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1.
Autocorrelation structure of two AR(2). We discuss parts i. and ii. at

the same time.
Yt = c+ φ1Yt−1 + φ2Yt−2 + εt where εt wn (0, σ2).
Discuss stationarity first.

When φ1 = 0.8, φ2 = −0.8, the characteristic equation is
(1− 0.8z + 0.8z2) = 0, Solution is: 0.5 + 1.0i, 0.5− 1.0i and |0.5± 1| > 1

so the process is stationary because both the roots are outside the unit circle.
From the fact that it has complex roots we can also see it has a cycle.

When φ1 = −0.5, φ2 = 0.3, the characteristic equation is
(1 + 0.5z − 0.3z2) = 0, Solution is: 2.840 3,−1.173 6, so the process is

stationary because both the roots are outside the unit circle.

i. We are interested in the autocorrelation: for stationary processes, these
are

ρj =
γj
γ0

where
µ = E (Yt) and γj = E [(Yt − µ) (Yt−j − µ)]

First,

E (Yt) = E (c+ φ1Yt−1 + φ2Yt−2 + εt)

= E (c) + φ1E (Yt−1) + φ2E (Yt−2) + E (εt)
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and, using stationarity, E (Yt) = E (Yt−1) = E (Yt−2) = µ; moreover, because
εt is white noise, E (εt) = 0, so

µ =
c

1− φ1 − φ2

.

Rewriting c = µ (1− φ1 − φ2), our model becomes

(Yt − µ) = φ1 (Yt−1 − µ) + φ2 (Yt−2 − µ) + εt where εt wn
(
0, σ2

)
Of course, we could have skipped all this part if c = 0, in which case µ = 0
and we have directly

Yt = φ1Yt−1 + φ2Yt−2 + εt where εt wn
(
0, σ2

)
, and γj = E (YtYt−j)

So,

γj≥1 = E (Yt × Yt−j) = E ((φ1Yt−1 + φ2Yt−2 + εt)Yt−j)

= E (φ1Yt−1Yt−j) + E (φ2Yt−2Yt−j) + E (εtYt−j)

= φ1γj−1 + φ2γj−2

where we used

E (Yt−1Yt−j) = E
(
YtYt−(j−1)

)
= γj−1, E (Yt−2Yt−j) = E

(
YtYt−(j−2)

)
= γj−2

because of stationarity, and

E (εtYt−j) = 0 for j ≥ 1

because εt is white noise so it does not depend on the past (E (εtεt−j) = 0
for j ≥ 1), while Yt−j is a past value (when j ≥ 1). So

γj = φ1γj−1 + φ2γj−2 for j ≥ 1

(and notice that γj = γ−j, so γ1 = φ1γ0 + φ2γ1). Dividing by γ0,

ρj≥1 = φ1ρj−1 + φ2ρj−2,

(Yule Walker equations) which we initialise by setting

ρ1 = φ1ρ0 + φ2ρ−1
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(again using stationarity, ρ1 = ρ−1) so

ρ1 =
φ1

1− φ2

and for ρ2 just notice that ρ0 = 1,

ρ2 = φ1ρ1 + φ2

and iterating.

Note. It is worth mentioning here that we did not need to compute γ0 to
derive these autocorrelations.

The plot is very different, a cycle can be observed for the process having
complex roots in the characteristic equation, while for the other process the
autocorrelations change sign at every step.

ρ1 ρ2 ρ3 ρ4 ρ5
if φ1 = 0.8, φ2 = −0.8 0.444 −0.444 −0.711 −0.213 0.398
if φ1 = −0.5, φ2 = 0.3 −0.714 0.657 −0.542 0.468 −0.397

iii IRF - A plot of ∂Yt
∂εt−j

(against j) is called Impulse Response Function.

For a process Yt that admits

Yt = µ+
∞∑
j=0

ψjεt−j

for εt such that, for any t,

E (εt) = 0, E
(
ε2t
)

= σ2,

E (εtετ ) = 0 if τ 6= t

notice that
∂Yt
∂εt−j

= ψj

so ψj is the effect on Yt of a shock that took place t− j periods before.
It may also be of interest to compute the ψj in the IRF (Wold decompo-

sition):
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Any ARMA(p,q) can be represented as φ (L)Yt = θ (L) εt, where
φ (L) = 1− φ1L− φ2L

2 − ...− φpLp, θ (L) = 1 + θ1L+ ...+ θqL
q

and stationarity ensures Yt = φ−1 (L) θ (L) εt.
We are looking for the parameters ψj in the infinite polynomial
ψ (L) = 1 + ψ1L+ ..., such that Yt = ψ (L) εt:
this means that φ−1 (L) θ (L) = ψ (L), and then θ (L) = φ (L)ψ (L)
this is

1 + θ1L+ θ2L
2 + θ3L

3 + ...+ θqL
q

=
(
1− φ1L− φ2L

2 − φ3L
3 − ...− φpLp

) (
1 + ψ1L+ ψ2L

2 + ψ3L
3 + ...

