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Chapter 4, ARMA Models 

Topics: White noise, MA(1) model, MA(q) 

model, MA(∞) model, AR(1) model, AR(2) 

model, AR(p) model, ARMA(1,1) model, 

ARMA(p,q) model. 

Sum of ARMA processes. 

 



We said we are interested in the  j of the
representation

Y t   
j0



 j tj

for the impulse response analysis and for
forecasting (assuming  tj is observable, of
course).
However, in general we don’t know the  j,
and we can’t hope to estimate an infinite
number of parameters, so we have to propose
models that are a function of a very little
number of parameters.



The first and most simple model is the

White Noise
tt

 is white noise if

Et  0 t

Et
2  2 t

Et  0 t, such that   t

So, if Yt  t,

j  0 j  0

 j  0 j  0

j
j
 0 j  0

i.e. the process has no memory.



If t is w.n.0,2, and Yt  t,

 Yt may be independent, but needs
not be;

 Yt may be strictly stationary, but
needs not be;

 Yt is covariance stationary;

If t is w.n.0,2, and
Yt   

j0


jtj,

 Yt is stationary if
j0


j

2  

 Yt is stationary and ergodic (for the
mean) if

j0


|j |  



MA1

Let t w.n.0,2, then

Yt    t  t1

is MA1.

We can check stationarity noticing that 0  1,
1  , so

j0


 j

2  1  2  .

Otherwise, we can check that the first two
moments do not depend on time.

Mean:

EY t   E   t   t1 

 E  E t   E t1 

   0  0  



Autocovariances:

0  E Y t  
2

 E  t   t1 
2

 E t
2  2 t1

2  2 t t1 

 E t
2   2E t1

2   2E t t1 

 2  22  0  1  2 2

1  EY t  Y t1  

 E t   t1  t1   t2 

 E t t1   t1
2   t t2  2 t1 t2 

 0  2  0  0  2

 j2  0

 So, if we want to check for stationarity by
checking the moments, we verify

EY t    for any t

CovY t, Y tj    j for any t

and, in particular,

0  1  2 2, 1  2,  j  0 for j  2.



Autocorrelations:

1  2

1  2 2
 

1  2

 j2  0

Partial autocorrelations: using the definition it
is possible to compute

 j
j
 

 j

1  2 . . .2j 
 

 j


i0

j
2i



 Note: the same autocorrelation structure is
generated by two values of . Consider

  1 and   2  1/1:

when   1, 1 |1
 1

1  1
2

;

when   2, 1 |2
 2

1  2
2

:

Replacing 2  1/1 in 1 |2
,

1 |2


1/1

1  1/1
2

1

2

1
2

1/1

1  1/1
2

 1

1
2  1

 1 |1

i.e. 1 and 2 2  1/1  generate two equally
valid representations of the same process.



Invertibility
Assume   1, |1 |  1, and set   0, then
rewrite Y t   t   t1 as

 t  Y t   t1

and notice that  t1  Y t1   t2 so, replacing
in the formula for  t,

 t  Y t  Y t1   t2 

 Y t  Y t1  2 t2

In the same way,  t2  Y t2   t3 so

 t  Y t  Y t1  2Y t2   t3 

 Y t  Y t1  2Y t2  3 t3

Iterating n times,

 t 
j0

n

 jY tj  
n1 tn1

and, for n  , since ||  1, then n1  0,
so

 t 
j0



 jY tj, i.e. Y t 
j1



 jY tj   t

So for an invertible MA(1) process, we can compute  t

provided that we know Y t, . . . , Y and .



An alternative way to obtain this
representation:
Rewrite  t  Y t   t1 as

 t  Y t  L t

using the lag operator. Then,

 t  L t  Y t

1  L t  Y t

so, for ||  1, then  t  1  L1Y t, i.e.

 t  1
1  L

Y t.

Since

1
1  L


j0



 jL j,

then  t 
j0



 jY tj,

i.e. Y t 
j1



 jY tj   t



However, if   2, |2 |  1, then n1  0 as
n  , so the representation is not invertible if
  2.

Finally, if 1  1, then 1/1  1, and in both the
cases ||  1 is not met. So, for   1 no
invertible representation is avalailable.



