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1.

This is the Conditional Residual Sum of Squares for a Conditional Maximum Like-

lihood estimate in a MA(1) model assuming that the disturbances εt are normally

distributed and µ = 0 (and imposing ε0 = 0 as usual). (this is the answer to part ii.)

For part i.,

Using ε0 = 0 for any θ, εt (θ) = yt − εt−1 (θ)

y1 = −0.4, y2 = 0.8, y3 = 0.6, y4 = −0.2

and assuming ε0 = 0 for the values θ = 0.5, θ = −0.5, θ = 0.

εt (θ) t = 1 t = 2

θ = 1/2 −0.4− 1/2 ∗ 0 = −0.4 0.8− 1/2 ∗ (−0.4) = 1.0

θ = 0 −0.4− 0 ∗ 0 = −0.4 0.8− 0 ∗ (−0.4) = 0.8

θ = −1/2 −0.4 + 1/2 ∗ 0 = −0.4 0.8 + 1/2 ∗ (−0.4) = 0.6

εt (θ) t = 3 t = 4

θ = 1/2 0.6− 1/2 ∗ 1 = 0.1 −0.2− 1/2 ∗ 0.1 = −0.25

θ = 0 0.6− 0 ∗ 0.8 = 0.6 −0.2− 0 ∗ 0.6 = −0.2

θ = −1/2 0.6 + 1/2 ∗ 0.6 = 0.9 −0.2 + 1/2 ∗ 0.9 = 0.25
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ε2t (θ) t = 1 t = 2 t = 3 t = 4

θ = 1/2 (−0.4)2 = 0.16 12 = 1 0.12 = 0.01 (−0.25)2 = 0.062 5

θ = 0 (−0.4)2 = 0.16 0.82 = 0.64 0.62 = 0.36 (−0.2)2 = 0.04

θ = −1/2 (−0.4)2 = 0.16 0.62 = 0.36 0.92 = 0.81 0.252 = 0.062 5

∑T
t=1 ε

2
t (θ)

θ = 1/2 0.16 + 1 + 0.01 + 0.0625 = 1. 232 5

θ = 0 0.16 + 0.64 + 0.36 + 0.04 = 1.2

θ = −1/2 0.16 + 0.36 + 0.81 + 0.0625 = 1.392 5

iii.

This means that if we were to pick a conditional maximum likelihood estimate θ̂

between the three candidates 1/2, 0,−1/2, we would pick θ̂ = 0.

If we used the whole [−0.98, 0.98] the estimate θ̂ would be 0.14. The function∑T
t=1 ε

2
t (θ) is
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2. The estimation output is

We know that, for MA(1) model, the LS/ML estimate is such that

√
T (θ̂ − θ)→d N(0, 1− θ2)

Under H0, one feasible test statistic is therefore

√
T

(θ̂ − θ)√
1− θ2

→d N(0, 1)

so, under H0 := {θ = 0.9}, this takes value

√
99

(0.730583− 0.9)√
1− 0.92

= −3.867

and | − 3.867| > 1.96 so the null hypothesis is not rejected at the standard 5 % sig-
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nificance level. Alternatively, we can use a consistent estimate to estimate θ in the

variance. In this case, a feasible test statistic is

√
T

(θ̂ − θ)√
1− θ̂2

→d N(0, 1)

and √
99

(0.730583− 0.9)√
1− 0.7305832

= −2.46869

As another alternative still, using the regression output, we could have calculated

(0.730583− 0.9)

0.084889
= −1.99

which again is a non-rejection of H0.

Finally, we could have run the test directly using e-views: the Wald test gives
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As we repeat the exercise for a MA(2) model, we estimated

and the outcome of the test is
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Therefore, the null hypothesis is not rejected in this case.

This difference in outcomes seems puzzling: when we assumed θ2 = 0 and tested

θ1 = 0.9 we rejected the hypothesis that a MA(1) model with θ1 = 0.9 was appropriate.

However, when we estimated the MA(2), we did not rejected the hypothesis that a

MA(1) model with θ1 = 0.9 was appropriate.

To understand why, check the estimated standard errors for θ̂1 in both the estimates:

this is 0.084 for the MA(1) model, and 1.12 for the MA(2). This is not surprising:

from the formulae for the variance - covariance matrix of the estimates, we know that

the variance of θ̂1 should be (1− θ21)/T when the MA(1) is estimated but (1− θ22)/T
when the MA(2) is estimated. If θ2 = 0 then the variance in the MA(2) model is much

larger. This reflects the fact that information is used to estimate θ2 as well, so we are

less confident about θ1 and this additional uncertainty makes us not reject the null

hypothesis.

