1

n X + 1.65 ? Ý?KÞ = K and
1
n X + 1.96 ? 1

n X ? 1.96 = 3.92, we prefer the second one.



Example.
Interval estimation of the mean of a normal distribution.
Let X1, . . . ,Xn be a random sample from NÝS,a2 Þ, and let X = 1

n > i=1
n Xi and

S2 = 1
n?1 > i=1

n ÝXi ? XÞ2.
¾ Suppose first that a2 is known. Then, the Ý1 ? LÞ100% confidence
interval estimator is given by X ± dÝa/ n Þ, where dmeets
PÝZ > dÞ = L/2, for Z C NÝ0,1Þ.

¾ If a2 is unknown, then the Ý1 ? LÞ100% confidence interval estimator is
given by X ± dÝS/ n Þ, where dmeets PÝTn?1 > dÞ = L/2, for Tn?1 C tn?1.



Let dZ such that PÝZ > dZÞ = L/2, for Z C NÝ0,1Þ, and let dn?1 such that
PÝTn?1 > dn?1 Þ = L/2, for Tn?1 C tn?1. Notice that
¾ the functions dZÝa/ n Þ and dn?1Ýs/ n Þ shrink and collapse to 0 as
n ¸ K: this reflects the increase of information that is accrued by
increasing the sample size, and it is consistent with the fact that X is a
Mean Squared consistent estimator of S.

¾ the intervals are always random, because X is unknown. However if a2
is unknown, then the estimation of a2 includes another element of
randomness, and the measure of the interval is random too. This is
reflected in the fact that dn?1 > dZ.

¾ if, by chance, s = a, the confidence interval for the case in which a is
known is still smaller than the confidence interval for the case in which
it is estimated. This is because the estimation of a2 introduces another
element of randomness.

¾ when the sample increases, the precision of S as an estimate of a
increases (indeed, PÝ|S ? a| > PÞ ¸ 0 as n ¸ K), so dn?1 ¸ dZ.



Interval estimation of the mean of a normal distribution

Example
Suppose that the times each student spends at a canteen at the University,
Xi, are independently and normally distributed, with mean W and variance
a2 = 82. A random sample of 25 had an average time x = 16minutes.
Find a 95% confidence interval for the population mean W.
What would your answer be, if we observed x = 15?
What if the sample had 64 observations instead?
What if a2 was unknown, and s2 = 82 was estimated instead?



We discuss the first example.
We know that X C N W, a2

n , i.e.
X ? W

a2/n
C NÝ0,1Þ

The confidence interval is obtained solving

P X ? W

a2/n
² 1.96 = 0.95

(verify that this matches the definition: for a 95% confidence interval, we
find d from PÝZ > dÞ = 0.05/2 where Z C NÝ0,1Þ, so indeed d = 1.96).



We can rewrite

P X ? W

a2/n
² 1.96 = 0.95

as

P ?1.96 ² X ? W

a2/n
² 1.96 = 0.95

P ?1.96 a2/n ² X ? W ² 1.96 a2/n = 0.95

P ?X ? 1.96 a2/n ² ?W ² ?X + 1.96 a2/n = 0.95

P X ? 1.96 a2/n ² W ² X + 1.96 a2/n = 0.95.

Replacing a = 8, n = 25, the 95% confidence interval is
X ? 1.96 82/25 , X + 1.96 82/25 , and its estimate is 12.864, 19.136



lWhat would your answer be, if we observed x = 15?

15 ? 1.96 × 82
25 , 15 + 1.96 ×

82
25 = ß11.864,18. 136à

lWhat if the sample had 64 observations instead?

16 ? 1.96 × 82
64 , 16 + 1.96 ×

82
64 = ß14.04,17. 96à

lWhat if a2 was unknown, and s2 = 82 was estimated instead?

X ? W

S2/n
i Tn?1,

so when n = 25we have to find d such that PÝ|T24 | > dÞ = 0.05, and
therefore d = 2.07.

