
Chapter 3 - Forecasting and Impulse Response for
Stationary processes

Often we are interested in time series because we want to answer
one of the two following questions:

Impulse response: What is the consequence on Yt of a shock that
took place t − jperiods ago?

Forecasting: What value do you expect for Yt+1 if you observed
Y1, ...,Yt?

We first address these questions in the case of stationary processes.
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Wold Decomposition
Any stationary process Yt may be represented in the form

Yt = κt +
∞

∑
j=0

ψj εt−j

where

ψ0 = 1,
∞

∑
j=0

ψ2
j < ∞

and εt , the error made in forecasting Yt on the basis of a linear
function of lagged Y (i.e., Ê (Yt |Yt−1, ...))

εt = Yt − Ê (Yt |Yt−1, ...)

is such that, for any t,

E (εt) = 0, E
(
ε2t
)
= σ2,

E (εtετ) = 0 if τ 6= t
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κt is the linearly deterministic component of Yt : it can be
predicted arbitrarily well as a linear function of past Y , i.e.

κt = Ê (κt |Yt−1, ...)

and it is such that
E (κtεt−j ) = 0 ∀j

3/21



Impulse response

The plot of ∂Yt
∂εt−j

(against j) is called Impulse Response Function

(IRF): this is the effect on Yt of a shock that took place t − j
periods before.

For a process Yt that admits

Yt = µ +
∞

∑
j=0

ψj εt−j

for εt such that, for any t,

E (εt) = 0, E
(
ε2t
)
= σ2,

E (εtετ) = 0 if τ 6= t

notice that
∂Yt

∂εt−j
= ψj

and the IRF is a plot of ψj against j .
4/21



Linear filters

From the Wald decomposition, we understand that any stationary
process may be seen as at the application of the polynomial
(ψ0, ψ1, ...) to the white noise process {εt}.
Using the Lag Operator, we can represent this with the notation

Ψ(L) =
(
ψ0 + ψ1L+ ψ2L

2 + ψ3L
3...
)

so that

Ψ(L)εt =
∞

∑
j=0

ψj εt−j

This is a filter, and it is linear because εt−j is always with power 1.
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Sometimes data are treated (by nature or by the researcher) by
summing / averaging / differencing ...
For Yt = µ + ∑∞

j=0 ψj εt−j , a filter h (L) is applied as

Xt = h (L)Yt

where

h (L) =
∞

∑
j=−∞

hjL
j

If
∞

∑
j=−∞

|hj | < ∞,
∞

∑
j=0

|ψj | < ∞

then
Xt = µ∗ + ψ∗ (L) εt

where
µ∗ = h (1) µ, ψ∗ (L) = h (L)ψ (L)

and
∞
∑

j=−∞

∣∣∣ψ∗j ∣∣∣ < ∞.
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Invertibility

Consider again Yt = µ + Ψ(L)εt : under regularity conditions
(known as Invertibility) the polynomial Ψ(L)−1 exists.
We can then write

Ψ(L)−1Yt = Ψ(L)−1µ + εt

and notice that Ψ(L)−1µ = Ψ(1)−1µ. Denote

Π(L) = Ψ(L)−1 where Π(L) = (π0 − π1L− π2L
2...)

and notice that π0 = 1 because ψ0 = 1.
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Then, Ψ(L)−1Yt = Ψ(L)−1µ + εt can be written as

Yt = Π(1)µ +
∞

∑
j=1

πjYt−j + εt

For example, in the MA(1) model, Yt = εt + θεt−1, if |θ| < 1,

Yt = Π(1)µ +
∞

∑
j=1

(−θj )
jYt−j + εt
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Forecasts based on a linear projection
Assume that

I Yt is stationary

I E (Yt) = 0

(if E (Yt) = µ 6= 0, then consider Yt − µ instead)

(linear) forecast of Yt+1 using Yt :

Ŷt+1|t = α
(1)
1 Yt

(linear) forecast of Yt+1 using Yt and Yt−1 :

Ŷt+1|t,t−1 = α
(2)
1 Yt + α

(2)
2 Yt−1

(linear) forecast of Yt+1 using Yt , ...,Yt−m+1 :

Ŷt+1|t,...,t−m+1 = α
(m)
1 Yt + α

(m)
2 Yt−1 + ... + α

(m)
m Yt−m+1
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Which values (
α
(m)
1 , α

(m)
2 , ..., α(m)

m

)′
characterise a linear projection?

Let

Xt = (Yt , ...,Yt−m+1)
′

α =
(

α
(m)
1 , α

(m)
2 , ..., α

(m)
m

)′
then α must meet

E
[(
Yt+1 − α′Xt

)
X ′t
]
= 0′

(i.e., the forecast error Yt+1 − α′Xt is not correlated with Xt)

10/21



Then,

E
(
Yt+1X

′
t

)
− α′E

(
XtX

′
t

)
= 0′

E (XtYt+1)− E
(
XtX

′
t

)
α = 0

α =
[
E
(
XtX

′
t

)]−1
E (XtYt+1)

i.e.

α =


γ0 γ1 ... γm−2 γm−1
γ1 γ0 ... γm−3 γm−2
... ... ... ... ...