This example shows that we should estimate parsimonious models, as we gain less

information from non-parsimonious models.

Finally, a note regarding the estimated standard errors from eviews. We know that for

a MA(1) (for example) the asymptotic variance is (1− θ22)/T : eviews however does not

use this bit of information, and estimates the variance as outer product of gradients.

This is because obviously eviews whould have to change the formula for the asymptotic

variance any time we change model, and therefore should have the formula (in terms of

θ and φ for any possible ARMA modeland this is impossible. Using the outer product

of the gradients gives a consistent estimate of the variance for any model, thus avoiding

the problem.
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3. Recall

Akaike information criterion AIC = −2 ln lik (p, q) + 2 (p+ q)

Bayes information criterion BIC = −2 ln lik (p, q) + lnT (p+ q).

(p, q) ln lik (p, q) AIC BIC

(1, 0) −248.6914 499. 38 502. 68

(0, 1) −257.1481 516. 30 519.59

(1, 1) −248.6750 501. 35 507. 95

(0, 2) −251.3668 506.73 513.33

(2, 0) −247.8323 499. 66 506. 26

So both the AIC and the BIC selected an AR(1) model.

NOTE 1: notice that the highest maximized log-likelihood is for AR(2). As it

happens, the AR(2) nests the AR(1) (i.e, we can write the AR(1) as a restriction of the

AR(2)), so we can compare them with a likelihood ratio test. If we tested the AR(1)

against the AR(2) using a likelihood ratio test, 2 (+248.6914− 247.8323) = 1.7182 so

the null hypothesis that the additional parameter is 0 would not be rejected (at 5%

size).

NOTE 2: I discussed both AIC and BIC to give an example. However, discussing

only one of them would have been sufficient for a complete solution. In fact I do not

recommend running both of them, as this could leave to conflicting results: suppose,

for example, that AIC selected AR(2) and BIC selected AR(1), which one would you

choose? We studied reasons to prefer AIC and reasons to prefer BIC. For example, if I

prefer BIC because it gives consisent estimate of (p, q), then I should not use AIC, so

it is not necessary to compute it.

NOTE 3: some candidates may note that, given the formula of the Information

Criterion and the values of the maximised log-likelihoods, in this case it is clear that

the recommended model can only be the AR(1) (best log-likelihood when p + q = 1)

or the AR(2) (best log-likelihood when p + q = 2). This is very elegant and perfectly

acceptable. By the way, at this point, as the AR(1) is nested in the AR(2), of course it

is natural to compare them with a likelihood ratio test (although using an information

criterion instead is also perfectly acceptable).
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4.

When the model is correctly specified, the residuals estimate the original i.i.d. distur-

bances. The Portmanteau statistic

T
m∑
j=1

r2j →d χ
2
m−(p+q)

as T → ∞, where p and q are the numbers of AR and MA parameters. in this case

the Portmanteau statistic takes value 200
(
0.052 + (−0.07)2 + 0.12

)
= 3.48: we have

m = 3, p = 1, q = 1, so the critical distribution is a χ2
1. Taking the size as 5% as usual,

the critical value is 3.84, so the hypothesis is not rejected, and we can conclude that

the approximation is satisfactory.

5.

Maximised log-likelihoods are

MA(1): −131.8241

MA(2): −131.4106 Thus the MA(2) has higher maximised likelihood. However, we

know that adding parameters always increase the likelihood, so maximising the like-

lihood does not deliver a consistent estimate. Comparing these with the information

criteria,

BIC (Shwarz) are

MA(1): 2.802359

MA(2): 2.840421 so the BIC selected the MA(1) model.

NOTE: Notice that, as MA(1) and MA(2) are nested (i.e., we can write MA(1) as a re-

striction on parameters of MA(2)) we could compare them also using a Likelihood Ratio

tests. Likelihood ratio tests are asymptotically equivalent to Wald tests, so we could

use results from exercise 2 to conclude that MA(1) should be preferred. Indeed,using

the likelihood ratio test (or the Wald test) would be the best thing to do (because these

are statistical tests, and because the likelihood ratio test has nice power properties un-

der some conditions): however, we compared MA(1) vs. MA(2) using the information

criterion to familiarize ourselves with it.

8



The Portmanteau test on the residuals (using up to 10 autocorrelation) yields

From the P-value of the Q statistic, we conclude that the null hypothesis of no residual

autocorrelation is not rejected. Thus, the MA(1) is an acceptable specification.
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