DEPARTMENT OF ECONOMICS, MANAGEMENT AND QUANTITATIVE METHODS

Academic Year 2019-2020

B-74-3-B Time Series Econometics

Fabrizio Iacone

Discussion of Exercise Sheet 2

1.

Autocorrelation structure of two AR(2). We discuss parts i. and ii. at the same time.

 $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$ where $\varepsilon_t \ wn \ (0, \sigma^2)$. Discuss stationarity first.

When $\phi_1 = 0.8$, $\phi_2 = -0.8$, the characteristic equation is

 $(1 - 0.8z + 0.8z^2) = 0$, Solution is: 0.5 + 1.0i, 0.5 - 1.0i and $|0.5 \pm 1| > 1$ so the process is stationary because both the roots are outside the unit circle. From the fact that it has complex roots we can also see it has a cycle.

When $\phi_1 = -0.5$, $\phi_2 = 0.3$, the characteristic equation is

 $(1+0.5z-0.3z^2) = 0$, Solution is: 2.8403, -1.1736, so the process is stationary because both the roots are outside the unit circle.

i. We are interested in the autocorrelation: for stationary processes, these are \sim

$$\rho_j = \frac{\gamma_j}{\gamma_0}$$

where

$$\mu = E(Y_t) \text{ and } \gamma_j = E[(Y_t - \mu)(Y_{t-j} - \mu)]$$

First,

$$E(Y_{t}) = E(c + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \varepsilon_{t})$$

= $E(c) + \phi_{1}E(Y_{t-1}) + \phi_{2}E(Y_{t-2}) + E(\varepsilon_{t})$

and, using stationarity, $E(Y_t) = E(Y_{t-1}) = E(Y_{t-2}) = \mu$; moreover, because ε_t is white noise, $E(\varepsilon_t) = 0$, so

$$\mu = \frac{c}{1 - \phi_1 - \phi_2}.$$

Rewriting $c = \mu (1 - \phi_1 - \phi_2)$, our model becomes

$$(Y_t - \mu) = \phi_1 (Y_{t-1} - \mu) + \phi_2 (Y_{t-2} - \mu) + \varepsilon_t \text{ where } \varepsilon_t wn (0, \sigma^2)$$

Of course, we could have skipped all this part if c = 0, in which case $\mu = 0$ and we have directly

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$$
 where $\varepsilon_t \ wn\left(0, \sigma^2\right)$, and $\gamma_j = E\left(Y_t Y_{t-j}\right)$

So,

$$\begin{aligned} \gamma_{j\geq 1} &= E\left(Y_t \times Y_{t-j}\right) = E\left(\left(\phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t\right) Y_{t-j}\right) \\ &= E\left(\phi_1 Y_{t-1} Y_{t-j}\right) + E\left(\phi_2 Y_{t-2} Y_{t-j}\right) + E\left(\varepsilon_t Y_{t-j}\right) \\ &= \phi_1 \gamma_{j-1} + \phi_2 \gamma_{j-2} \end{aligned}$$

where we used

$$E(Y_{t-1}Y_{t-j}) = E(Y_tY_{t-(j-1)}) = \gamma_{j-1}, \ E(Y_{t-2}Y_{t-j}) = E(Y_tY_{t-(j-2)}) = \gamma_{j-2}$$

because of stationarity, and

$$E\left(\varepsilon_t Y_{t-j}\right) = 0 \text{ for } j \ge 1$$

because ε_t is white noise so it does not depend on the past $(E(\varepsilon_t \varepsilon_{t-j}) = 0$ for $j \ge 1)$, while Y_{t-j} is a past value (when $j \ge 1$). So

$$\gamma_j = \phi_1 \gamma_{j-1} + \phi_2 \gamma_{j-2}$$
 for $j \ge 1$

(and notice that $\gamma_j = \gamma_{-j}$, so $\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1$). Dividing by γ_0 ,

$$\rho_{j\geq 1} = \phi_1 \rho_{j-1} + \phi_2 \rho_{j-2},$$

(Yule Walker equations) which we initialise by setting

$$\rho_1 = \phi_1 \rho_0 + \phi_2 \rho_{-1}$$

(again using stationarity, $\rho_1 = \rho_{-1}$) so

$$\rho_1 = \frac{\phi_1}{1 - \phi_2}$$

and for ρ_2 just notice that $\rho_0 = 1$,

$$\rho_2 = \phi_1 \rho_1 + \phi_2$$

and iterating.