The interval is computed solving P X?W

S2/n
² 2.07 = 0.95



So

P ?2.07 ² X ? W

S2/n
² 2.07 = 0.95

P ?2.07 × S2/n ² X ? W ² 2.07 × S2/n = 0.95

P X ? 2.07 × S2/n ² W ² X + 2.07 × S2/n = 0.95

so our confidence interval is

X ? 2.07 × S2/25 ² W ² X + 2.07 × S2/25

Our estimate involves replacing X by x, S2 by s2, and it is then

16 ? 2.07 × 82
25 , 16 + 2.07 ×

82
25 =ß12.688,19. 312à

lWhen n = 64, PÝ|T63 | > dÞ = 0.05 for d = 2.00, and our estimate is

16 ? 2.00 × 82
64 , 16 + 2.00 ×

82
64 = ß14,18à



Interval estimation of the mean of a generic distribution

In case the distribution of Xi is not known, we can only rely on asymptotic
results.
Let X1, . . . ,Xn be a random sample of independent, identically distributed
observations with EÝXi Þ = S, VarÝXi Þ = a2, and let X = 1

n > i=1
n Xi and

S2 = 1
n?1 > i=1

n ÝXi ? XÞ2.
¾ If a2 is known, then an asymptotically valid Ý1 ? LÞ100% confidence
interval estimator is given by X ± dÝa/ n Þ, where dmeets
PÝZ > dÞ = L/2, for Z C NÝ0,1Þ.

¾ If a2 is unknown, then an asymptotically valid Ý1 ? LÞ100% confidence
interval estimator is given by X ± dÝS/ n Þ, where dmeets
PÝZ > dÞ = L/2, for Z C NÝ0,1Þ.



Example
The Library is interested in how many requests are made for a book in a
certain reading list. The participants to the each course may be treated as a
random sample of students. In the last year, 144 students were enrolled:
the average request (in days) per student was x = 19, and s = 9. Find an
asymptotically valid 90% confidence interval estimate.
Discussion. Find d such that PÝ|Z| > dÞ = 0.10, so d = 1.65; proceeding as in
previous examples, the approximate confidence interval is

X ? 1.65 × S2
144 ,X + 1.65 × S2

144

and the estimate is

19 ? 1.65 × 92
144 ,19 + 1.65 ×

92
144 = ß17.763,20. 238à



Interval estimation of the probability of success in a binomial

Let X denote the number of successes in n trials with PÝsuccessÞ = S. Then,
an asymptotically valid Ý1 ? LÞ100% confidence interval estimator is given
by

å
S ± d

å
S 1 ?

å
S /n where

å
S = X

n
dmeets PÝZ > dÞ = L/2, for Z C NÝ0,1Þ.



lExample
A city is considering the introduction of a scheme of congestion charges to
reduce pollution. A random sample of 414 citizen has been asked his
opinion: 124 of these citizens are in favour. Find an asympotically valid
90% confidence interval estimate for the population proportion of voters in
favour of the scheme.
Can only obtain an approximate interval. Find d such that
PÝ|Z| > dÞ = 0.10, so d = 1.65, and

å
S = 124

414 = 0.29952. So
å
S ± d

å
S 1 ?

å
S /n

takes value

124
414 ± 1.65

124
414 Ý1 ?

124
414 Þ

414
and the estimate is therefore ß0.26237,0.33666à.



Section 10
Hypotheses testing

¾ Objectives: an introduction about the key ideas that are used when
testing hypotheses about unknown coefficients, with applications.

¾ Topics: Statistical hypotheses null and alternative hypotheses, test
statistics, critical regions and the size and power of a test; P-value.

¾ References: Miller and Miller, Ch. 12-13; Wooldridge, Appendix C
(Section C.6).



