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Why graphs? Graphs are a general language for describing and modeling complex systems

Many Data are Graphs



Graph: A representation of data
Why Graphs? Why Now?

Universal language for describing complex data
Networks/graphs from science, nature, and

technology are more similar than one would expect

Shared vocabulary between fields
Computer Science, Social science, Physics, Economics, Statistics, Biology

Data availability (+computational challenges)
Web/mobile, bio, health, and medical

Impact!
Social networking, Social media, Drug design



Social networks



Hyperlink network



The Internet Biological network



Graph analytics Graph analytics: how to solve a problem?



Graphs

A graph is a formalism for representing relationships among items

• Very general definition 

• Very general concept

A graph is a pair: G = (V, E)

• A set of vertices, also known 
as nodes: V = {v1,v2,…,vn}

• A set of edges E = {e1,e2,…,em}

• Each edge ei is a pair of vertices (vj,vk)

• An edge "connects" the vertices

Graphs can be directed or undirected

8

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia), 

(Han,Leia), 
(Leia,Han)}



Undirected Graphs
In undirected graphs, edges have no specific direction

• Edges are always "two-way"

Thus, (u, v) ∊ E implies (v, u) ∊ E. 

• Only one of these edges needs to be in the set

• The other is implicit, so normalize how you check for it

Degree of a vertex: number of edges containing that vertex

• Put another way: the number of adjacent vertices

A

B

C

D



Directed Graphs

In directed graphs (or digraphs), edges have direction

Thus, (u, v) ∊ E does not imply (v, u) ∊ E. 

Let (u, v)  E mean u → v 

• Call u the source and v the destination

• In-Degree of a vertex: number of in-bound edges (edges where the 
vertex is the destination)

• Out-Degree of a vertex: number of out-bound edges (edges where 
the vertex is the source)

or
A

B
C

D

2 edges here

A

B
C

D



Self-Edges

A self-edge a.k.a. a loop edge is of the form (u, u)

• The use/algorithm usually dictates if a graph has:

• No self edges

• Some self edges

• All self edges

A node can have a(n) degree / in-degree / out-degree of zero



More Notation

For a graph G = (V, E):

• |V| is the number of vertices

• |E| is the number of edges
• Minimum?                                  0
• Maximum for undirected?      |V| (|V|-1)/2
• Maximum for directed?           |V| (|V|-1)

If (u, v) ∊ E , then v is a neighbor of u (i.e., v is adjacent to u)

• Order matters for directed edges:
u is not adjacent to v unless (v, u)  E

A

B

C

V = {A, B, C, D}
E = {(C, B), (A, B), 

(B, A), (C, D)}

D



Parking Meters

• Here is a map of the parking meters in a small neighborhood

• Our goal is to start
at an intersection,
check the meters,
and return to our
starting point…

• …without retracing
our steps!



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1



Solution Attempt #1

Now we’re 
stuck, so we 
know this 
can’t be a 
solution to 
the problem!



Solution Attempt #2

Let’s try 
again, this 
time with a 
different 
starting 
point…



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2

Notice that 
it’s OK for us 
to return to 
the start 
since there is 
still a way to 
leave this 
spot without 
retracing our 
steps.



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2

Notice how 
we just went 
back the way 
we came.  
This is not a 
“retrace” 
because 
there are 
meters on 
both sides of 
the street.



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2



Solution Attempt #2

And we’re 
stuck again, 
so we know 
this can’t be 
a solution to 
the problem 
either!



You Try It

• We haven’t had any luck so far… now it’s your turn to 
give it a try

• Can you choose a 
starting point, visit
all the parking
meters, and return
to the start without
retracing?



Now What?