Note. It is worth mentioning here that we did not need to compute γ_0 to derive these autocorrelations.

The plot is very different, a cycle can be observed for the process having complex roots in the characteristic equation, while for the other process the autocorrelations change sign at every step.

	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_4$	$ ho_5$
$if \phi_1 = 0.8, \phi_2 = -0.8$	0.444	-0.444	-0.711	-0.213	0.398
$if \phi_1 = -0.5, \phi_2 = 0.3$	-0.714	0.657	-0.542	0.468	-0.397

iii IRF - A plot of $\frac{\partial Y_t}{\partial \varepsilon_{t-j}}$ (against j) is called Impulse Response Function. For a process Y_t that admits

$$Y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$

for ε_t such that, for any t,

$$E(\varepsilon_t) = 0, E(\varepsilon_t^2) = \sigma^2,$$

$$E(\varepsilon_t \varepsilon_\tau) = 0 \text{ if } \tau \neq t$$

notice that

$$\frac{\partial Y_t}{\partial \varepsilon_{t-j}} = \psi_j$$

so ψ_j is the effect on Y_t of a shock that took place t - j periods before.

It may also be of interest to compute the ψ_j in the IRF (Wold decomposition):

Any ARMA(p,q) can be represented as $\phi(L) Y_t = \theta(L) \varepsilon_t$, where $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p$, $\theta(L) = 1 + \theta_1 L + \dots + \theta_q L^q$ and stationarity ensures $Y_t = \phi^{-1}(L) \theta(L) \varepsilon_t$. We are looking for the parameters ψ_j in the infinite polynomial $\psi(L) = 1 + \psi_1 L + \dots$, such that $Y_t = \psi(L) \varepsilon_t$: this means that $\phi^{-1}(L) \theta(L) = \psi(L)$, and then $\theta(L) = \phi(L) \psi(L)$ this is

$$1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3 + \dots + \theta_q L^q$$

= $(1 - \phi_1 L - \phi_2 L^2 - \phi_3 L^3 - \dots - \phi_p L^p) (1 + \psi_1 L + \psi_2 L^2 + \psi_3 L^3 + \dots)$

$$1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3 \dots + \theta_q L^q$$

= $1 - \phi_1 L + \psi_1 L - \psi_1 \phi_1 L^2 + \psi_2 L^2 - \phi_2 L^2 - \phi_3 L^3 - \phi_2 \psi_1 L^3 - \phi_1 \psi_2 L^3 + \psi_3 L^3 + \dots$

since this is an identity the elements of the same order must be equal, so,

for the terms of order L, $\theta_1 = \psi_1 - \phi_1$, which means $\psi_1 = \theta_1 + \phi_1$,

for the terms of order L^2 , $\theta_2 = \psi_2 - \phi_2 - \psi_1 \phi_1$, which means $\psi_2 = \theta_2 + \phi_2 + \psi_1 \phi_1$ (notice that ψ_1 is known at this point, because it was determined in the previous step)

for the terms of order L^3 , $\theta_3 = \psi_3 - \phi_3 - \psi_1 \phi_2 - \phi_2 \psi_1$, which means $\psi_3 = \theta_3 + \phi_3 + \psi_1 \phi_2 + \phi_2 \psi_1$

. . . .