Hypotheses testing

Suppose a probabilistic model has been specified, in which the joint
distribution for a random sample for n observations depends on a set of
unknown parameters S1, . . . ,Sp.
We often have hypotheses concerning the value of some (possibly all) of
the parameters. The hypothesis to be tested is called null hypothesis and it
often denoted by H0.
If H0 is not true, then some alternatives will be true. When carrying out
statistical tests we also have to formulate an alternative hypothesis, often
denoted by H1, against which the null is tested.

A simple hypothesis, null or alternative, completely specifies the joint pdf, by
fixing the value of every parameter: for example, we may test the null
H0 : X C NÝ0,1Þ versus a simple alternative H1 : X C NÝ1,1Þ.
A composite hypothesis, null or alternative, does not completely specify the
joint pdf, by fixing the value of every parameter: for example, we may have
a simple null H0 : X C NÝ0,1Þ versus a composite alternative



H1 : X C NÝW, 1Þ, ?K < W < K, or a composite null H0 : X C NÝ0,a2 Þ versus a
composite alternative H1 : X C NÝW,a2 Þ, ?K < W < K, 0 < a2 < K.
In case of a composite alternative hypothesis, it is also possible that some
additional information is available, and it is then taken into account in the
definition of the hypothesis: suppose that H0 specify the value of one single
parameter, and it is written as H0 : S i = S i0, or, equivalently,
H0 : S i ? S i0 = 0, for some i and for S i0 being some constant. We can have
One Sided Alternative, such as

either H1? : S i ? S i0 < 0 or H1+ : S i ? S i0 > 0
or Two Sided Alternative,

H1± : S i ? S i0 =1 0.

In order to determine wether not H0 is consistent with the sample data, we
must specify a test statistic and a decision rule.
A Test Statistic, TÝX1, . . . ,Xn Þ, is a function of the sample such that



¾ does not depend on any unknown parameter
¾ has known distribution under H0 (and H1), at least asymptotically.
Sometimes, we may use T to shorten the notation TÝX1, . . . ,Xn Þ, when this is
clear from the context.
Given the test statistic, we can specify the Decision rule. Divide the sample
space (all possible sets of observations) into two regions: a rejection region
and a non-rejection region (the latter is also known as acceptance region). We
then Reject H0 if the realisation of the test statistic, t, falls in the rejection
region, and do not reject H0 if it falls in the non-rejection rule.



Values of t (the realisation of the test statistic T) that are taken to indicate
that H0 is not inconsistent with the data are termed as Statistically
Insignificant, or, more appropriately, statistically insignificantly different
than stated in the null hypothesis.
Notice that Reject does not mean that H0 is false (nor that H1 is true), and
non rejection / acceptance of H0 does not mean that H0 is true (nor that H1
is false).
This is obviously the case when the true model is in fact neither the one
specified in H0 nor the one specified in H1 (for example, when
H0 : X C NÝ0,1Þ and H1 : X C NÝ1,1Þ, while in fact X C NÝ0.5,1Þ), but notice
that it may even happen that a true hypothesis is correctly specified, and
yet it is rejected by the test.



In other words, even when the hypothesis of interest is correctly specified
(either under the null or the alternative) in each test two types of errors are
nevertheless possible:
¾ a Type I error occurs when H0 is rejected when H0 is in fact true
¾ a Type II error occurs when H0 is not rejected when H0 is in fact false.
The probability of a Type I error is usually denoted by J and it is the
significance level of the test (this is also known as the size of the test); the
probability of a Type II error is usually denoted by K. The probability of
rejecting a false H0 is then 1 ? K : this is also known as the Power of a test.
Usually, we decide on the level J, e.g. J = 0.05 or J = 0.10, and then
choose a test with good power against the specified alternative hypothesis.



Summarising, a test is characterised by
1. the null hypothesis
2. the alternative hypothesis
3. the test statistic
4. the limit distribution of the test statistic under the null
5. the decision rule
6. the size of the test
7. the limit distribution of the test statistic under the alternative
8. the power of the test
In practical applications, we should also specify

9. the realisation of the test statistic
10. wether the null hypothesis is rejected or not.