• We could continue to use trial and error to see if we can find a 
solution

• We might eventually become convinced that there is no solution

• We’re going to use a model to represent this problem to make it 
easier to study



Models and Math

• A model is a mathematical tool that simplifies a problem, but keeps 
all of the important information

• For example, if you ever had to read a word problem and create an 
equation that you used to solve it, then you have created a 
mathematical model



Our Model: A “Graph”

 In our model, we 
will represent each 
intersection by a 
big black dot called 
a “vertex”

 Each row of parking 
meters is 
connected by a line 
called an “edge”



Graph

vertices

vertex

edges



Using the Graph

• The graph contains all of the information we need to solve our 
parking meter problem

• We don’t need to know the names of the streets or how long they are

• All we need to know is which streets have parking meters, and how 
they intersect each other



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



Two Paths: Map vs. Graph



From Now On: Graphs Only

• From now on, we will only use graphs to study these kinds of 
problems

• We will eventually learn how to tell which graphs have solutions to 
the parking meter problem and which do not

• For now, we’ll establish some vocabulary and practice creating graphs



Definitions

• A path is a sequence of vertices that are connected by edges.  A path 
can repeat the same edge or vertex multiple times, and doesn’t have 
to end at the same place it begins.

• A circuit is a path that ends at the same place it begins.



Definitions

• An Euler circuit is a circuit that includes every edge of the graph 
exactly once.

• This Euler circuit (pronounced “oiler”) is exactly what we are looking 
for in our parking meter problem

• It turns out there are many other kinds of problems for which we 
want Euler circuits



Applications of Euler circuits

• checking parking meters

• street cleaning

• snow plowing

• mail delivery

• garbage collection

• bridge inspection

• etc.



Applications of Euler Circuits

• Here is a map of a 
portion of the DC 
Metro system

• This map already
looks like a graph



Applications of Euler Circuits

• Each station is a 
vertex

• The connections
between stations
are edges



Applications of Euler Circuits

• A maintenance 
worker might need
to inspect every 
tunnel in the system
and return to 
his/her starting
point and minimize
retracing 



Applications of Euler Circuits

• Here is a map of 
some of the 
bridges in New 
York City



Applications of Euler Circuits

• We can represent
this system with a 
graph

• Each bridge is 
represented by an 
edge

• Each location is
represented by a 
vertex



Applications of Euler Circuits

The graph on the left 
represents the map on the 
right.



Applications of Euler Circuits

• Using this graph, we can more 
easily solve problems that 
involve traveling over these 
bridges

• For example, a bridge inspector 
might want to find an Euler 
circuit for this graph



Applications of Euler Circuits

• Now consider this map of a small 
neighborhood

• Suppose it is your job to drive a 
snow plow and clean the streets 
of this neighborhood after a 
snowstorm



Applications of Euler Circuits

• You want to make sure to plow 
every lane (notice each street has 
2 lanes, so you’ll have to drive 
down each road twice)

• You don’t want to retrace your 
steps unless you have to

• You want to return to your 
starting point



Applications of Euler Circuits

• Let’s draw the graph for this 
problem

• Each intersection will be 
represented by a vertex

• Each lane will be represented by 
an edge



Applications of Euler Circuits



Applications of Euler Circuits

• Can you solve the 
problem?

• Pick a starting point and try 
to find an Euler circuit for 
this graph



Applications of Euler Circuits

• Can you solve the 
problem?

• Pick a starting point and try 
to find an Euler circuit for 
this graph

• It turns out we can find an 
Euler circuit for this graph 
(there are lots!)



When does a graph have an Euler circuit?

This graph does not
have an Euler circuit.

This graph does have 
an Euler circuit.



When does a graph have an Euler circuit?

This graph does have 
an Euler circuit.

• How could I convince
you that this graph
has an Euler circuit?

• I can show it to you!



Finding the Euler Circuit



Finding the Euler Circuit
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Finding the Euler Circuit



Finding the Euler Circuit



Finding the Euler Circuit



Finding the Euler Circuit



Finding the Euler Circuit



Finding the Euler Circuit



Finding the Euler Circuit



Finding the Euler Circuit



There are lots of Euler circuits…

• That was just one of the many 
Euler circuits this graph has

• Take a moment and try to find 
one on your own

• You don’t have to start at A!



Why does a graph have an Euler circuit (or 
not)?

Why does this graph not 
have an Euler circuit?

Why does this graph have 
an Euler circuit?



Degree

• The degree of a vertex is the number of edges that meet at that 
vertex



Degree

• The degree of a vertex is the number of edges that meet at that 
vertex



Degree

• The degree of a vertex is the number of edges that meet at that 
vertex

• For example, in this
graph, the degree of
C is 4 because there
are four edges (to B,
to F, to G, and to H)
that meet there



Fact About Degrees

• Add up all the degrees 
in this graph

• 2+3+3+3+1+4+2+2
= 20

• We have counted each 
edge twice



Fact About Degrees

• We counted this edge 
when we added the 
degree of B, and we 
counted it again when 
we counted the 
degree of C



Fact About Degrees

The sum of all the 
degrees in a 

graph equals two 
times the total 

number of edges.



