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Topics: Brownian motion, Functional central
limit theorem, Limit properties of the
sample mean of a random walk, Limit
properties of the OLS estimate of the
autoregressive parameter in a random walk,
Limit properties of the t statistic associated
to the OLS estimate of the autoregressive
parameter in a random walk, The Dickey
Fuller test for a unit root in a random walk:
Case 1, The Dickey Fuller test for a unit root
in a random walk: Case 2, The Dickey Fuller
test for a unit root in a random walk with
drift: Case 3, The Dickey Fuller test for a unit
root in a random walk with drift: Case 4,
Choice of the unit root test, Augmented
Dickey Fuller test for a unit root when the
disturbances have a stationary AR(p)
structure: Case 1, Case 2, Case 3, Case 4,
Choice of the order p in the ADF test,
Phillips-Perron tests for a unit root in a
generic (1) process



We saw that
Yi =a+pYe1+é&, eeW.n.(0,6%), whent > 0
Yt = Owhen't <0

has different properties depending on whether
p=1lor|p| <1l

We want a test to distinguish between the two
cases.

Introduce

Brownian motion (heuristic)

A Browian motion W(.) is a continuous time
stochastic process that associates to each date
t € [0,1] a value W(t) such that

* W) =0

% for any date 0 < t; < te <...< tk < 1, the
differences W(t2) — W(t1), W(t3) — W(t>2), ...,
W(tk) — W(tk-1) are normally independently
distributed random variables such that, for s,
O0<t<s<],

W(s) - W(t) ~ N(O,s—t)
% W(t) is continous with probability 1



Introduce the operator [.]", such that [X]" returns
the integer part of a number X. Introduce
[rT]*

X1(r) = % Z gy, €1 1.1.d.(0,062), forr € [0,1]
t=1

Functional Central Limit Theorem
(heuristic)

JTX1()lo -4 W(.)
(here and after, these limits are as T — o)

(The FCLT links functions on [0, 1]: we should
define what convergence in distribution means,
there. It turns out that the nature of the
convergence, and even the notation, have to be
generalised; however, we do not discuss this).

The Central Limit Theorem,
T
ﬁ% ;& —d N(O,Gz)

is a byproduct of the FCLT:
JTX:(D)lo »q W(L).
(just setr = 1in the FCLT)



Now, we can see what happens to
the sample mean of an |(1) process
Yi = Y1 + 6, €i.i.d. (0,6%), whent > 0

Y = Owhent <0
We can express Yi,..., Yt as a function of Xt(r):

/
OforO<r < UT
Y /TforUT <r < 2/T
Yo/Tfor 2T <r < 3T

X1(.) =<
YdTfort/T <r < (t+ 1)/T

Y1ro/Ttor (T-1D)/T<r<1
Y1/Tforr =1

\
X1(.) is a step function:
for /T <r < (t+21)/T, X7(.) = YT.



For any constant c,

(t+1)/T
j cdr = gr|EVT = ¢ L.
uT T

In the same way, we can compute

(t+1)/T
j X(r)dr = YT « UT = Y/T2.

T
Then,

YolT? +.. . 4Y T2 o+ YT 1/T?
_jllTXT(r)err j(Hl)/TXT(r)err +IT/T X(r)dr
1e.

-
1

% ZYt_l = j XT(r)dr
t=1 0

From the FCLT we know that
JTXt()lo >4 W(.),

SO

i
1 _ [ S [
JT 3 3 Vel = [ ITXr0lock —a [ W



What is I ; W(r)dr? It is a random variable, obtained

by reweighting and averaging normally
distributed random variables.

In particular, _[;W(r)dr is a N(0, 1/3).

We can now conclude

which is N(0, 1/352).

Since

as well.



A test to check if Y; is a random walk:
Estimate p via OLS in

Yt = th_]_-I-St, Et 1.1.d. (0,62), whent > 0
Y = Owhent <0

When p = 1,
p = ZtTZZ ¥ _ Zthz(Yt—l +&t)Yia
ZtT=2 i1 ZtT: , Y2,
— 14 ZtTZZ EtYi-1
X Y
In order to find out more about ZIT: Y2,
i OforO<r <UT
Y{T? for UT <r < 2/T
Y3/T2 for 2/T < r < 3/T
X7(.)% = <

YEIT2 fort/T <r < (t+1)/T

Y2 /T2 for (T-D/T<r<1
Y2/T2 forr = 1




Xt(.)%is a step function: for t/T <r < (t+ 1)/T,
X1(.)% = Y3T?, so
J-(t+1)/T

X1(r)%dr = YAT2 %« UT = YATS.
t/T

Then,
Y3/T3 o YRITS oY TS

_ UT 2 (t+1)/T 2
- jO/TXT(r) dr +...+It/T X1(r)%dr +...