Example.

In order to verify if a coin is fair, we run the following test.
Toss the coin 10 times. Consider the coin fair if the number of heads is
between 2 and 8 (included). Otherwise, consider the coin not fair, i.e.
consider the coin not fair if the number of heads is 1 or less, or if the
number of heads is 9 or more.
Let S be PÝheadÞ for each toss, X be the number of heads in 10 tosses
Then:
1. null hypothesis (... "consider the coin fair if"...)

H0 : S = 1/2
2. the alternative hypothesis ("Otherwise, consider the coin not fair")

H1 : S =1 1/2



3. the test statistic
X

4. the limit distribution of the test statistic under the null
X C 10!

x!Ý10 ? xÞ! S
xÝ1 ? SÞ10?x, S = 1/2

5. the decision rule
Reject if x ² 1 or if x ³ 9

6. the size of the test
PÝÝX = 0,S = 0.5Þ W ÝX = 1,S = 0.5Þ W ÝX = 9,S = 0.5Þ W ÝX = 10,S = 0.5

= PÝX = 0,S = 0.5Þ + PÝX = 1,S = 0.5Þ + PÝX = 9,S = 0.5Þ + PÝX = 10,S =

= 0.0010 + 0.0100 + 0.0100 + 0.0010 = 0.0215
7. the limit distribution of the test statistic under the alternative

X C 10!
x!Ý10 ? xÞ! S

xÝ1 ? SÞ10?x, S =1 1/2



8. the power of the test
We should compute PÝX ² 1 W X ³ 9Þ for S =1 1/2. There are infinite
values for this, so we only compute it for a few possible parameters.
For example, when S = 0.6, PÝX = 0,S = 0.6Þ = 0.0001,
PÝX = 1,S = 0.6Þ = 0.0016, PÝX = 9,S = 0.6Þ = 0.0403,
PÝX = 10,S = 0.6Þ = 0.0060. Overall,

S 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

size 0.021

Power 0.736 0.376 0.149 0.048 0.048 0.149 0.376 0.736

Notice that the power increases as we move away from S = 0.5 (recall
H0): ideally we would like the power to go to 1 for each S =1 0.5. If this
happens at least as n ¸ K, then the test is said to be consistent.



Example.
Testing of a mean of a normal distribution (with known variance).

Let X1, . . . ,Xn be independent, Xi~NÝW,a2 Þ (i = 1, . . . ,n) for known a2.
We are interested in H0 : áW = W0â where W0 is a known constant. Let

T = n
ÝX ? W0 Þ

a
under H0, T~NÝ0,1Þ, so T is a valid test statistic. The decision rule depends
on the type of alternative.



For H1 = H1+ : áW > W0â, the rejection rule is "Reject H0 if t > d1", where t is
the realisation of T, and d1 is the solution of PÝZ > d1 Þ = J, where J is the
significance level, and Z is a NÝ0,1Þ random variable.

For H1 = H1? : áW < W0â, the rejection rule is "Reject H0 if t < ?d1", where t,
d1 and J are defined as above.

For H1 = H1± : áW =1 W0â, the rejection rule is "Reject H0 if |t| > d2", where t
and J are defined as above, d2 is the solution of PÝZ > d2 Þ = J/2, and Z is a
NÝ0,1Þ random variable.



Example.
The Railway Regulation Authority is revising the performance of the Fast
Tortoises Railway Company, which is currently running the railway
franchise: in the contract it was approved that the length of a regular
journey is normally distributed with mean of 2 hours and standard
deviation of 0.9. In the last 25 journeys, the average journey time was 2.4
hours. Should the franchise be renewed?

We first check if the problem is correctly specified, and then we address the
question about renewing the franchise.
We are told to assume that X1, . . . ,Xn be independent, Xi~NÝW,a2 Þ
(i = 1, . . . ,n) for n = 25, a2 = 0.92. We are interested in H0 : áW = 2â.



