DEPARTMENT OF ECONOMICS, MANAGEMENT AND QUANTITATIVE METHODS

Academic Year 2018-2019

B-74-3-B Time Series Econometics

Fabrizio Iacone

Discussion of Exercise Sheet 3

1.

This is the Conditional Residual Sum of Squares for a Conditional Maximum Likelihood estimate in a MA(1) model assuming that the disturbances ε_t are normally distributed and $\mu = 0$ (and imposing $\varepsilon_0 = 0$ as usual). (this is the answer to part ii.)

For part i.,

Using $\varepsilon_0 = 0$ for any θ , $\varepsilon_t(\theta) = y_t - \varepsilon_{t-1}(\theta)$

 $y_1 = -0.4, \quad y_2 = 0.8, \quad y_3 = 0.6, \quad y_4 = -0.2$ and assuming $\varepsilon_0 = 0$ for the values $\theta = 0.5, \ \theta = -0.5, \ \theta = 0.$

$\varepsilon_{t}\left(heta ight)$	t = 1	t = 2
$\theta = 1/2$	-0.4 - 1/2 * 0 = -0.4	0.8 - 1/2 * (-0.4) = 1.0
$\theta = 0$	-0.4 - 0 * 0 = -0.4	0.8 - 0 * (-0.4) = 0.8
$\theta = -1/2$	-0.4 + 1/2 * 0 = -0.4	0.8 + 1/2 * (-0.4) = 0.6

$\varepsilon_{t}\left(heta ight)$	t = 3	t = 4
$\theta = 1/2$	0.6 - 1/2 * 1 = 0.1	-0.2 - 1/2 * 0.1 = -0.25
$\theta = 0$	0.6 - 0 * 0.8 = 0.6	-0.2 - 0 * 0.6 = -0.2
$\theta = -1/2$	0.6 + 1/2 * 0.6 = 0.9	-0.2 + 1/2 * 0.9 = 0.25

$\varepsilon_{t}^{2}\left(\theta\right)$	t = 1	t = 2	t = 3	t = 4			
$\theta = 1/2$	$(-0.4)^2 = 0.16$	$1^2 = 1$	$0.1^2 = 0.01$	$\left(-0.25\right)^2 = 0.0625$			
$\theta = 0$	$(-0.4)^2 = 0.16$	$0.8^2 = 0.64$	$0.6^2 = 0.36$	$(-0.2)^2 = 0.04$			
$\theta = -1/2$	$(-0.4)^2 = 0.16$	$0.6^2 = 0.36$	$0.9^2 = 0.81$	$0.25^2 = 0.0625$			
		_					
	$\sum_{t=1}^{T}arepsilon_{t}^{2}\left(heta ight)$						
$\theta = 1/2$	0.16 + 1 + 0.01	1 + 0.0625 = 1	1.2325				
$\theta = 0$	0.16 + 0.64 +	- 0.36 + 0.04 =	= 1.2				
$\theta = -1/2$	0.16 + 0.36 + 0.	81 + 0.0625 =	= 1.3925				

iii.

This means that if we were to pick a conditional maximum likelihood estimate $\hat{\theta}$ between the three candidates 1/2, 0, -1/2, we would pick $\hat{\theta} = 0$.

If we used the whole [-0.98, 0.98] the estimate $\hat{\theta}$ would be 0.14. The function $\sum_{t=1}^{T} \varepsilon_t^2(\theta)$ is

2. The estimation output is

Dependent Variable: Y Sample: 1 99 Included observations: 99 Convergence achieved after 33 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.	
C MA(1) SIGMASQ	0.068594 0.730583 0.833208	0.1579920.4341610.0848898.6063270.0967108.615568		0.6651 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.390882 0.378192 0.926955 82.48761 -131.8241 30.80244 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.074318 1.175521 2.723719 2.802359 2.755537 1.840167	
Inverted MA Roots	73				

We know that, for MA(1) model, the LS/ML estimate is such that

$$\sqrt{T}(\widehat{\theta} - \theta) \rightarrow_d N(0, 1 - \theta^2)$$

Under H_0 , one feasible test statistic is therefore

$$\sqrt{T}\frac{(\hat{\theta}-\theta)}{\sqrt{1-\theta^2}} \to_d N(0,1)$$

so, under $H_0 := \{\theta = 0.9\}$, this takes value

$$\sqrt{99} \frac{(0.730583 - 0.9)}{\sqrt{1 - 0.9^2}} = -3.867$$

and |-3.867| > 1.96 so the null hypothesis is not rejected at the standard 5 % sig-

nificance level. Alternatively, we can use a consistent estimate to estimate θ in the variance. In this case, a feasible test statistic is

$$\sqrt{T} \frac{(\hat{\theta} - \theta)}{\sqrt{1 - \hat{\theta}^2}} \to_d N(0, 1)$$

and

$$\sqrt{99} \frac{(0.730583 - 0.9)}{\sqrt{1 - 0.730583^2}} = -2.46869$$

As another alternative still, using the regression output, we could have calculated

$$\frac{(0.730583 - 0.9)}{0.084889} = -1.99$$

which again is a non-rejection of H_0 .