MAq
Let  t w.n.0,2 , then

Y t     t  1 t1 . . .q tq

is MAq.

Again, it is easy to verify that this MA(q) is
stationary, as


j0



 j
2  1  1

2 . . .q
2  .

Mean:

EY t   E   t  1 t1 . . .q tq   

Autocovariances:

0  E  t  1 t1 . . .q tq 
2

 2  1
22 . . .q

22 

 1  1
2 . . .q

2 2

(using E tj tk  0 for k  j).



 jq  E t  1 t1 . . .q tq 

  tj  1 t1j . . .q tqj 

 E j tj
2   j11 tj1

2   j22 tj2
2 . . .qqj tq

2

  j   j11   j22 . . .  qjq 2

 jq  0

Autocorrelations:
the autocorrelations drop to 0 after q lags

Impulse Response Function:
the impulse response are  j   j, j  q, and
drop to 0 after q lags.



Invertibility
Set   0; recall

Y t  1  1L . . .qLq  t

and factor

1  1L . . .qLq 

 1  1L1  2L. . . 1  qL

in the MA1 we asked that |1 |  1: in the
same way here we have to ask that |1 |  1,

|2 |  1,...,|q |  1.
This is sometimes stated as asking that the
roots of the equation in z

1  1z . . .qzq   0

lie outside the unit circle.

If the MA(q) process is invertible, we can write

 t  1  1L . . .qLq 1Y t

and then derive 0, 1, 2, ... such that

 t  
j0



 jY tj, i.e. Y t  
j1



 jY tj   t



MA
Let  t w.n.0,2 , then

Y t     t  1 t1 . . .  
j0



 j tj

is MA.
Under the additional assumption that


j0



| j |  ,

we can derive the moments replacing  j by  j

in a MAq and taking the limit for q  .

Mean:

EY t   EY t     t  1 t1 . . .   

Autocovariances:

0 
k0



k
22

 j 
k0



kkj2



AR1
Let  t w.n.0,2 , then

Y t  c  Y t1   t

is AR1.
Assume further that

||  1.

Since Y t1  c  Y t2   t1,

Y t  c  c  Y t2   t1    t

 1  c  2Y t2   t1   t

Next, replace Y t2  c  Y t3   t2

Y t  1  c  2c  Y t3   t2 

  t1   t

 1    2 c  3Y t3

 2 t2   t1   t



Iterating n times,

Y t 
j0

n

jc  n1Y tn1 
j0

n

j tj;

as n  , since ||  1, then n1  0 and


j0

n
j  1

1
, so

Y t  1
1  

c 
j0



j tj

So an AR1 with ||  1 may be written as a
MA(): notice that the condition

j0


| j |  

is met, because  j  j, so


j0


| j |   j0


|| j  1

1||
(then it also follows

that the process is stationary and ergodic for
the mean).



This can also be obtained rewriting Y t as

Y t  c  LY t   t

using the lag operator, and then

1  LY t  c   t

Since ||  1,

Y t  1  L1c  1  L1 t

and since

1
1  L


j0



 jL j,

so

Y t 
j0



 jc 
j0



 j tj

The representation

Y t  1
1  

c 
j0



 j tj

then follows.



Mean:

EY t   1
1  

c  0  0  0 . . . 1
1  

c

(so set   1
1

c);

Autocovariances:

using the formula for the MA process,

0 
k0



k
22 

k0



2k2  1
1  2

2

j 
k0



kkj2 
k0



kkj2


k0



2k j2 
 j

1  2
2

Autocorrelations

 j 
 j

0
 j

Partial autocorrelations

1
1

 

 j2
j

 0

Impulse Response Function

 j  j



Upon knowing that the process is stationary,
we could derive the mean and autocovariances
using that property:
Mean:

EY t   Ec  Y t1   t 

 c  EY t1   E t 

using stationarity, EY t   , EY t1   , so

  c  

and then

  c
1  

Autocovariances:
Replacing c  1  , rewrite Y t as

Y t      Y t1   t

Y t    Y t1     t

0  EY t  
2  EY t1     t 

2

 2EY t1  
2  E t

2 

 2EY t1   t 

 20  2



solving for 0,

0  2

1  2
.

 j1  EY t  Y tj  

 EY t1     t Y tj  

 EY t1  Y tj  

 E tY tj  

  j1

so

 j1 
j

1  2
2.