What does degree have to do with Euler 
circuits?

• You might be able to tell 
right away that this graph 
can’t possibly have an Euler 
circuit

• Why not?



What does degree have to do with Euler 
circuits?

• If a graph has a vertex with 
degree 1, the graph cannot 
have an Euler circuit

• If we start at E, we will never 
be able to return to E 
without retracing

• If we don’t start at E, we will 
never be able to go there, 
since when we leave we will 
have to retrace



What does degree have to do with Euler 
circuits?

• The problem isn’t just 
degree 1

• This graph also doesn’t 
have an Euler circuit

• The problem is that some 
of the degrees are odd 
numbers



What does degree have to do with Euler 
circuits?

• Let’s focus on vertex D, which has degree 5

• Suppose we start elsewhere in the graph



What does degree have to do with Euler 
circuits?
• Since we want to cover all edges, we’ll have to visit D eventually



What does degree have to do with Euler 
circuits?
• We have several unused edges, so we need to follow one of them and 

leave D



What does degree have to do with Euler 
circuits?
• In fact, every time we visit a vertex, we will “use up” two of the edges 

that meet at that vertex



What does degree have to do with Euler 
circuits?
• We have unused edges, so we need to visit D again at some point…



What does degree have to do with Euler 
circuits?
• …and then leave again…



What does degree have to do with Euler 
circuits?
• …and then come back again.

• But now we’re stuck, since we can’t leave D without retracing, but D 
wasn’t our starting point.



What does degree have to do with Euler 
circuits?
• What if we had started at D?



What does degree have to do with Euler 
circuits?
• First, we need to leave D…



What does degree have to do with Euler 
circuits?
• … then sometime later, we have to come back to D…



What does degree have to do with Euler 
circuits?
• … and then leave again …



What does degree have to do with Euler 
circuits?
• … and then come back again …



What does degree have to do with Euler 
circuits?
• … and then leave again.

• But D was our starting point, and we have run out of edges to use to 
come back to D!



No Euler Circuits With Odd Degrees

• If a graph has any vertex with an odd degree, then the graph does not 
have an Euler circuit

• The reverse is true as well



Euler’s Theorem

• If a graph has all even degrees, then it has an Euler circuit.  If a graph 
has any vertices with odd degree, then it does not have an Euler 
circuit.



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.

• Answer: No, since
vertex C has an odd
degree.



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.

• Notice that D and
E also have odd
degree, but we 
only need one
odd-degree vertex
for Euler’s Theorem



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.

• Answer: All of the
vertices have even
degree, so there
must be an Euler
circuit…



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.

• Answer (continued):
With some trial and
error, we can find an 
Euler circuit:
A,B,C,F,E,B,E,D,A



Practice With Euler’s Theorem

• Does this graph have an Euler circuit?  If not, explain why.  If so, then 
find one.

• Note there are many
different circuits we
could have used



A New Kind of Problem

• A postal worker needs to 
take several packages 
from the post office, 
deliver them to the four 
locations shown on the 
map, and then return to 
the office



A New Kind of Problem

• The postal worker wants 
to know the best route 
to take to deliver the 
packages

• Do we want to use Euler 
circuits to solve this 
problem?



Modeling this Problem



A New Kind of Graph

• This is called a complete 
graph because every 
pair of vertices is 
connected by an edge

• This represents our 
ability to travel from any 
point to any other



A New Kind of Circuit

• We don’t need an Euler 
circuit, which would 
have us travel along each 
edge

• We just need to visit 
each vertex once and 
then return to our 
starting point



A New Kind of Circuit

• A Hamiltonian circuit is 
a circuit that visits each 
vertex exactly once, 
except for the starting 
vertex, which is the 
same as the ending 
vertex



Examples of Hamiltonian Circuits



Finding the “Best” Circuit

• We want to find the circuit that has the lowest total “cost”

• Here “cost” might mean
• travel time

• distance

• monetary cost

• etc.



