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Chapter 1 - Introduction, Stationarity and Ergodicity

TIME SERIES
Statistical analysis of data observed over time

The data:

I observed between two dates, normalised as t = 1 and t = T ;

I Equispaced,
i.e. we observe Y1,Y2, ...,Yt ,Yt+1, ...,YT−1,YT

and no intermediate observation is missing

I Yt depends on Ys if s < t

I Yt does not depend on Ys if s > t

then, the vector

{Y1,Y2, ...,Yt ,Yt+1, ...,YT−1,YT}′

is a time series.
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Moments
For a generic random variable we can define MEAN, VARIANCE,
and for pairs of random variables we can define COVARIANCE,
CORRELATION...

In a time series we define these for each Yt :

I Mean: E (Yt) = µt

I Variance: E
[
(Yt − µt)

2
]
= σ2

t

I Covariance: E [(Yt − µt) (Yt+j − µt+j )] = γt (j)

I Correlation:
γt (j)
σtσt+j

= ρt (j)
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Operators
Lag operator: L

LYt = Yt−1

So,

L2Yt = L (LYt) = L (Yt−1) = Yt−2

L−1Yt = Yt+1

First Difference operator: ∆ = 1− L

∆Yt = (1− L)Yt = Yt − LYt

= Yt − Yt−1

Also,

∆2Yt = (1− L)2 Yt

=
(
1− 2L+ L2

)
Yt

= Yt − 2Yt−1 + Yt−2
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Stationarity and ergodicity

{Y1, ...,YT}′ is a single realisation from a stochastic process
{Yt}∞

t=−∞.

We are interested in the model that generated the time series, but
we do not know it. How can we make inference, using one single
observation?

We must use the fact that this is a T−dimensional observation:

I Restrict heterogeneity over time

I Restrict dependence over time
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Restrict heterogeneity
Assume that some properties are common to all the Yt in
{Y1, ...,YT}′.
For example,

Covariance Stationarity

E (Yt) = µ ∀t

E [(Yt − µ) (Yt+j − µ)] = γ (j) ∀t

i.e. the first two moments do not depend on the position of
Yt .

In this way, we may try to estimate µ or γ (j) using the
sample counterparts.
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”Covariance stationarity” is also known as ”Weak stationarity” or
simply as ”Stationarity” (without other references).

For stationary processes, we shorten the notation and introduce

γj for γ (j) , ρj for ρt (j)

to indicate the autocovariance and autocorrelations, respectively.

The plot of γj (against j) is called autocovariance function.

The plot of ρj (against j) is called autocorrelation function.
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An alternative restriction on heterogeneity is Strict stationarity:

for any j1, ..., jn, the distribution of {Yt+j1 , ...,Yt+jn}
′ and of

{Yt+τ+j1 , ...,Yt+τ+jn}
′ is the same for any τ.

Strict and Covariance stationarity do not imply each other.
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Sufficient condition for stationarity

White Noise Process {εt}∞
t=−∞ with E (εt) = 0, Var(εt) = σ2,

E (εtετ) = 0 if t 6= τ, is called white noise.

Consider process {Yt}∞
t=−∞ defined as

Yt = µ +
∞

∑
j=0

ψj εt−j

If
∞

∑
j=0

ψ2
j < ∞

and εt is white noise, then Yt is stationary.
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Restrict dependence over time

It may be that for n large enough Yt and Yt+n may be treated as
independent, in which case the standard statistical theory would
apply. If the process is stationary, then, the sample moments would
estimate the population moments consistently.

We may generalise this argument and allow for some dependence,
provided that it is not too much, and it vanishes quickly as n gets
large.
One theoretical restriction that makes dependence vanish quickly
as n gets large is called MIXING. At our stage, we may think
mixing as asymptotic independence, even though the definition is
more complex.
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ERGODICITY (heuristic)

The property that we can successfully estimate the properties of a
process from a long time series is called ergodicity.

Suppose that we have N identical processes, all observed at the
same point in time, one time series of dimension N. A process is
ergodic when the average of the observations at time t of the N
identical processes is the same (in a probabilistic sense) a the
average of the N dimensional time series.

For example, a stationary process is ergodic for the mean in mean
squared sense (MS) if the sample average estimates (MS)
consistently the expected value.

11/15



We can understand this with two counterexamples (from
Wikipedia)

I Suppose that we have two coins: one coin is fair and the
other has two heads. We choose (at random) one of the coins
first, and then perform a sequence of independent tosses of
our selected coin. Let X[n] denote the outcome of the nth
toss, with 1 for heads and 0 for tails. Then the ensemble
average is 1/2(1/2 + 1) = 3/4; yet the long-term average is
1/2 for the fair coin and 1 for the two-headed coin. So the
long term time-average is either 1/2 or 1. Hence, this random
process is not ergodic in mean.

I An unbiased random walk is non-ergodic. Its expectation
value is zero at all times, whereas its time average is a
random variable with divergent variance.
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Some examples

1. (Model MD) Let {εt}∞
t=−∞ be an independent, normally

distributed process, with E (εt) = 0, Var(εt) = σ2, and consider
process {Yt}∞

t=−∞ defined as

Yt = εtεt−1

Then, {Yt}∞
t=−∞ is white noise (and therefore stationary) but not

independent. Moreover, Yt is independent from Yt+n for n ≥ 2,
and {Yt}∞

t=−∞ is therefore ergodic.

2. (Model MA1) Let {εt}∞
t=−∞ be an independent, identically

distributed process, with E (εt) = 0, Var(εt) = σ2, and consider
process {Yt}∞

t=−∞ defined as

Yt = µ + εt + θεt−1

Then, {Yt}∞
t=−∞ is stationary. Moreover, Yt is independent from

Yt+n for n ≥ 2, and {Yt}∞
t=−∞ is therefore ergodic.
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3. (Model AR1) Let {εt}∞
t=−∞ be an independent, normally

distributed process, with E (εt) = 0, Var(εt) = σ2, and consider
process {Yt}∞

t=−∞ defined as

Yt = c + φYt + εt

and |φ| < 1.
Then, using repeated substitution,

Yt =
c

1− φ
+

∞

∑
j=0

φj εt−j

and {Yt}∞
t=−∞ is therefore stationary.
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To check mixing, recall that, for two normally distributed random
variables Y , X , with E (Y ) = µY , Var(Y ) = σ2

Y , E (X ) = µX ,
Var(X ) = σ2

X , Cor(Y ,X ) = ρ, the joint density fY ,X (y , x) is

fY ,X (y , x) =
1

2πσY σX
√

1− ρ2

exp{−
( y−µY

σY
)2 − 2ρ( y−µY

σY
)( x−µX

σX
) + ( x−µX

σX
)2

2(1− ρ2)
}

Then, noticing Cor(Yt ,Yt+n) = φn, Cor(Yt ,Yt+n)→ 0
the joint density for Yt , Yt+n is such that

fYt ,Yt+n(yt , yt+n)→ fYt (yt)fYt+n(yt+n)

(this is a heuristic check of mixing and ergodicity)
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