ARp
Let  t w.n.0,2 , then

Y t  c  1Y t1 . . .pY tp   t

is ARp.
How can we check for stationarity? Factoring

1  1L . . .pLp   1  1L. . . 1  pL

stationarity follows if | j |  1 for all j.
Another way to state this condition is check
that the solutions of the equation in z

1  1z . . .pzp   0

are all outside the unit circle.

Given stationarity,
Mean:

EY t   Ec  1Y t1 . . .pY tp   t 

 c  1EY t1  . . .pEY tp   E t 

  c  1 . . .p

  c
1  1 . . .p



Autocovariances

0  EY t  
2

 E1Y t1   . . .pY tp     t 

 Y t  

 E1Y t1  Y t   . . .

pY tp  Y t     tY t  

 11 . . . .pp  2

 j1  EY t  Y tj  

 E1Y t1   . . .pY tp     t 

 Y tj  

 E1Y t1  Y tj   . . .

pY tp  Y tj     tY tj  

 1 j1 . . . .p jp

This is a linear system in  j, j  0, . . . , p.



Autocorrelations
(Yule Walker equations)

 j1  1 j1 . . . .p jp

Partial autocorrelations AR(p)

1
1

 1

 j
j
 0 (for 1  j  p)

p
p

 p

 jp
j

 0



For example, AR2,

0  11  22  2

1  10  21

2  11  20

and notice that 1  1, so replacing 1 and
2,

1 
1

1  2
0, 2 

1
2

1  2
 2 0

0 
1  2 

1  2  1  2 
2  1

2
2

and

1  1  21

2  11  2

so

1 
1

1  2

2 
1

2  2  2
2

1  2
.



 AR(2) If the roots of 1  1z  2z2  0 are
complex, then the autocorrelations show a
cyclical dynamics. This is very important
because both economics and natural
phenomena often display cyclical dynamics.

Example: 1  0.75, 2  0.45.

Solutions of 1  0.75z  0.45z2  0 are
z1,2  0. 83333  1. 236i.

Note that |z i |  0. 833332  1. 2362  1. 4907 so this is
process is stationary.

Autocorrelation function:
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1  0.75, 2  0.45
 AR(p). If some roots of 1  1z . . .pzp  0 are
complex, then the autocorrelations show cyclical
dynamics.



Impulse Response Function:
in general we can compute the IRF inverting
LY t   t

Y t  L1 t

(here we used stationarity) so

L1  L

i.e.

1  LL

1  1  1L . . .pLp 

 1  1L  2L2  3L3. . . 

1  1  1L  1L  2L2  11L2  2L2

 3L3  21L3  12L3  3L3 . . . .



solve this for the various powers of L :

L0 : 1  1

L :  1  1  0, so 1  1

L2 :  2  11  2  0,

so 2  11  2

L3 :  3  21  12  3  0,

so 3  3  21  12

In the AR(2) case, then,

1  1,

 j2   j11  2 j2

so if for example 1  0.75, 2  0.45,

1  0.75

2  0.75  0.75  0.45  1  0. 1125

3  0.1125  0.75  0.45  0.75  0.25313

4  0.25313  0. 75  0.45  0.1125  0.24047



ARMA(p, q)
Let  t w.n.0,2 , then

Y t  c  1Y t1 . . .pY tp

  t  1 t1 . . .q tq

is ARMAp, q.

Stationarity of the whole ARMA(p, q) depends
on the autoregressive part only: we have to
check if the roots of

1  1z . . .pzp  0

are all outside the unit circle.

For invertibility, we require that the roots of

1  1z . . .qzq  0

are outside the unit circle.