)
1 + θ1L+ θ2L

2 + θ3L
3...+ θqL

q

= 1− φ1L+ ψ1L− ψ1φ1L
2 + ψ2L

2 − φ2L
2 − φ3L

3 − φ2ψ1L
3 − φ1ψ2L

3 + ψ3L
3 + ...

since this is an identity the elements of the same order must be equal,
so,
for the terms of order L, θ1 = ψ1 − φ1, which means ψ1 = θ1 + φ1,
for the terms of order L2, θ2 = ψ2 − φ2 − ψ1φ1, which means ψ2 =

θ2+φ2+ψ1φ1 (notice that ψ1 is known at this point, because it was determined
in the previous step)

for the terms of order L3, θ3 = ψ3 − φ3 − ψ1φ2 − φ2ψ1, which means
ψ3 = θ3 + φ3 + ψ1φ2 + φ2ψ1

....
In this case θj≥1 = 0, so we have
1 = 1−φ1L+ψ1L−ψ1φ1L

2+ψ2L
2−φ2L

2−φ3L
3−φ2ψ1L

3−φ1ψ2L
3+ψ3L

3...
and then
ψ1 = φ1,
ψ2 = φ2 + ψ1φ1

ψ3 = φ1ψ2 + φ2ψ1

i.e.
ψj≥1 = φ2ψj−2 + φ1ψj−1 (recall ψ0 = 1).
For the given parameters, these weights are
When φ1 = 0.8, φ2 = −0.8:
ψ1 = 0.8, ψ2 = −0.16 , ψ3 = −0.768, ψ4 = −0.4864 , ψ5 = 0.2253
(notice again the cyclical component);
When φ1 = −0.5, φ2 = 0.3:
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ψ1 = −0.5, ψ2 = 0.55, ψ3 = −0.425, ψ4 = 0.377 5, ψ5 = −0.316 25.

2.
i. The process is stationary (|−0.5| < 1) and invertible (|0.7| < 1).
ii. Rewriting the ARMA(p,q) as φ (L)Yt = θ (L) εt, where
φ (L) = 1− φ1L− φ2L

2 − ...− φpLp, θ (L) = 1 + θ1L+ ...+ θqL
q

and the polynomial of the MA(∞) given by the Wold decomposition as
Yt = ψ (L) εt where ψ (L) = 1 + ψ1L+ ...,
then φ−1 (L) θ (L) = ψ (L), and then θ (L) = φ (L)ψ (L)
this is 1 + θ1L+ ...+ θqL

q = (1− φ1L− φ2L
2 − ...− φpLp) (1 + ψ1L+ ...)

1 + θ1L+ ...+ θqL
q = 1− φ1L+ ψ1L− ψ1φ1L

2 + ψ2L
2 − φ2L

2...
since this is an identity the elements of the same order must be equal,
so,
for the terms of order L, θ1 = ψ1 − φ1, which means ψ1 = θ1 + φ1,
for the terms of order L2, θ2 = ψ2 − φ2 − ψ1φ1, which mean ψ2 = θ2 +

φ2 + ψ1φ1 (notice that ψ1 is known at this point, because it was determined
in the previous step)

....
In this case
1 + θL = 1− φL+ ψ1L− ψ1φL

2 + ψ2L
2 − φψ2L

3 + ψ3L
3...

and then
ψ1 = φ+ θ = 1.2
ψ2 = φψ1 = 0.6
ψ3 = φψ2 = 0.3
and, in general,
ψj≥2 = φψj−1.

You can also prove it by looking at Yt = φYt−1 + ξt where ξt = εt + θεt−1.
Then,
Yt =

∑∞
j=0 φ

jξt−j =
∑∞

j=0 φ
j (εt−j + θεt−j−1) =

∑∞
j=0 φ

jεt−j+θ
∑∞

j=0 φ
jεt−j−1

=
∑∞

j=0 φ
jεt−j + θ

∑∞
l=1 φ

l−1εt−l = εt +
∑∞

j=1 φφ
j−1εt−j + θ

∑∞
j=1 φ

j−1εt−j =

εt + (θ + φ)
∑∞

j=1 φ
j−1εt−j

iii. Before computing the autocorrelations, notice that
Cov (Yt, εt) = Cov (φYt−1 + εt + θεt−1, εt) =
= Cov (φYt−1, εt) + Cov (εt, εt) + Cov (θεt−1, εt) = 0 + σ2 + 0.
Next,
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γ0 = V ar (Yt) = V ar (φYt−1 + εt + θεt−1) =
= V ar (φYt−1) + V ar (εt) + V ar (θεt−1) + 2Cov (φYt−1, θεt−1) (the other

covariances are 0) so
γ0 = φ2V ar (Yt−1) + V ar (εt) + θ2V ar (εt−1) + 2φθCov (Yt−1, εt−1) =
γ0 = φ2γ0 + σ2 + θ2σ2 + 2φθσ2 using stationarity,
γ0 = 1+θ2+2φθ