The Brute-Force Method

1. Examine all possible Hamiltonian circuits

2. Compute the total cost of all of these circuits

3. Choose the circuit with the lowest total cost



Example: Road Trip!

• Suppose you want to take a 
road trip for Spring Break

• You want to start from 
Shippensburg (S), and visit 
Harrisburg (H), Lancaster (La), 
and Lewisburg (Le) in some 
order before returning to Ship



Step 1: Find All Possible Circuits

• From Shippensburg, we have three choices for our first destination



Step 1: Find All Possible Circuits

• From each of these possibilities, we now have two choices



Step 1: Find All Possible Circuits

• Next, we only have one choice remaining



Step 1: Find All Possible Circuits

• And finally, we must return to S



Step 2: Find the Cost of Each Circuit

Circuit Cost

S – H – La – Le – S 43 + 39 + 100 + 99 = 281

S – H – Le – La – S 43 + 62 + 100 + 79 = 284

S – La – H – Le – S 79 + 39 + 62 + 99 = 279

S – La – Le – H – S 79 + 100 + 62 + 43 = 284

S – Le – H – La – S 99 + 62 + 39 + 79 = 279

S – Le – La – H – S 99 + 100 + 39 + 43 = 281



Step 3: Choose the Lowest Cost Circuit

Circuit Cost

S – H – La – Le – S 43 + 39 + 100 + 99 = 281

S – H – Le – La – S 43 + 62 + 100 + 79 = 284

S – La – H – Le – S 79 + 39 + 62 + 99 = 279

S – La – Le – H – S 79 + 100 + 62 + 43 = 284

S – Le – H – La – S 99 + 62 + 39 + 79 = 279

S – Le – La – H – S 99 + 100 + 39 + 43 = 281



It’s a tie!  Or is it?

• If we draw these two circuits, 
we find that in fact they are 
the same

• One circuit is the reverse of 
the other, so the total costs 
are the same

• In fact, while it looked like 
there were 6 total circuits, 
really there were only 3



Pros and Cons

• The brute force method is good because we know for sure we find 
the best possible answer

• The biggest disadvantage of the brute force method is that the total 
number of circuits gets very large if we look at graphs with more 
vertices



How Many Circuits?

• In our example, we had 4 total vertices

• So from our starting point, we had 3 choices, then we had 2 choices, 
then 1 choices, then no choice but to go back to the start

• That gave us 3  2  1 = 6 total circuits

• But really there were only half that: 3 circuits



How Many Circuits?

• What if we had 5 total vertices?

• We would have 4 choices, then 3, then 2, then 1, then back to the 
start

• That gives us 4  3  2  1 = 24 total circuits

• And again there would only really be half that: 12 circuits



How Many Circuits?

• The calculation we are doing is a common one in mathematics, called 
factorial

• The factorial of a whole number n is the product of all the whole numbers 
between 1 and n

• Factorial is written with an exclamation point:
n! = n  (n – 1)   3  2  1

• For example: 5! = 5  4  3  2  1 = 120



How Many Circuits?

• Factorial numbers grow very quickly

• 7! = 5040

• This means that if we had tried to solve our road trip problem with 8 
locations instead of 4, we would have had to consider over five 
thousand circuits instead of just six



Weighted Graphs

In a weighted graph, each edge has a weight or cost

• Typically numeric (ints, decimals, doubles, etc.)

• Some graphs allow negative weights; many do not



Paths and Cycles

We say "a path exists from v0 to vn" if there is a list of vertices [v0, v1, …, vn] 
such that (vi,vi+1) ∊ E for all 0  i<n. 

A cycle is a path that begins and ends at the same node (v0==vn)

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example path (that also happens to be a cycle): 

[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]



Path Length and Cost
Path length: Number of edges in a path

Path cost: Sum of the weights of each edge

Example where 

P= [ Seattle, Salt Lake City, Chicago, Dallas, 
San Francisco, Seattle]

Seattle

San Francisco Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) = 5
cost(P) = 11.5

Length is sometimes 
called "unweighted cost"



Simple Paths and Cycles

A simple path repeats no vertices (except the first might 
be the last):

[Seattle, Salt Lake City, San Francisco, Dallas]

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

A cycle is a path that ends where it begins:

[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

A simple cycle is a cycle and a simple path:

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]



Paths and Cycles in Directed Graphs

Example:

• Is there a path from A to D?