T/T 2
+| gy XT(0)

1.e.

;
1

% Y YE = I X+(r)2dr
t=1 0

From the FCLT, we can immediately derive
TX7(.)?l62 -4 W(.)?,

(W(r)? is a well defined random variable, because
W(r)?/r is a ¥2) so

:
1 > 12 _ (* 21 2dr _, 1 2
T4 tzlYt_lla — jOTxT(r) Jo2dr —q jOW(r) dr,

sO we can conclude

-
1 > _ (* 2dr . 2 1 2
= ;Yt_l = jo TXr(r)%dr >4 o jo W(r)2dr.



In order to find out more about Zthg ctYi1,
consider

Ytz = (Yt_]_ + 8t)2 = Ytz_l + 8t2 + 2Yt_18t
SO, rearranging terms,
Y - Y2, —&f = 2Yr 161

Summing overt, t=1,...,T,

T T T T
D Yi-D Y- e =2 Ve
t=1 t=1 t=1 t=1
and
T T
D YE-DYY
t=1 t=1

= (V2 + Y3+ +Y2 +...+Y2 +Y2)
— Y3+ Y3+, Y2+ Y2, +Y2 )

because Yo = 0, so

T T
ZYt_]_St = %(Y—zr— ZS%)



Normalising by T,

T T
1 _1({ 1\2_ 1 2
T;Yt—lgt = §<TYT_ TZ&).

1

Since
%YZ = TX7(1)? >4 02W(1)2
(by the CLT), and

T
$ 2ot -0l
t=1
(by the law of large numbers) then
T

1 1 2

+ t_Zl Y16t —>d §GZ<W(1) -1).
Summarising,

rp-1) - Tt | FOMDT-1)

T —d 1
DI G o W(r)%dr



% p is still consistent (p —»p 1)
% indeed, p is "superconsistent" (see the rate T

rather then the usual J/T)

L(w@)z-1) . . .
* z (MD™1) is not a normal distribution

1
W(r)4d
J  wery2en

% in small samples (and &;Nid(0,52)), p
underestimates 1 (in a probabilistic sense)

* 2 (W™1) is skewed to the left

1
W(r)?d
J  wery2en

Testing
Ho : {p =1} vsHa : {|p| < 1}
in
Yi = pYe1 + &, € i.i.d.(0,06%) whent > 0
Yt = Owhent <0

the 5% critical value for the T(p — 1) statistic is
-8.1.



t —statistic:

t=2
When |p| = 1,
rewrite
i 1(p-p)
Op
Look at T/G\ﬁ first.
again,

T
~ ~ 2
P —p p,S0S* = ﬁ tz:;(Yt —PYe1)” —p 0%
Since we already saw that
T
1
% > Y2, >4 02 IO W(r)?dr,
t=2

then



= ol _ 1
GZJ;W(r)Zdr I;W(r)zdr
and TG ; 1

-
‘/ | ; W(r)?dr
As for the numerator,
3 (W2 - 1)
jcl) W(r)?dr

T(p—1) -4

summarising,
_Te-1  z(WD°-1)

t ,
Toy oW )Zr




% +(W(1)*-1)

‘/ j ! W(r)?dr
0
skewed to the left.

Testing Ho : {p = 1} vs. Ha : {|p] < 1} withat
statistic using a 5% significance level, the critical
value is —1.95.

is not normally distributed; it is

Compare with the case [p| < 1:

P —p P
ng _ S? N c? _ 1_¢2
p 1 T P 52
T thz Ytz—l 1_¢2
SO
T (D —
t = ‘/_(p/\ P) t Ly N(O.1).

«/TGp

Then testing Ho : {p = ¢} vs. Ha : {p < ¢} (when
|#] < 1) with a t statistic, with a 5% significance
level, the critical value is —1. 65.



Which unit root test?

Recall the model
Yy = pYe1 + &, gi.i.d. (0,6%) whent > 0
Yi = 0whent <0

and p =1or|p| < 1,

let p be the OLS estimate of p:

since p —»p p, we can use the T(p — 1) or the t
statistic to test for a unit root testing Ho : {p = 1}

vs Ha @ {|p| < 1}.