Finally, we could have run the test directly using e-views: the Wald test gives

Wald Test: Equation: Untitled	I					
Test Statistic	Value	df	Probability			
t-statistic F-statistic Chi-square	-1.995747 3.983004 3.983004	96 (1, 96) 1	0.0488 0.0488 0.0460			
Null Hypothesis: C(2)-0.9=0 Null Hypothesis Summary:						
Normalized Restriction (= 0)		Value	Std. Err.			
-0.9 + C(2)		-0.169417	0.084889			

Restrictions are linear in coefficients.

As we repeat the exercise for a N	AA(2) model, we estimated
-----------------------------------	---------------------------

Dependent Variable: Y Method: ARMA Maximum Likelihood (OPG - BHHH) Sample: 1 99 Coefficient covariance computed using outer product of gradients							
Variable Coefficient Std. Error t-Statistic Prob							
C MA(1) MA(2) SIGMASQ	0.066712 0.799120 0.089314 0.826064	0.172953 0.121864 0.108816 0.113130	0.385720 6.557489 0.820784 7.301906	0.7006 0.0000 0.4138 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.396105 0.377034 0.927818 81.78034 -131.4106	Mean dep S.D. depe Akaike inf Schwarz Hannan-Q	endent var endent var o criterion criterion winn criter.	0.074318 1.175521 2.735568 2.840421 2.777991			
Inverted MA Roots	13		66				

and the outcome of the test is

Wald T					
Test Statistic	df	Probability			
F-statistic Chi-square	2.693180 5.386361	(2, 95) 2	0.0728 0.0677		
Null	Null Hypothesis: C(2)=0.9, C(3)=0 Null Hypothesis Summary:				
Normalized Res	Value	Std. Err.			
-0.9 + C(2) C(3)		-0.100880 0.089314	0.121864 0.108816		

Restrictions are linear in coefficients.

Therefore, the null hypothesis is not rejected in this case.

This difference in outcomes seems puzzling: when we assumed $\theta_2 = 0$ and tested $\theta_1 = 0.9$ we rejected the hypothesis that a MA(1) model with $\theta_1 = 0.9$ was appropriate. However, when we estimated the MA(2), we did not rejected the hypothesis that a MA(1) model with $\theta_1 = 0.9$ was appropriate.

To understand why, check the estimated standard errors for $\hat{\theta}_1$ in both the estimates: this is 0.084 for the MA(1) model, and 1.12 for the MA(2). This is not surprising: from the formulae for the variance - covariance matrix of the estimates, we know that the variance of $\hat{\theta}_1$ should be $(1 - \theta_1^2)/T$ when the MA(1) is estimated but $(1 - \theta_2^2)/T$ when the MA(2) is estimated. If $\theta_2 = 0$ then the variance in the MA(2) model is much larger. This reflects the fact that information is used to estimate θ_2 as well, so we are less confident about θ_1 and this additional uncertainty makes us not reject the null hypothesis.

This example shows that we should estimate parsimonious models, as we gain less information from non-parsimonious models.

Finally, a note regarding the estimated standard errors from eviews. We know that for a MA(1) (for example) the asymptotic variance is $(1 - \theta_2^2)/T$: eviews however does not use this bit of information, and estimates the variance as outer product of gradients. This is because obviously eviews whould have to change the formula for the asymptotic variance any time we change model, and therefore should have the formula (in terms of θ and ϕ for any possible ARMA modeland this is impossible. Using the outer product of the gradients gives a consistent estimate of the variance for any model, thus avoiding the problem.