• Does the graph contain any cycles?

No

No

A

B

C

D



Undirected Graph Connectivity

An undirected graph is connected if for all

pairs of vertices u≠v, there exists a path from u to v

An undirected graph is complete, 
or fully connected, if for all pairs 
of vertices u≠v there exists an 
edge from u to v

Connected graph Disconnected graph



Directed Graph Connectivity
A directed graph is strongly connected if there is 
a path from every vertex to every other vertex

A directed graph is weakly connected if there is 
a path from every vertex to every other vertex 
ignoring direction of edges

A direct graph is complete or fully connected, if 
for all pairs of vertices u≠v , there exists an 
edge from u to v



Trees as Graphs
When talking about graphs, we say a tree is 
a graph that is:

• undirected

• acyclic

• connected

All trees are graphs, but NOT all graphs are 
trees

A

B

D E

C

F

HG



Rooted Trees
We are more accustomed to rooted trees where:

• We identify a unique root

• We think of edges as directed: parent to children

Picking a root gives a unique 
rooted tree

• The tree is simply drawn 
differently and with 
undirected edges

A

B

D E

C

F

HG

A

B

D E

C

F

HG



Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no directed cycles

• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree

• Every DAG is a directed graph

• But not every directed graph is a DAG



Brute Force is Hard!

• As we have seen, the brute force method can require us to examine a 
very large number of circuits

• In this section we will develop algorithms for finding an answer much 
more quickly

• The downside is that we will no longer be guaranteed to have the 
best possible answer



Nearest-Neighbor Algorithm

• The first algorithm we will consider is called the nearest-neighbor 
algorithm

• It’s based on a common sense idea: at each vertex, choose the closest 
vertex that you haven’t visited yet



Nearest-Neighbor Algorithm

• We have to have a starting point

• We will choose our
second vertex by
finding the “nearest
neighbor”



Nearest-Neighbor Algorithm

• Where do we go first?

• Choose the cheapest 
edge



Nearest-Neighbor Algorithm

• Choose the cheapest edge

• In this case, we go
from B to E (7)



Nearest-Neighbor Algorithm

• Now where do we go?

• We can’t go back
to B



Nearest-Neighbor Algorithm

• Now where do we go?

• We can’t go back
to B

• Again choose the
cheapest edge



Nearest-Neighbor Algorithm

• Now where do we go?

• We can’t go back
to E, but we also
can’t go to B



Nearest-Neighbor Algorithm

• The rule is “nearest neighbor”: always choose the lowest cost edge, 
unless that would 
take you back to
a vertex you have 
already been to



Nearest-Neighbor Algorithm

• Now we only have one choice

• We can’t go back to
A or E, and we can’t
return to B because
that would leave 
out C



Nearest-Neighbor Algorithm

• Now we only have one choice

• We can’t go back to
A or E, and we can’t
return to B because
that would leave 
out C

• So we must go to C



Nearest-Neighbor Algorithm

• We have now visited all of the vertices, so we finally return to B

• This circuit has a total
cost of 49

• Is it the best circuit?



Nearest-Neighbor Algorithm

• It is not the best!  The solution on the left has a total cost of 47



Nearest-Neighbor Algorithm

1. From the starting vertex, choose the edge with the smallest cost 
and use that as the first edge in your circuit.  

2. Continue in this manner, choosing among the edges that connect 
from the current vertex to vertices you have not yet visited.  

3. When you have visited every vertex, return to the starting vertex.



Nearest-Neighbor Algorithm

• Advantages: easy, “heuristic,” and fast

• Disadvantage: doesn’t always give you the best possible answer

• “Heuristic” means that this method uses a common-sense idea



Representation

• Incidence (Matrix): Most useful when information
about edges is more desirable than information
about vertices.

• Adjacency (Matrix/List): Most useful when
information about the vertices is more desirable
than information about the edges. These two
representations are also most popular since
information about the vertices is often more
desirable than edges in most applications



Representing Graphs

The incidence matrix of G with respect to this listing of the 
vertices and edges is the nm zero-one matrix with 1 as its 
(i, j) entry when edge ej is incident with vi, and 0 otherwise.