The test statistic is

T = 25
ÝX ? 2Þ
0.9 ~NÝ0,1Þ,

under H0. We are not told which type of alternative to take, nor the
significance value. Assuming that the customers would not mind if the
journey is shorter, we take the alternative

H1 : áW > 2â,
We also assume that J = 0.05, so the critical value is 1.65. So,
1. null hypothesis

H0 : W = 2
2. the alternative hypothesis

H1 : W > 2
3. the test statistic

T = 25
ÝX ? 2Þ
0.9



4. the limit distribution of the test statistic under the null
T C NÝ0,1Þ

5. the decision rule
Reject if t ³ 1.65

6. the size of the test
J = 0.05

7. the limit distribution of the test statistic under the alternative

T = 25
ÝX ? 2Þ
0.9 = 25

ÝX ? 2 ? W + WÞ
0.9

= 25
ÝX ? WÞ
0.9 + 25 ÝW ? 2Þ

0.9

so T = Z + 25 ÝW ? 2Þ
0.9 where Z~NÝ0,1Þ



8. the power of the test
We should compute P Z + 25 ÝW?2Þ

0.9 ³ 1.65 for W > 2. There are
infinite values for this, so we only compute it for a few possible
parameters. For W = 2.1, 1.65 ? 25 Ý2.1?2Þ

0.9 = 1. 0944, power
1 ? 0.86 = 0.14.

W 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

size 0.05

Power 0.14 0.30 0.51 0.72 0.87 0.95 0.99

9. the realisation of the test statistic

t = 25 Ýx ? 2Þ
0.9 = 25 Ý2.4 ? 2Þ

0.9 = 2.22

10. wether the null hypothesis is rejected or not.
Since t > 1.65, the realisation of the test is in the rejection area so H0 is
rejected. The Fast Tortoise will lose the franchise.



Example.
Testing of a mean of a normal distribution with unknown variance.

Let X1, . . . ,Xn be independent, Xi~NÝW,a2 Þ (i = 1, . . . ,n).
We are interested in H0 : áW = W0â where W0 is a known constant. We do

not know a2, but we estimated S2 = 1
n?1 >

i=1

n

ÝXi ? XÞ2. Let

T = n
ÝX ? W0 Þ
S

under H0, T~tn?1, so T is a valid test statistic. The decision rule depends on
the type of alternative.



For H1 = H1+ : áW > W0â, the rejection rule is "Reject H0 if t > d1", where t is
the realisation of T, and d1 is the solution of PÝTn?1 > d1 Þ = J, where J is the
significance level, and Tn?1 is a tn?1 distributed random variable.

For H1 = H1? : áW < W0â, the rejection rule is "Reject H0 if t < ?d1", where t,
d1 and J are defined as above.

For H1 = H1± : áW =1 W0â, the rejection rule is "Reject H0 if |t| > d2", where t
and J are defined as above, d2 is the solution of PÝTn?1 > d2 Þ = J/2, and Tn?1
is a tn?1 random variable.



l Example
The daily withdrawals of cash at the ATM of the local bank are NÝW,a2 Þ
distributed: the bank manager conjectures that W = 200£. In a random
sample of 16 days it has been observed that x = 240£ and s = 80£.
Is the conjecture of the manager supported by the data at the 5% level?

1. null hypothesis
H0 : W = 200

2. the alternative hypothesis
H1 : W =1 200

3. the test statistic

T = 16
ÝX ? 200Þ

S



4. the limit distribution of the test statistic under the null
T C t15

5. the decision rule
Reject if |t| ³ 2.13

6. the size of the test
J = 0.05

7. the limit distribution of the test statistic under the alternative

16
ÝX ? WÞ
S ~t15, so T = T15 + 16 ÝW ? 200Þ

S where T15~t15

Notice that, as S is also a random variable, then T is not t15 distributed.
In fact, its distribution is called "non-central t15" (we did not see this
distribution).