Using the lag operator, the ARMA(p, q) is

1  1L . . .pLp Y t  1  1L . . .qLq  t

 Using stationarity, we can rewrite the
model as a MA:

Y t  1  1L . . .pLp 11  1L . . .qLq  t


j0



 j tj

 Using invertibility, we can rewrite the
model as a AR

 t  1  1L . . .qLq 11  1L . . .pLp Y t

 t  
j0



 jY tj, i.e. Y t  
j1



 jY tj   t



Given stationarity,
Mean:

EY t   Ec  1Y t1 . . .pY tp

 t  1 t1 . . .q tq 

 c  1 . . .p  0 . . .0

  c  1 . . .p

  c
1  1 . . .p

Autocovariances
The autocovariances are a combination
between those of an AR(p) and a MA(q), so for
j  q,

 j  1 j1 . . .p jp



For example, ARMA(1, 1),
Y t  c  Y t1   t   t1 (||  1):
first notice that

EY t   t 

 EY t1     t   t1  t 

 0  2  0  2

EY t   t1 

 EY t1     t   t1  t1 

 2  0  2    2

so

0  EY t1     t   t1 Y t  

 EY t1  Y t  

 E tY t    E t1Y t  

 1  2    2

 1  21    2 

1  EY t  Y t1  

 EY t1  Y t1  

 E tY t1    E t1Y t1  

 0  0  2  0  2



so

0  0  2   21    2 

 20  2  1    2 


21  2  2 

1  2


21  2  2  2  2 

1  2

 2 1 
  2

1  2

1  2    
  2

1  2

and

 j2   j1



The autocorrelations can be derived in the
same way: for the generic ARMA(p, q), for
j  q,

 j  1 j1 . . .p jp

In particular, for the ARMA(1,1),

1 
  1  

1  2  2

 j2   j1

Impulse response function
Given stationarity, inverting LY t  L t

Y t  L1L t

L1L  L

L  LL

1  1L . . .qLq 

 1  1L . . . . .pLp 

 1  1L  2L2  3L3 . . . 



1  1L  2L2  3L3 . . .qLq

 1  1L  1L  2L2  11L2  2L2

 3L3  21L3  12L3  3L3. . .

solve this for the various powers of L :

L0 : 1  1

L :  1  1  1, so 1  1  1

L2 :  2  11  2  2,

so 2  2  11  2

L3 :  3  21  12  3  3,

so 3  3  3  21  12

In the ARMA(1,1) case, then,

1    ,

 j2   j1 i.e.  j2    j1



The ARMA(1,1) could also be decomposed in impulse
responses by looking at

Y t  Y t1   t where  t   t   t1

(and   0 to keep notation short). Then,

Y t 
j0



 j tj 
j0



 j tj   tj1 


j0



 j tj  
j0



 j tj1


j0



 j tj  
l1



 l1 tl

  t 
j1



 j1 tj  
j1



 j1 tj

  t    
j1



 j1 tj



Common Factors

in ARMA modelling, it may be that the same factor
appears both in L and of L: in this case, the
ARMA(p, q) process cannot be distinguished, on the
basis of the autocorrelation structure (or from the
weights in the MA() representation), from an
ARMA(p  1, q  1) process.

In this case, it is sometimes also said that the model
ARMA(p, q) is overparametrised.

The ARMA(p, q) model may be simplified (and indeed
it may desirable to do so, especially if the parameters
1, . . . ,p and 1, . . . ,q have to be estimated).



Example:

Y t  1. 2Y t1  0. 35Y t2   t  0.7 t1

is

Y t  1.2Y t1  0. 35Y t2   t  0. 7 t1

1  1. 2L  0. 35L2 Y t  1  0.7L t

1  0. 7L1  0. 5LY t  1  0.7L t

so, simplifying 1  0.7L, the process has the same
autocorrelation structure (and the same weights in the
MA() representation) of

1  0. 5LY t   t

i.e.

Y t  0. 5Y t1   t



A final comment on stationary and
invertible ARMA.
We already saw that for a stationary ARMA(p, q), it is
also possible to give a MA() representation; in the
same way, it is also possible to give an AR()
representation (indeed, this is a proper definition of
"invertibility"). All these models have the same
autocovariances / autocorrelation structures, and are
therefore indistinguishable.

We can choose the representation that is more
convenient for our purpose: for example, we may like
the MA() if we are interested in the impulse
rensponse function, the AR() if we want to compute
 t given observations on Y t

 (and assuming we

know the parameters), or we may prefer the
ARMA(p, q) if we are interested in estimating the
parameters.



Stationary and ergodic ARMA.