In this case
$$\theta_{j\geq 1} = 0$$
, so we have
 $1 = 1 - \phi_1 L + \psi_1 L - \psi_1 \phi_1 L^2 + \psi_2 L^2 - \phi_2 L^2 - \phi_3 L^3 - \phi_2 \psi_1 L^3 - \phi_1 \psi_2 L^3 + \psi_3 L^3$..
and then
 $\psi_1 = \phi_1$,
 $\psi_2 = \phi_2 + \psi_1 \phi_1$
 $\psi_3 = \phi_1 \psi_2 + \phi_2 \psi_1$
i.e.
 $\psi_{j\geq 1} = \phi_2 \psi_{j-2} + \phi_1 \psi_{j-1}$ (recall $\psi_0 = 1$).
For the given parameters, these weights are
When $\phi_1 = 0.8$, $\phi_2 = -0.8$:
 $\psi_1 = 0.8$, $\psi_2 = -0.16$, $\psi_3 = -0.768$, $\psi_4 = -0.4864$, $\psi_5 = 0.2253$
(notice again the cyclical component);
When $\phi_1 = -0.5$, $\phi_2 = 0.3$:

 $\psi_1 = -0.5, \ \psi_2 = 0.55, \ \psi_3 = -0.425, \ \psi_4 = 0.3775, \ \psi_5 = -0.31625.$

2.

i. The process is stationary (|-0.5| < 1) and invertible (|0.7| < 1).

ii. Rewriting the ARMA(p,q) as $\phi(L) Y_t = \theta(L) \varepsilon_t$, where

 $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p, \ \theta(L) = 1 + \theta_1 L + \dots + \theta_q L^q$

and the polynomial of the MA(∞) given by the Wold decomposition as $Y_t = \psi(L) \varepsilon_t$ where $\psi(L) = 1 + \psi_1 L + ...,$

then $\phi^{-1}(L) \theta(L) = \psi(L)$, and then $\theta(L) = \phi(L) \psi(L)$ this is $1 + \theta_1 L + \ldots + \theta_q L^q = (1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p) (1 + \psi_1 L + \ldots)$ $1 + \theta_1 L + \ldots + \theta_q L^q = 1 - \phi_1 L + \psi_1 L - \psi_1 \phi_1 L^2 + \psi_2 L^2 - \phi_2 L^2 \ldots$ since this is an identity the elements of the same order must be equal,

so,

for the terms of order L, $\theta_1 = \psi_1 - \phi_1$, which means $\psi_1 = \theta_1 + \phi_1$,

for the terms of order L^2 , $\theta_2 = \psi_2 - \phi_2 - \psi_1 \phi_1$, which mean $\psi_2 = \theta_2 + \phi_2 + \psi_1 \phi_1$ (notice that ψ_1 is known at this point, because it was determined in the previous step)

.... In this case $1 + \theta L = 1 - \phi L + \psi_1 L - \psi_1 \phi L^2 + \psi_2 L^2 - \phi \psi_2 L^3 + \psi_3 L^3...$ and then $\psi_1 = \phi + \theta = 1.2$ $\psi_2 = \phi \psi_1 = 0.6$ $\psi_3 = \phi \psi_2 = 0.3$ and, in general, $\psi_{j\geq 2} = \phi \psi_{j-1}.$

You can also prove it by looking at $Y_t = \phi Y_{t-1} + \xi_t$ where $\xi_t = \varepsilon_t + \theta \varepsilon_{t-1}$. Then, $Y_t = \sum_{j=0}^{\infty} \phi^j \xi_{t-j} = \sum_{j=0}^{\infty} \phi^j (\varepsilon_{t-j} + \theta \varepsilon_{t-j-1}) = \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j} + \theta \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j-1}$ $= \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j} + \theta \sum_{l=1}^{\infty} \phi^{l-1} \varepsilon_{t-l} = \varepsilon_t + \sum_{j=1}^{\infty} \phi \phi^{j-1} \varepsilon_{t-j} + \theta \sum_{j=1}^{\infty} \phi^{j-1} \varepsilon_{t-j} = \varepsilon_t + (\theta + \phi) \sum_{j=1}^{\infty} \phi^{j-1} \varepsilon_{t-j}$

iii. Before computing the autocorrelations, notice that $Cov(Y_t, \varepsilon_t) = Cov(\phi Y_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}, \varepsilon_t) =$ $= Cov(\phi Y_{t-1}, \varepsilon_t) + Cov(\varepsilon_t, \varepsilon_t) + Cov(\theta \varepsilon_{t-1}, \varepsilon_t) = 0 + \sigma^2 + 0.$ Next,