8. the power of the test
T15 + 16 ÝW?200Þ

S is distributed as a "non-central t". Its distribution also
depends on the unknown value a: in the table below, we use a = 80
(but the manager does not know a).

W 160 170 180 190 200 210 220 230 240

size 0.05

Power 0.46 0.29 0.15 0.07 0.07 0.15 0.29 0.46

9. the realisation of the test statistic

t = 16 Ýx ? 200Þ
s = 16 Ý240 ? 200Þ

80 = 2

10. wether the null hypothesis is rejected or not.
As |t| < 2.13, the realisation is in not the rejection area so H0 is not
rejected. The conjecture of the manager is statistically supported.



Testing the mean for a general distribution.
Let X1, . . . ,Xn be independent and identically distributed, with EÝXi Þ = W,
VarÝXi Þ = a2, i = 1, . . . ,n (Xi i. i.d. ÝW,a2 Þ ).
We are interested in H0 : áW = W0â where W0 is a known constant. We do

not know a2, but we estimated S2 = 1
n?1 >

i=1

n

ÝXi ? XÞ2. Let

T = n
ÝX ? W0 Þ
S

even under H0, we do not know the distribution of T. However, as n ¸ K,
T ¸d NÝ0,1Þ, so T is a valid test statistic in large samples. The decision rule
depends on the type of alternative. The decision rule given for the normal
distribution of Xi (with known a2) are applied.



Asymptotic test for population proportions.

Let Xi be the outcome of an experiment that may be successful with
probability S, and consider an independent random sample X1, . . . ,Xn, and
assume we are interested in the null

H0 : áS = S0â (0 < S0 < 1).
We saw that, for given J and H1, a valid test can be constructed using the
Binomial distribution. It is, however, rather tedious to derive a critical
value using that formula as the sample gets large. Fortunately, two
alternative test statistics are available as the sample gets large: let

å
S = X

n
(notice that

å
S is then the MLE of S), then, under H0, as n ¸ K,

å
T =

n
å
S ? S0

å
S 1 ?

å
S

¸d NÝ0,1Þ and TÝ0Þ =
n

å
S ? S0

S0Ý1 ? S0 Þ
¸d NÝ0,1Þ .



lExample
A firm is considering to advertise on a certain web-site. They obtained a
random sample of 951 people and found that 412 looked at that site at least
once a week. Test at the 5% level the hypothesis that half of all the people
looked at that site at least once a week, against the alternative than only
less than half of the people do so.

1. the null hypothesis
H0 : S = 0.5

2. the alternative hypothesis
H1 : S < 0.5

3. the test statistic

T =
n

å
S ? 0.5

0. 5Ý1 ? 0.5Þ



4. the limit distribution of the test statistic under the null
T ¸d NÝ0,1Þ

5. the decision rule
Reject if t < ?1.65

6. the size of the test
J = 0.05



7. the limit distribution of the test statistic under the alternative

n
å
S ? S

SÝ1 ? SÞ
¸d NÝ0,1Þ.

n
å
S ? S

SÝ1 ? SÞ
= n

å
S ? S

SÝ1 ? SÞ

S0Ý1 ? S0 Þ

S0Ý1 ? S0 Þ
=

n
å
S ? S

S0Ý1 ? S0 Þ

S0Ý1 ? S0 Þ

SÝ1 ? SÞ
= n

å
S ± S0 ? S

S0Ý1 ? S0 Þ

S0Ý1 ? S0 Þ

SÝ1 ? SÞ

= n
å
S ? S0

S0Ý1 ? S0 Þ

S0Ý1 ? S0 Þ

SÝ1 ? SÞ
+ n ÝS0 ? SÞ

S0Ý1 ? S0 Þ

S0Ý1 ? S0 Þ

SÝ1 ? SÞ

so n
å
S ? S0

S0Ý1 ? S0 Þ
¸d

SÝ1 ? SÞ

S0Ý1 ? S0 Þ
Z ? n ÝS0 ? SÞ

S0Ý1 ? S0 Þ

(Normal with mean 951 Ý0.5?SÞ
0.5Ý1?0.5Þ

, variance SÝ1?SÞ
0.5Ý1?0.5Þ )