•In other words, for an incidence matrix M = [mij], 

mij = 1 if edge ej is incident with vi

mij = 0 otherwise.
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Representing Graphs

Example: What is the incidence 
matrix M for the following graph G 
based on the order of vertices a, b, c, 
d and edges 1, 2, 3, 4, 5, 6?

Solution:





















001110

111000

000101

010011

M

Note: Incidence matrices of undirected graphs contain two 1s per column for edges 
connecting two vertices and one 1 per column for loops.

a

b

c

d

1

2

4

5
3

6



Representing Graphs

The adjacency matrix A (or AG) of G, with respect to this 
listing of the vertices, is the nn zero-one matrix with 1 as 
its (i, j) entry when vi and vj are adjacent, and 0 otherwise.

•In other words, for an adjacency matrix A = [aij], 

aij = 1 if {vi, vj} is an edge of G,
aij = 0otherwise.



172

Representing Graphs

a

b

c

d

•Example: What is the adjacency 
matrix AG for the following graph G 
based on the order of vertices a, b, c, 
d ?

Solution:





















0111

1001

1001

1110

GA

Note: Adjacency matrices of undirected graphs are always symmetric. 



Representing Directed Graphs

•Example: What is the adjacency 
matrix AG for the following directed 
graph G based on the order of 
vertices a, b, c, d ?

Solution:

a

b

c

d





















0111

0000

0001

0100

GA



Representing “Pseudographs”

•Example What is the adjacency 
matrix AG for the following 
preudograph G based on the order of 
vertices a, b, c, d ?

Solution:



• Adjacency Matrix
• symmetric matrix for undirected graphs

1

2

3

45

























01000

10100

01011

00101

00110

A



• Adjacency Matrix
• unsymmetric matrix for undirected graphs

























00000

10000

01010

00001

00110

A 1

2

3

45



Example. Random Walks

• Start from a node, and follow links uniformly at random.

• Stationary distribution: The fraction of times that you visit node i, as 
the number of steps of the random walk approaches infinity
• if the graph is strongly connected, the stationary distribution converges to a 

unique vector.



Random Walks

• stationary distribution: principal left eigenvector of 
the normalized adjacency matrix
• x = xP

• for undirected graphs, the degree distribution

1

2

3

45

























00001

10000

0210210

00001

0021210

P



Example. Counting Paths between Vertices

We can use the adjacency matrix of a graph to find the 
number of paths between two vertices in the graph.

Theorem: Let G be a graph with adjacency matrix A with 
respect to the ordering v1, … , vn of vertices (with 
directed or undirected edges, multiple edges and loops 
allowed). The number of different paths of length r from 
vi to vj equals the (i,j)th entry of Ar, where r >0 is a 
positive integer,

•Note: This is the standard power of matrix A, not a 
Boolean product.



Example: How many paths of length four are there from a
to d in the graph G.

Solution: The adjacency matrix of G is given above. Hence 
the number of paths of length four from a to d is the 
(1,4)th entry of A4 . The eight paths are as:

G

adjacency 
matrix  A of G A4 =

a, b, a, b, d      a, b, a, c, d
a, b, d, b, d      a, b, d, c, d
a, c, a, b, d      a, c, a, c, d
a, c, d, b, d      a, c, d, c, d
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Example 2



Example: Use the theorem on the previous slide to show 
that graph G is connected and graph H is not connected.

Solution:

G
adjacency 
matrix  A of G

H

Graph G with n nodes is connected iff every off-diagonal entry of 
A+A2+A3+· · ·+An is positive, where A is the adjacency matrix of G.



Sparse Adjacency Matrix and Graph

• Adjacency matrix:  sparse array, few nonzeros for graph edges

• Storage-efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT





Breadth-First Search: sparse mat * vec

x ATx

1 2

3

4 7

6

5

AT



• Multiply by adjacency matrix  step to neighbor vertices

• Work-efficient implementation from sparse data 
structures



Breadth-First Search: sparse mat * vec

x ATx

1 2

3

4 7

6

5
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

• Multiply by adjacency matrix  step to neighbor vertices

• Work-efficient implementation from sparse data 
structures



Breadth-First Search: sparse mat * vec

AT

1 2

3

4 7

6

5

(AT)2x



x ATx

• Multiply by adjacency matrix  step to neighbor vertices

• Work-efficient implementation from sparse data 
structures