1−φ2 σ2

and
γ1 = Cov (Yt, Yt−1) = Cov (φYt−1 + εt + θεt−1, Yt−1) = φγ0 + 0 + θσ2

so γ1 =
(

1+θ2+2φθ
1−φ2 φ+ θ

)
σ2 = φ+φθ2+2φ2θ+θ−φ2θ

1−φ2 σ2 = φ+φθ2+φ2θ+θ
1−φ2 σ2 =

= φ+θ+φθ(θ+φ)
1−φ2 σ2 = (θ+φ)(1+φθ)

1−φ2 σ2

and
γ2 = Cov (Yt, Yt−2) = Cov (φYt−1 + εt + θεt−1, Yt−2) = Cov (φYt−1, Yt−2) =

φγ1,
and in general
γj≥2 = Cov (Yt, Yt−j≥2) = Cov (φYt−1 + εt + θεt−1, Yt−j≥2) = Cov (φYt−1, Yt−j≥2) =

φγj−1,
So
ρ1 = (θ+φ)(1+φθ)

1+θ2+2φθ

ρj≥2 = φρj
so the autocorrelation function has a bump at the first lag, but behaves

like an AR(1) otherwise (notice that this argument could be generalised in
order to recognise any ARMA(p,q) model).

So,
ρ1 = (θ+φ)(1+φθ)

1+θ2+2φθ
= (0.7+0.5)(1+0.5∗0.7)

1+0.72+2∗0.5∗0.7 = 0.739 73
ρ2 = 0.5 ∗ ρ1 = 0.369 87
ρ3 = 0.5 ∗ ρ2 = 0.5 ∗ 0.369 87 = 0.184 94
An alternative way to compute ρ1 is to use the MA (∞) representation:
then γ0 =

∑∞
k=0 ψ

2
kσ

2 and
∑∞

k=0 ψ
2
k = 12 + (φ+ θ)2

∑∞
k=1 φ

(k−1)2 = 12 +

(φ+ θ)2
∑∞

l=0 φ
2l = 12 + (φ+θ)2

1−φ2 =

12 + (0.5+0.7)2

1−0.52 = 2. 92
and γj =

∑∞
k=0 ψkψk+jσ

2 and, for j = 1,
∑∞

k=0 ψkψk+j = 1 ∗ (θ + φ) +
(θ + φ)2

∑∞
k=1 φ

(k−1)+(k−1+1) =

1∗(θ + φ)+(θ + φ)2 φ
∑∞

k=1 φ
2(k−1) = (θ + φ)+ (θ+φ)2φ

1−φ2 = 0.7+0.5+0.5 (0.7+0.5)2

1−0.52 =
2. 16

ρ1 = 2. 16σ2

2. 92σ2 = 0.739 73
(could use this procedure for higher lags as well)
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3.
Just factorise Yt = 0.7Yt−1 − 0.1Yt−2 + εt + 0.5εt−1 − 0.14εt−2
(1− 0.7L+ 0.1L2)Yt = (1 + 0.5L− 0.14L2) εt,
[(1− 0.5L) (1− 0.2L)]Yt = [(1 + 0.7L) (1− 0.2L)] εt,
(verify that the model is stationary, then, because |0.5| < 1 and |0.2| < 1)
so the factor (1− 0.2L) is common, and the model can be reparametrised

as
(1− 0.5L)Yt = (1 + 0.7L) εt,
Yt = 0.5Yt−1 + εt + 0.7εt−1
for which we already computed the autocorrelation function.

4.
i. Assuming that E (Yt) = 0,

Ŷt+1|t,t−1,...,1 = α
(t)
1 Yt + α

(t)
2 Yt−1 + ...+ α

(t)
t Y1

where, letting γj = E (YtYt+j),
α
(t)
1

α
(t)
2

...

α
(t)
1

 =


γ0 γ1 ... γt−1
γ1 γ0 ... γt−2
... ... ... ...
γt−1 γt−2 ... γ0


−1

γ1
γ2
...
γt


ii. Inverting this matrix is computationally intensive, when t is large. As

an alternative, setting ε̂1 = 0, we may compute

ε̂2 = Y2 − 0.2Y1

ε̂s = Ys − 0.2Ys−1 − 0.6ε̂s−1 for s ≥ 1

and finally,
Ŷt+1|t,t−1,...,1,ε̂1=0 = 0.2Yt + 0.6ε̂t
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