γm−2 γm−3 ... γ0 γ1

γm−1 γm−2 ... γ1 γ0


−1

γ1

γ2

...
γm−1
γm


I Notice that α is exactly the parameter that we would use to

predict Y using X in a conditionally gaussian model
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α gives the best linear forecast in MSE sense

Proof: Consider another linear forecast g ′Xt ,

E
[(
Yt+1 − g ′Xt

)2]
= E

[(
Yt+1 − α′Xt + α′Xt − g ′Xt

)2]
= E

[(
Yt+1 − α′Xt

)2]
+2E

[(
Yt+1 − α′Xt

) (
α′Xt − g ′Xt

)]
+E

[(
α′Xt − g ′Xt

)2]
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and notice that E
[
(α′Xt − g ′Xt)

2
]
≥ 0, while

E
[(
Yt+1 − α′Xt

) (
α′Xt − g ′Xt

)]
= 0

because

E
[(
Yt+1 − α′Xt

) (
α′Xt − g ′Xt

)]
= E

[(
Yt+1 − α′Xt

)
(α− g)′ Xt

]
= E

[(
Yt+1 − α′Xt

)
X ′t (α− g)

]
= E

[(
Yt+1 − α′Xt

)
X ′t
]
(α− g)

Thus,

E
[(
Yt+1 − g ′Xt

)2] ≥ E
[(
Yt+1 − α′Xt

)2]

13/21



Of course, in some cases a non-linear forecast may be better.
However, a linear model is usually easier to use, so it is important
that, under regularity conditions (invertibility), a stationary process
may be given a representation linear in Yt .
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Additional definitions for stationary processes: Partial
Autocorrelation Function

For a stationary Yt with E (Yt) = 0, consider the linear projection

Ŷt+1|t,...,t−m+1 = α
(m)
1 Yt + α

(m)
2 Yt−1 + ... + α

(m)
m Yt−m+1

For different values of m,

α
(1)
1 , α

(2)
2 , ..., α

(m)
m

are the first m partial autocorrelations.

The plot of α
(j)
j (against j) is called Partial Autocorrelation

Function.
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Forecasting with stationary processes: examples.

Let {Yt}∞
t=−∞ be a stationary process with

E (Yt) = µ

Cov (Yt ,Yt+j ) = γj

Example 1.
Compute the best linear forecast, Ŷt+1|t,..., assuming that

µ = 10, γ0 = 2, γ1 = 1.2; Yt = 11.

Ŷt+1|t = µ + α
(1)
1 (Yt − µ)

where
α
(1)
1 = [γ0]

−1 γ1

so

α
(1)
1 = (2)−1 1.2 = 0.6

Ŷt+1|t = µ + α
(1)
1 (Yt − µ) = 10 + 0.6× (11− 10) = 10.6
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Example 2.
Compute the best linear forecast, Ŷt+1|t,..., assuming that

µ = 10, γ0 = 2, γ1 = 1.2, γ2 = 0.6;

Yt = 11, Yt−1 = 9

Ŷt+1|t,t−1 = µ + α
(2)
1 (Yt − µ) + α

(2)
2 (Yt−1 − µ)

where (
α
(2)
1

α
(2)
2

)
=

(
γ0 γ1

γ1 γ0

)−1 (
γ1

γ2

)
so (

α
(2)
1

α
(2)
2

)
=

(
2 1.2

1.2 2

)−1 (
1.2
0.6

)
=

(
0.656 25
−0.093 75

)

Ŷt+1|t,t−1
= 10 + 0.656 25× (11− 10)− 0.093 75× (9− 10)

= 10. 75.
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Example 3.
Compute the best linear forecast Ŷt+1|t,... assuming

µ = 10, γ0 = 2, γ1 = 1.2, γ2 = 0.6, γ3 = 0.3;

Yt = 11, Yt−1 = 9, Yt−2 = 9.5

Ŷt+1|t,t−1,t−2 = µ+ α
(3)
1 (Yt − µ)+ α

(3)
2 (Yt−1 − µ)+ α

(3)
3 (Yt−9 − µ)

where  α
(3)
1

α
(3)
2

α
(3)
3

 =

 γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

−1 γ1

γ2

γ3


Since  2 1.2 0.6

1.2 2 1.2
0.6 1.2 2

−1 1.2
0.6
0.3

 =

 0.657 64
−0.103 45
0.01477 8


then

Ŷt+1|t,t−1,t−2 = 10 + 0.657 64× (11− 10)

− 0.103 45× (9− 10) + 0.01477 8× (9.5− 10) = 10. 754.
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Forecasting with stationary processes,
further comments

In practice, we do not know the autocovariances γj , so to use this
formula we must replace them with estimates.

Nonparametric: Proceeding as we did for the inference on the
mean, we could use a non-parametric method.
Noticing that in stationary and ergodic procesess the contribution
of observations that are very far in the past to the forecast is very

small, and the autocovariances |γj | and the weights
∣∣∣α(T )

j

∣∣∣ drop

towards 0 as j → ∞, we may for example replace γj by its sample
moment when j ≤ M and by 0 when j > M, for example for
M =

√
T (quite like when we used the rectangular kernel to

estimate the long run matrix).

19/21



Parametric: When we have a parametric model, we may use it to
compute all the autocovariances.
For example, if we know that Yt is generated by the AR(1) model
Yt = φY t − 1 + εt , for independent, identically distributed εt ,
with E (εt) = 0, Var (εt) = σ2, and |φ| < 1 then we can compute
all the autocovariances, and find
γ0 =

σ2

(1−φ2)
, γ1 = φ σ2

(1−φ2)
, ... γj = φj σ2

(1−φ2)
(for j ≥ 0),

and therefore ρj = φj (for j ≥ 0).

Thus, if we have an estimate φ̂, we can estimate ρ̂j = φ̂j
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I advantage: we use all the autocovariances, not only a fraction
of them. So, we do not incurr in the bias due to setting to 0
an autocovariance that is close to 0 but not exactly equal to it.

I advantage: we estimate just a small number of parameters (in
the example above only one, that is, φ), as opposed to many
autocovariances. The variance of the estimate of all the
autocovariances may be much smaller.

I disadvantage: we may have inconsistent estimates of the
autocovariances if we specified the wrong model for Yt

The parametric approach seems to be more frequent in practice.
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