3. Recall

(0,2)

				(-	. / 1/	(1	1/
Bayes i	nformation c	riterion E	BIC = -2	$2\ln lik(p$	(q) + 1	$\ln T (p$	+q)
(p,q)	$\ln lik\left(p,q\right)$	AIC	BIC				
(1, 0)	-248.6914	499.38	502.68				
(0,1)	-257.1481	516.30	519.59				
(1, 1)	-248.6750	501.35	507.95				

513.33

Akaike information criterion $AIC = -2 \ln lik(p,q) + 2(p+q)$

(2,0)	-247.8323	499.66	506.26	
~				

506.73

-251.3668

So both the AIC and the BIC selected an AR(1) model.

NOTE 1: notice that the highest maximized log-likelihood is for AR(2). As it happens, the AR(2) nests the AR(1) (i.e., we can write the AR(1) as a restriction of the AR(2), so we can compare them with a likelihood ratio test. If we tested the AR(1)against the AR(2) using a likelihood ratio test, 2(+248.6914 - 247.8323) = 1.7182 so the null hypothesis that the additional parameter is 0 would not be rejected (at 5%size).

NOTE 2: I discussed both AIC and BIC to give an example. However, discussing only one of them would have been sufficient for a complete solution. In fact I do not recommend running both of them, as this could leave to conflicting results: suppose, for example, that AIC selected AR(2) and BIC selected AR(1), which one would you choose? We studied reasons to prefer AIC and reasons to prefer BIC. For example, if I prefer BIC because it gives consistent estimate of (p,q), then I should not use AIC, so it is not necessary to compute it.

NOTE 3: some candidates may note that, given the formula of the Information Criterion and the values of the maximised log-likelihoods, in this case it is clear that the recommended model can only be the AR(1) (best log-likelihood when p + q = 1) or the AR(2) (best log-likelihood when p + q = 2). This is very elegant and perfectly acceptable. By the way, at this point, as the AR(1) is nested in the AR(2), of course it is natural to compare them with a likelihood ratio test (although using an information criterion instead is also perfectly acceptable).

4.

When the model is correctly specified, the residuals estimate the original i.i.d. disturbances. The Portmanteau statistic

$$T\sum_{j=1}^{m} r_j^2 \to_d \chi^2_{m-(p+q)}$$

as $T \to \infty$, where p and q are the numbers of AR and MA parameters. in this case the Portmanteau statistic takes value $200 (0.05^2 + (-0.07)^2 + 0.1^2) = 3.48$: we have m = 3, p = 1, q = 1, so the critical distribution is a χ_1^2 . Taking the size as 5% as usual, the critical value is 3.84, so the hypothesis is not rejected, and we can conclude that the approximation is satisfactory.

5.

Maximised log-likelihoods are

MA(1): -131.8241

MA(2): -131.4106 Thus the MA(2) has higher maximised likelihood. However, we know that adding parameters always increase the likelihood, so maximising the likelihood does not deliver a consistent estimate. Comparing these with the information criteria,

BIC (Shwarz) are

MA(1): 2.802359

MA(2): 2.840421 so the BIC selected the MA(1) model.

NOTE: Notice that, as MA(1) and MA(2) are nested (i.e., we can write MA(1) as a restriction on parameters of MA(2)) we could compare them also using a Likelihood Ratio tests. Likelihood ratio tests are asymptotically equivalent to Wald tests, so we could use results from exercise 2 to conclude that MA(1) should be preferred. Indeed, using the likelihood ratio test (or the Wald test) would be the best thing to do (because these are statistical tests, and because the likelihood ratio test has nice power properties under some conditions): however, we compared MA(1) vs. MA(2) using the information criterion to familiarize ourselves with it. The Portmanteau test on the residuals (using up to 10 autocorrelation) yields

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
i þ	i i	1	0.070	0.070	0.5015			
1. 🖡 1.	I]I	2	0.041	0.037	0.6772	0.411		
i 🛛 i	1 1	3	0.018	0.012	0.7097	0.701		
т р т	I]I	4	0.043	0.040	0.9062	0.824		
1 1 1	 	5	0.036	0.029	1.0423	0.903		
1 🔲 I	1 I 🔲 I	6	0.109	0.102	2.3120	0.805		
1 🚺 1	ի հանր	7	-0.035	-0.052	2.4417	0.875		
1 🗖 1	I 🔲 I	8	0.124	0.123	4.1390	0.764		
1 🛛 1	1 I I I	9	0.056	0.038	4.4863	0.811		
· 🗐 ۱	ים י	10	0.095	0.076	5.4905	0.790		

Sample: 1 99 Included observations: 99 Q-statistic probabilities adjusted for 1 ARMA term

From the P-value of the Q statistic, we conclude that the null hypothesis of no residual autocorrelation is not rejected. Thus, the MA(1) is an acceptable specification.