8. the power of the test

PÝT < ?1.65Þ ¸ P
SÝ1?SÞ

0.5Ý1?0.5Þ
Z ? 951 Ý0.5?SÞ

0.5Ý1?0.5Þ
< ?1.65

= P Z <
0.5Ý1?0.5Þ

SÝ1?SÞ
?1.65 + 951 Ý0.5?SÞ

0.5Ý1?0.5Þ

so for S = 0.48,
0.5Ý1?0.5Þ

0.48Ý1?0.48Þ
?1.65 + 951 Ý0.5?0.48Þ

0.5Ý1?0.5Þ
= ? 0.4168, PÝZ < ?0.41Þ = 0.34

so for S = 0.45,
0.5Ý1?0.5Þ

0.45Ý1?0.45Þ
?1.65 + 951 Ý0.5?0.45Þ

0.5Ý1?0.5Þ
= 1. 4411, PÝZ < 1.144Þ = 0.93

S 0.45 0.48 0.5

size 0.05

Power 0.93 0.34



9. the realisation of the test statistic

t =
951 Ý 412951 ? 0.5Þ
0.5Ý1 ? 0.5Þ

= ?4.1183

10. wether the null hypothesis is rejected or not.
Since t < ?1.65, the realisation of the test is in the rejection area so H0 is
rejected.

Note: it would have also been possible to use the statistic n
å
S?S

å
S 1?

å
S
,

because n
å
S?S

å
S 1?

å
S

H0

¸d NÝ0,1Þ as n ¸ K.



Testing the difference between two means
A course of languages is taught by two instructors. They both teach the
same topics and the students are randomly assigned. Instructor A has 95
students, and instructor B has 122. For each instructor, the sample averages
and standard deviations of the mark in the final exam are

xA sA xB sB
54 10 58 21

Test at the 5% the hypothesis that the means of the two distributions are
the same.
l Discussion.
Let XiA be the mark of a student in Group A, and XiB the mark of a student
in Group B.
We assume that there is WA, aA2 such that EÝXiA Þ = WA, VarÝXiA Þ = aA2 , and
WB, aB2 such that EÝXiB Þ = WB, VarÝXiB Þ = aB2 .



Let XA = 1
nA > i=1

nA XiA, SA2 = 1
nA?1 > i=1

nA ÝXiA ? XAÞ2, and XB = 1
nB > i=1

nB XiB,
SB2 = 1

nB?1 > i=1
nB ÝXiB ? XBÞ2.

We want to test
H0 : áWA = WBâ.

By independence,

EÝXA ? XBÞ = WA ? WB, VarÝXA ? XBÞ = aA2
nA + aB2

nB ,

and it possible to verify that
ÝXA ? XBÞ ? ÝWA ? WBÞ

SA2 /nA + SB2 /nB
¸d NÝ0,1Þ as nA ¸ K, nB ¸ K,

so our test statistic is T = ÝXA?XBÞ

SA2 /95+SB2 /122
, and the rejection rule is "reject if the

realisation of the T, t, is such that |t| > 1.96".
Since t = Ý54?58Þ

102/95+212/122
= ?1.8515, the null hypothesis is not rejected.



Difference between two proportions
To analyse the effectiveness of a new treatment, a group of 124 of patients
has been subject to the new treatment: one week later, 65 of these have
been reported as healed. A second group of 256 patients has been treated in
the conventional way: of these, 150were healed after a week. Each patient
was assigned to a group randomly.
Compare the two procedures using a 5% test.

l Discussion. Let XA be the number of patients healed with the new
treatment, out of nA patients taking the new treatment, and XB the number
of patients healed with the old treatment, out of nA patients taking the new
treatment, and let SA be the probability to be healed with the new
treatment, and SB the probability to be healed with the old treatment. Then

H0 : áSA = SBâ, H1 : áSA =1 SBâ

Let
å
SA = XA

nA ,
å
SB = XB

nB



and we know that
E

å
SA = SA, E

å
SB = SB

Var
å
SA = SAÝ1 ? SAÞ/nA, Var

å
SB = SBÝ1 ? SBÞ/nB

and, using the fact that the two treatments are run independently,
Cov

å
SA,

å
SB = 0, and

Var
å
SA ?