Let

Y t  1Y t1 . . .pY tp   t  1 t1 . . .q tq

for any t and assume also that Y t is stationary and

 t is independently and identically distributed with
E t   0 and E t

2   2 (i.i.d.0,2 ).

Then Y t stationary and ergodic.



Sum of ARMA processes
Sometimes processes are obtained as sums of other
processes, for example we may be looking at the
dynamics of an aggregate process composed of
individual processes.

Example:

Y t  X t  vt

where

X t  u t  u t1

and u t is w.n.0,u
2 , vt is w.n.0,v

2 ,
Eu tv   0 for all t,.

What are the properties of Y t?



EY t   0 for all t

0  EX t  vt 
2  EX t

2   Evt
2   2EX tvt 

 1  2 u
2  v

2

1  EX t  vt X t1  vt1 

 EX tX t1   EvtX t1 

 EX tvt1   Evtvt1 

 u
2

 j2  0

So Y t is MA1, i.e., we can represent it as

Y t   t   t1

where  t is wn0,2 .



Check:

Given , u
2 and v

2, we want to characterise  and
2. From 1 and 2 compute

1 
u

2

1  2 u
2  v

2
.

Since in a MA1


1  2

 1

we can derive  solving


1  2


u

2

1  2 u
2  v

2

and then we can derive 2, for example from
1  2, so

2  

u

2.

Notice that  t is not u t  vt.



In general, consider

Y t  X t  W t

where X t and W t are (zero mean) stationary
processes such that X t and W are not
correlated at any t,, then

EY tY tj   EX tX tj   EW tW tj 

i.e.  j
Y   j

X   j
W

Sum of two MA processes
If X t is MAq1  and W t is MAq2 , then Y t is
MAmaxq1, q2 



Sum of two AR(1) processes

Y t  X t  W t where

1  LX t  u t, 1  LW t  vt (  )

then

1  L1  LX t  1  Lu t

1  L1  LW t  1  Lvt

1  L1  LX t  W t 

 1  Lu t  1  Lvt

so Y t is ARMA(2,1).

Note: (If   , Y t is AR(1))



Check:

1  Lu t  1  Lv t

is the sum of two MA(1), so this is also an MA(1)

 t   t1

with


1  2


u

2  v
2

1  2 u
2  1  2 v

2

and

2 
u

2  v
2


.

Finally, recalling Y t  X t  W t ,

1    L  L2 X t  W t 

 1    L  L2 Y t

 1  1L  2L2 Y t

simply setting

1    , 2  



Sum of two ARMA processes

If X t is ARMAp1, q1 ,
W t is ARMAp2, q2 ,
then Y t is ARMAp, q with

p  p1  p2

and

q  maxp1  q2, p2  q1 



Signal extraction.
Sometimes the process that we observe is a sum
because it is the sum of the process that we are
interested in, and of a disturbance. Suppose we are
interested in X t, but we can only observe Y t

Y t  X t  v t

where v t is a disturbance.

For example, X t may be the "core inflation" and "v t"
is a disturbance.



Does averaging reveal a signal?
One common practise is to measure the inflation
taking the average over some months: for example,
with monthly data, this is done taking the inflation
rate over the last year.

Suppose v t is wn0,2 , and consider

1
k

j0

k1

v tj

(as in average of quarterly or monthly data to a
yearly basis): this is now a MA(k).

Therefore, averaging induced
dependendence where there was none.

In the same way, 1
k 

j0

k1

X tj also increases the

dependence of X t.

So, the "new" process will in general have more
dependence (when we look at monthly or
quarterly series), but this has been introduced
artificially, and it may have nothing to do with the
core inflation.



Consider again the example of a MA(1)wn
process. As we observe Y t, we can estimate  and
2. However (without an identification
assumption), we cannot estimate , u

2 and v
2 . In

other words, Y t contains less information than X t

and v t.



Forecasting with ARMA
models

Recall that the best linear forecast of Y t1 using Y t

, . . . , Y tm1

Y t1|t,...,tm1  1

mY t  2
mY t1 . . .m

mY tm1

is obtained setting

 

0 1 . . . m2 m1

1 0 . . . m3 m2

. . . . . . . . . . . . . . .

m2 m3 . . . 0 1

m1 m2 . . . 1 0

1

1

2

. . .

m1

m

This may be heavy to compute, as, when m is large, it
requires the inversion of an m  m matrix.

