UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Economia, Management e Metodi Quantitativi

B-74-3-B Time Series Econometics

Specimen Paper #2

Time allowed: 90 Minutes

Authorized material:

- Non-programmable calculator (for personal use only)
- One A4 page (one-sided) of handwritten, personal notes (for personal use only)

Material provided at the time of the exam:

Probability Tables as on ARIEL

During the exam:

- Put your student card in a visible place to facilitate identity control
- No questions will be answered
- You are not allowed to leave the room

The Exam is divided in TWO parts: Questions 1 to 4 are Short Questions; Questions 5 and 6 are Long Questions. Answers to Short Questions are worth 12.5% of the final mark per question; Answers to Long Questions are worth 25% of the final mark per question.

Full marks may be obtained by complete answers to ALL six questions.

A complete answer to a question should include a clear statement of all the necessary steps in the argument, together with any assumptions and working.

Dipartimento di Economia, Management e Metodi Quantitativi

Question 1 (12.5% of total mark).

Let $\{Y_t\}_{t=-\infty}^{\infty}$ be the process generated by the AR(1) model

$$Y_t = \phi Y_{t-1} + \varepsilon_t$$

where $\{\varepsilon_t\}_{t=-\infty}^{\infty}$ is an independent process with $E(\varepsilon_t) = 0$, $E(\varepsilon_t^2) = \sigma^2$.

Show that when $|\phi| < 1$, the process is stationary.

Question 2 (12.5% of total mark).

Let $\{Y_t\}_{t=-\infty}^{\infty}$ be the process generated by the invertible MA(1) model

$$Y_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

where $\{\varepsilon_t\}_{t=-\infty}^{\infty}$ is an independent process with $E(\varepsilon_t) = 0$, $E(\varepsilon_t^2) = \sigma^2$.

Suppose that we have a time series $\{Y_1, ..., Y_{99}\}'$ (i.e., T = 99) and that we estimated, by maximum likelihood, two models: an MA(1), and an MA(2),

$$Y_t = \varepsilon_t + \theta \varepsilon_{t-1}, \text{ MA}(1)$$

$$Y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}, \text{ MA}(2)$$

and that we test H_0 : { $\theta = 0.9$ } in the MA(1) model and H_0 : { $\theta_1 = 0.9$, $\theta_2 = 0$ } in the MA(2) model.

Outputs of the estimation and Wald test for the two models are displayed in the next two pages.

(Question 2 continues on the next page)

Dipartimento di Economia, Management e Metodi Quantitativi

(Question 2, continued)

Estimation and test in the MA(1) model

Dependent Variable: Y

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 199

Included observations: 99

Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statisti		Prob.
C MA(1) SIGMASQ	0.068594 0.730583 0.833208	0.157992 0.084889 0.096710	0.434161 8.606327 8.615568	0.6651 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.390882 0.378192 0.926955 82.48761 -131.8241 30.80244 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.074318 1.175521 2.723719 2.802359 2.755537 1.840167
Inverted MA Roots	73			

Wald Test: Equation: Untitled

Test Statistic	Value	Df	Probability
t-statistic	8.606327	96	0.0000
F-statistic	74.06886	(1, 96)	0.0000
Chi-square	74.06886	1	0.0000

Null Hypothesis: C(2)=0. Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(2)	0.730583	0.084889

Restrictions are linear in coefficients.

(Question 2 continues on the next page)

Dipartimento di Economia, Management e Metodi Quantitativi

(Question 2, continued)

Estimation and test in the MA(2) model

Dependent Variable: Y

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 1 99

Included observations: 99

Convergence achieved after 25 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.066712 0.172953 0.385720 0.799120 0.121864 6.557489		0.7006 0.0000	
MA(2) SIGMASQ	0.089314 0.826064	0.108816 0.820784 0.113130 7.301906		0.4138 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.396105 0.377034 0.927818 81.78034 -131.4106 20.77066 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.074318 1.175521 2.735568 2.840421 2.777991 1.979879
Inverted MA Roots	13	66		

Wald Test: Equation: Untitled

Test Statistic	Value	Df	Probability
F-statistic	2.693180	(2, 95)	0.0728
Chi-square	5.386361	2	0.0677

Null Hypothesis: C(2)=0.9, C(3)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.		
-0.9 + C(2)	-0.100880	0.121864		
C(3)	0.089314	0.108816		

Restrictions are linear in coefficients.