$$\begin{split} \gamma_{0} &= Var\left(Y_{t}\right) = Var\left(\phi Y_{t-1} + \varepsilon_{t} + \theta\varepsilon_{t-1}\right) = \\ &= Var\left(\phi Y_{t-1}\right) + Var\left(\varepsilon_{t}\right) + Var\left(\theta\varepsilon_{t-1}\right) + 2Cov\left(\phi Y_{t-1}, \theta\varepsilon_{t-1}\right)\right) \text{ (the other covariances are 0) so} \\ \gamma_{0} &= \phi^{2}Var\left(Y_{t-1}\right) + Var\left(\varepsilon_{t}\right) + \theta^{2}Var\left(\varepsilon_{t-1}\right) + 2\phi\theta Cov\left(Y_{t-1}, \varepsilon_{t-1}\right) = \\ \gamma_{0} &= \phi^{2}\gamma_{0} + \sigma^{2} + \theta^{2}\sigma^{2} + 2\phi\theta\sigma^{2} \text{ using stationarity,} \\ \gamma_{0} &= \frac{1+\theta^{2}+2\phi\theta}{1-\phi^{2}}\sigma^{2} \\ \text{and} \\ \gamma_{1} &= Cov\left(Y_{t}, Y_{t-1}\right) = Cov\left(\phi Y_{t-1} + \varepsilon_{t} + \theta\varepsilon_{t-1}, Y_{t-1}\right) = \phi\gamma_{0} + 0 + \theta\sigma^{2} \\ \text{so } \gamma_{1} &= \left(\frac{1+\theta^{2}+2\phi\theta}{1-\phi^{2}}\phi + \theta\right)\sigma^{2} = \frac{\phi+\phi\theta^{2}+2\phi^{2}\theta+\theta-\phi^{2}\theta}{1-\phi^{2}}\sigma^{2} = \frac{\phi+\phi\theta^{2}+\phi^{2}+\phi^{2}\theta+\theta}{1-\phi^{2}}\sigma^{2} = \\ &= \frac{\phi+\theta+\phi\theta(\theta+\phi)}{1-\phi^{2}}\sigma^{2} = \frac{(\theta+\phi)(1+\phi\theta)}{1-\phi^{2}}\sigma^{2} \\ \text{and} \\ \gamma_{2} &= Cov\left(Y_{t}, Y_{t-2}\right) = Cov\left(\phi Y_{t-1} + \varepsilon_{t} + \theta\varepsilon_{t-1}, Y_{t-2}\right) = Cov\left(\phi Y_{t-1}, Y_{t-2}\right) = \\ \phi\gamma_{1}, \\ \text{and in general} \\ \gamma_{j\geq 2} &= Cov\left(Y_{t}, Y_{t-j\geq 2}\right) = Cov\left(\phi Y_{t-1} + \varepsilon_{t} + \theta\varepsilon_{t-1}, Y_{t-j\geq 2}\right) = Cov\left(\phi Y_{t-1}, Y_{t-j\geq 2}\right) = \\ \phi\gamma_{j-1}, \\ \text{So} \\ \rho_{1} &= \frac{(\theta+\phi)(1+\phi\theta)}{1+\phi^{2}+2\phi\theta} \\ \rho_{j\geq 2} &= \phi\rho_{j} \\ \text{so the autocorrelation function has a hump at the first lag but behaves} \\ \end{split}$$

so the autocorrelation function has a bump at the first lag, but behaves like an AR(1) otherwise (notice that this argument could be generalised in order to recognise any ARMA(p,q) model).