If we know that Y t t
 is a stationary invertible

ARMA process, we can use this information to
simplify this forecast.



 EXAMPLE: AR(p).
If Y t t

 is AR(p) and m  p,

Y t1|t,...,tm1  1Y t  2Y t1 . . .pY tp1

ie, using the parameters of the AR(p), which means
that we do not need to invert an m  m matrix.

 EXAMPLE: MA(1),
approximation to the optimal

forecast.
Let


Y t1|t be the forecast of Y t1 if  t was observable.

Then

Y t1|t   t.

If the process is invertible,

 t  1
1  L

Y t 
j0



 jY tj

so, if we had the infinite past of Y t, then  t would be
observable, i.e.,


Y t1|t,t1,....  

j0



 jY tj



Of course, we do not have an infinite number of past
values for Y t. However, if we assume that

0  0

then we can compute

 1  Y1,


 2  Y2  Y1,...

(the notation

 t means that this was computed using

the assumption 0  0). Iterating, we can compute

 t

using Y1, .., Y t, so

Y t1|t,...,1,00 


Y t1|


 t  


 t

This is an approximation to the optimal forecast
(because it depends on 0  0, which is not usually
true), but one that is worth considering, because it
means that we do not need to invert a t  t matrix.

What is the error that we make if we assume 0  0
when it is not? Setting 0  0 is equivalent to setting
Y1  Y2 . . . 0. As these have weights  t1,

 t2 ... in  t 
j0



 jY tj, then  t1  0 very fast

as t is large and ||  1, and the approximation error is
therefore little.



 EXAMPLE: ARMA(p, q), approximation to the
optimal forecast.

The approximation to the optimal forecast for an
ARMA(p, q) may be computed in the same way.

 In fact, in practice the parameters 1, ..., p, 1, ..., q,
are not known, and must be estimated. Many
estimation algorithms also generate the series


 1, ...,


 T

as part of the computation.



Forecasting with ARMA models
Example 1. AR(p)

Compute the best linear forecast,

Y t1|t,..., assuming

Y t  2  0.2Y t1  0.4Y t2   t where  t is white noise

Y t  5, Y t1  2, Y t2  1, Y t3  1

Y t1|t,t1,t2,t3  2  0.2  5  0. 4  2  3.8

Notice that only up to p  2 observations are used

for the forecast,

Y t1|t,t1,t2,t3,... 


Y t1|t,t1.

Example 2. MA(q) part 1
Compute an approximation to the best linear
forecast of Y t1, assuming

Y t  1   t  0.5 t1 where  t is white noise

 t  0.77930.

Then

Y t1|


 t    


 t  1  0.5  0.779 30  1. 38965



Example 3. MA(q) part 2
Compute an approximation to the best linear
forecast of Y t1, assuming

Y t  1   t  0.5 t1 where  t is white noise

and

t 10 9 8 7 6 5 4 3 2 1

y t 2.0 1.5 0.5 0.0 1.5 1.0 0.5 0.0 1.0 2.0

Setting

 0  0, and focussing on t  10, then


 1  Y1    1

 2  Y2    Y1    0  0.5  1  0.5, . . .


 t  

j0

t

 jY tj    0.779 30,


Y t1|t,t1,...,


 00    


 t  1  0.5  0. 77930  1.38965

Note that the "exact", best linear forecast,

Y t1|t,t1,...,1, is


Y t1|t,t1,...,1

   1
t
Y t    2

t
Y t1   . . . t

t
Y1  

 1  0.5  1  0.25  0.5. . . . .0.00074  1

 1. 38984



Three ways to check
stationarity,
a summary

 Check moments

EY t    (i.e., constant) for any t

EY t  Y tj    j (i.e., constant) for any t

(it may change with j)

 Check MA representation
A sufficient condition is checking if we can write

Y t   
j0



 j tj, where 
j0



 j
2  

and  t is white noise

 Check roots of AR polynomial
for any ARMA

Y t  c  1Y t1 . . .pY tp   t . . .q tq

where  t is white noise, sufficient condition is that
the roots z1, . . . , zp of

1  1z . . .pzp  0

are all outside of the unit circle.