å
SB = SAÝ1 ? SAÞ/nA + SBÝ1 ? SBÞ/nB.

Moreover, when SA = SB, introducing S0 such that S0 = SA = SB,
Var

å
SA ?

å
SB,S0 = SA = SB = S0Ý1 ? S0 Þ/nA + S0Ý1 ? S0 Þ/nB

= S0Ý1 ? S0 ÞÝ1/nA + 1/nBÞ = S0Ý1 ? S0 ÞÝnA + nBÞ/ÝnAnBÞ
and notice that we can estimate

å
S 0 = XA + XB

nA + nB
and



T =

å
SA ?

å
SB

å
S 0 1 ?

å
S 0

ÝnA+nBÞ
nAnB H0

¸d NÝ0,1Þ as n ¸ K.

Then,
å
SA = 65

124 = 0.52419,
å
SB = 150

256 = 0.58594
å
S 0 = 65+150

124+256 = 0.56579,
t =

65
124 ?

150
256

65+150
124+256 1? 65+150

124+256
Ý124+256Þ
124×256

= ? 1. 1386 so H0 is not rejected.

Note: it would have also been possible to use the statistic
å
SA ?

å
SB

å
SA 1 ?

å
SA /nA +

å
SB 1 ?

å
SB /nB

¸d NÝ0,1Þ

as nA ¸ K, nB ¸ K.



P-Values
In alternative to comparing the realization of the test statistic t against the
critical value, it is also possible to compute the P-value, and compare it to
the size: the null hypothesis is rejected if the P-value is less than the size.
For a test statistic with realization t and limit distribution TH0 under the
null, and one-sided positive alternative, the P-value is PÝTH0 > tÞ; likewise,
for one-sided negative alternative, the P-value is PÝTH0 < tÞ. Finally, for a
two sided alternative (with symmetric limit distribution under the null),
the P-value is PÝ|TH0 | > |t|Þ.



l Example: Fair coin (again).
Consider again the example of tossing a coin ten times and recording the
number of heads to check if the coin if fair. Suppose that we set the size at
5% and we run the experiment, and we observed 7 heads. We have:
X is the number of heads: under H0, X is binomially distributed with
S = 1/2, n = 10, so this is the distribution we take for TH0. As the alternative
is two-sided, we reject H0 if the realization is too large or too little: for 7
heads, this means using 8 or more heads or 2 or less. Using the formulas of
the binomial distribution, the P-value associated to 7 heads is then 0.10938.
As this exceeds 0.05 we do not reject H0.



l Example: The Fast Tortoise again (again).
Recall the example of the Railway Regulation Authority auditing the Fast
Tortoise. We had

H0 : W = 2, H1 : W > 2
and test statistic

25
ÝX ? 2Þ
0.9 ¸d NÝ0,1Þ under H0

The realization was t = 2.22; for a standard normal Z,
PÝZ < 2.22Þ = 0.9868

so the P value is PÝZ > 2.22Þ = 1 ? 0.9868 = 0.0132.



Choosing the right size
So how do we choose the right size?
It is a trade-off between Type 1 and Type 2 error, so one should choose on
a case by case basis. However, the practise is to set the size at 1%, 5% or
10%. Some practitioners think that rejecting at 1% we have "stronger
evidence" than rejecting at 10%. We must, however, choose the size before
running the test: if we set the size at 1%, we will run a much bigger risk of
not rejecting a null hypothesis that we should have rejected (Type 2 error).