So,

$$\rho_{1} = \frac{(\theta + \phi)(1 + \phi\theta)}{1 + \theta^{2} + 2\phi\theta} = \frac{(0.7 + 0.5)(1 + 0.5 * 0.7)}{1 + 0.7^{2} + 2 * 0.5 * 0.7} = 0.73973$$

$$\rho_{2} = 0.5 * \rho_{1} = 0.36987$$

$$\rho_{3} = 0.5 * \rho_{2} = 0.5 * 0.36987 = 0.18494$$
An alternative way to compute ρ_{1} is to use the $MA(\infty)$ representation:
then $\gamma_{0} = \sum_{k=0}^{\infty} \psi_{k}^{2} \sigma^{2}$ and $\sum_{k=0}^{\infty} \psi_{k}^{2} = 1^{2} + (\phi + \theta)^{2} \sum_{k=1}^{\infty} \phi^{(k-1)2} = 1^{2} + (\phi + \theta)^{2} \sum_{l=0}^{\infty} \phi^{2l} = 1^{2} + \frac{(\phi + \theta)^{2}}{1 - \phi^{2}} =$

$$1^{2} + \frac{(0.5 + 0.7)^{2}}{1 - 0.5^{2}} = 2.92$$
and $\gamma_{j} = \sum_{k=0}^{\infty} \psi_{k} \psi_{k+j} \sigma^{2}$ and, for $j = 1$, $\sum_{k=0}^{\infty} \psi_{k} \psi_{k+j} = 1 * (\theta + \phi) + (\theta + \phi)^{2} \sum_{k=1}^{\infty} \phi^{(k-1) + (k-1+1)} =$

$$1*(\theta + \phi) + (\theta + \phi)^{2} \phi \sum_{k=1}^{\infty} \phi^{2(k-1)} = (\theta + \phi) + \frac{(\theta + \phi)^{2}\phi}{1 - \phi^{2}} = 0.7 + 0.5 + 0.5 \frac{(0.7 + 0.5)^{2}}{1 - 0.5^{2}} =$$
2.16
$$\rho_{1} = \frac{2.16\sigma^{2}}{2.92\sigma^{2}} = 0.73973$$
(could use this procedure for higher lags as well)

3.

Just factorise $Y_t = 0.7Y_{t-1} - 0.1Y_{t-2} + \varepsilon_t + 0.5\varepsilon_{t-1} - 0.14\varepsilon_{t-2}$ $(1 - 0.7L + 0.1L^2) Y_t = (1 + 0.5L - 0.14L^2) \varepsilon_t,$ $[(1 - 0.5L) (1 - 0.2L)] Y_t = [(1 + 0.7L) (1 - 0.2L)] \varepsilon_t,$ (verify that the model is stationary, then, because |0.5| < 1 and |0.2| < 1) so the factor (1 - 0.2L) is common, and the model can be reparametrised

 $(1 - 0.5L) Y_t = (1 + 0.7L) \varepsilon_t,$ $Y_t = 0.5Y_{t-1} + \varepsilon_t + 0.7\varepsilon_{t-1}$ for which we already computed the autocorrelation function.

4.

i. Assuming that $E(Y_t) = 0$,

$$\widehat{Y}_{t+1|t,t-1,\dots,1} = \alpha_1^{(t)} Y_t + \alpha_2^{(t)} Y_{t-1} + \dots + \alpha_t^{(t)} Y_1$$

where, letting $\gamma_j = E(Y_t Y_{t+j})$,

$$\begin{pmatrix} \alpha_1^{(t)} \\ \alpha_2^{(t)} \\ \vdots \\ \alpha_1^{(t)} \end{pmatrix} = \begin{pmatrix} \gamma_0 & \gamma_1 & \dots & \gamma_{t-1} \\ \gamma_1 & \gamma_0 & \dots & \gamma_{t-2} \\ \vdots \\ \gamma_{t-1} & \gamma_{t-2} & \dots & \gamma_0 \end{pmatrix}^{-1} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_t \end{pmatrix}$$

ii. Inverting this matrix is computationally intensive, when t is large. As an alternative, setting $\hat{\varepsilon}_1 = 0$, we may compute

$$\begin{aligned} \widehat{\varepsilon}_2 &= Y_2 - 0.2Y_1 \\ \widehat{\varepsilon}_s &= Y_s - 0.2Y_{s-1} - 0.6\widehat{\varepsilon}_{s-1} \text{ for } s \geq 1 \end{aligned}$$

and finally,

$$\widehat{Y}_{t+1|t,t-1,\ldots,1,\widehat{\varepsilon}_1=0}=0.2Y_t+0.6\widehat{\varepsilon}_t$$