Compare the outcomes for the two models and explain what may have caused any relevant difference that you observed.

Dipartimento di Economia, Management e Metodi Quantitativi

Question 3 (12.5% of total mark).

Let $\{Y_t\}_{t=-\infty}^{\infty}$ be the process generated by the AR(2) model

$$Y_t = 1.2Y_{t-1} - 0.72Y_{t-1} + \varepsilon_t$$

where $\{\varepsilon_t\}_{t=-\infty}^{\infty}$ is an independent process with $E(\varepsilon_t) = 0$, $E(\varepsilon_t^2) = \sigma^2$.

- 3.1) Check if the process $\{Y_t\}_{t=-\infty}^{\infty}$ is stationary.
- 3.2) Define the Impulse Response Function for stationary ARMA(p,q) processes.
- 3.3) The Impulse Response Function (IRF) for the lags 1 to 10 takes values

Lags	1	2	3	4	5	6	7	8	9	10	11	12
AC	0.70	0.12	-0.36	-0.52	-0.36	-0.06	0.19	0.27	0.19	0.03	-0.10	-0.14

Comment on the pattern of the Impulse Response Function.

Question 4 (12.5% of total mark).

What does it mean that we should follow "parsimonious modelling" when selected a model for a process?

Dipartimento di Economia, Management e Metodi Quantitativi

Question 5 (25% of total mark).

- 5.1) What does it mean to say that a process is I(0)? What does it mean to say that a process is I(1)?
- 5.2) Consider processes $\{Y_t\}_{t=-\infty}^{\infty}$ and $\{Z_t\}_{t=-\infty}^{\infty}$ defined as

$$Y_t = Y_{t-1} + v_t$$

$$Z_t = Z_{t-1} + u_t$$

where $\{v_t\}_{t=-\infty}^{\infty}$ and $\{u_t\}_{t=-\infty}^{\infty}$ are I(0) processes and v_t is independent of u_s for all t,s when t>0, and $Y_t=0$, $Z_t=0$ when $t\leq 0$. Suppose that we estimated the regression

Dependent Variable: Y Method: Least Squares

Sample: 1 500

Included observations: 500

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	7.054899	0.414749	17.01003	0.0000
7	-0.113204	0.010822	-10.46024	0.0000
2	-0.113204	0.010622	-10.46024	0.0000
R-squared	0.180134	Mean depend	5.460262	
Adjusted R-squared	0.178488	S.D. depende	9.515807	
S.E. of regression	8.624870	Akaike info cr	7.151169	
Sum squared resid	37045.42	Schwarz criterion		7.168027
Log likelihood	-1785.792	Hannan-Quinn criter.		7.157784
F-statistic	109.4166	Durbin-Watson stat		0.086013
Prob(F-statistic)	0.000000			
FIUD(F-StatiStic)	0.000000			

Comment on this regression output. What does it say that this is a "spurious regression"?

5.3) How would you model the relation between processes $\{Y_t\}_{t=-\infty}^{\infty}$ and $\{Z_t\}_{t=-\infty}^{\infty}$?

Dipartimento di Economia, Management e Metodi Quantitativi

Question 6 (25% of total mark).

Consider the bivariate process generated by the VAR(2) model

$$\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix} \begin{bmatrix} X_{t-1} \\ Y_{t-1} \end{bmatrix} + \begin{bmatrix} \phi_5 & \phi_6 \\ \phi_7 & \phi_8 \end{bmatrix} \begin{bmatrix} X_{t-2} \\ Y_{t-2} \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ e_t \end{bmatrix}$$
 VAR(2)

where $u_t = (\epsilon_t, v_t)'$ is an independent process with $E(u_t u_t') = \Sigma$.

- 6.1) What restriction on the coefficients would you test, to check if Y_t does not Granger causes X_t ?
- 6.2) What does it mean that Granger causality is not causality? As part of your answer, provide a realistic example of a situation in which Granger causality does not imply causality.
- 6.3) Introduce the Structuralised IRF for this VAR(2) and explain why the definition of the orthogonalized innovations poses an identification problem.