However, when |p| < 1, so far we only considered
processes Y; that have E(Y:) = 0. How about
processes that are mean reverting and yet the
mean to which they revert is not zero? Processes of
this kind would be generated by

Yi =a+pYr1+erwitha # 0, |p| < 1
(¢1i.i.d.(0,02)).
If this is the true model and we omit ¢, estimating
Zthz Yot
Zthz Yea

consistent estimate of p: however, p converges in
probability to a number smaller than one, so we
can still rely on the T(p — 1) or the t statistics to
effectively test for a unit root.

D = instead, then p is no longer a



"Case 1"
Estimate p via OLS in

Yi = pYira+ &t
assuming ¢t i.i.d. (0,02).
When p =1,
W(1)° -1 L (w@)® -1
T(ﬁ_l)_’d 2< ()2 > t >g 2<1() >
o W(r)2dr ‘/IOW(r)Zdr
X Test:

TestHo : {p =1} vs.Ha : {|p| < 1} withat
statistic (critical value is —1.95 at 5% significance
level) (can also use the T(p — 1) statistic, the 5%
critical value is —8.1).



"Case 2"

Estimate a, p via OLS in
Yi = a+ pYi1 + &t
assuming & i.i.d.(0,02).
Here p is a consistent estimate of p regardless of «
and p.

When p = 1, in order to have Y; as a random walk
(i.e., no linear trend) we also need a = 0: we take it
into account when computing the limit

distribution of T(p — 1) and of the t statistic (i_l) :

°p

Whena =0, p = 1
L (W(1)%2-1) - W) | ;W(r)dr

j;W(r)zdr - (j;W(r)dr>2
L (W(1)%2-1) - WD) | ;W(r)dr

\/I;W(r)zdr — (j(l)W(r)dr>2

T(p—1) —d

t —¢g




¥ the limit distributions of T(p — 1) and of t when
o = 0 are not normal; they are also even more
asymmetric than in Case 1

*the limit distribution of /T @ when o = 0is not
normal

W Test:

TestHo : {p =1} vs.Ha : {|p| < 1} with at
statistic (critical value is —2.86 at 5% significance
level) (can use the T(p — 1) statistic, the 5% critical
value would be —14. 1) (the limit distributions of
the t and of the T(p — 1) statistics are computed
under the assumption a = 0).

Joint test, Ho {a =0,p= 1} VS
Ha : {a +#0&/or p # 1} (the F test statistic

associated to this test does not converge to
1/2 y5: the 5% critical value is 4.59, as opposed to
2.99).



Which test then?

If Y; does not have a unit root and E(Y;) # O, in
Case 1 we overestimate p (in a probabilistic sense)
a bit: the test will still be useful to detect a unit
root, but it may have less power than a test in
which a consistent estimate of p is used.

On the other hand, if If Y; does not have a unit root
and E(Y;) = O, then the two estimates of p (using
Case 2 or Case 1) have the same limit distribution:
however, the critical value for case 2 is smaller
(—2.86 instead of —1.95), so in a finite sample there
will be a higher proportion of Type 2 errors when
using Case 2.

Finally, also notice that the t test has "one-sided"
alternative, as opposed to the "two-sided"
alternatives in the joint test in Case 2: one-sided
alternative use more information (in this case, the
knowledge that p is not bigger than 1) and this
pays off because it gives more power.

The choice between the Case 1 and the Case 2
model then depends on how confident we can be
of a = 0if |p| < 1: if we have no reasons to expect
a = 01if |p| < 1, Case 2 should be preferred.



What if there is a linear trend?

Ifa #0inY: = o+ Y1 + &t (t > 0), by repeated
substitution

so the process has a linear trend, together with the
random walk th:l gj.



"Case 3"
estimate a, p in

Yi = a+ pYi1 + &t
assuming & i.i.d.(0,02).

Whenao #0,p =1
T¥2(5 - 1) -, N(O 12 ) t -g N(O,1).
a

%even faster rate of convergence, and limit
normality

W Test:

TestHp : {p =1} vs. Ha : {|p| < 1} with a

T¥2(p — 1) or a t statistic (the limit distributions of
the T¥2(p — 1) and of the t statistics are computed
under the assumption a # 0)



"Case 4"

estimate a, p, 0 in

Yi = a+ pYi1 + ot + &
assuming & i.i.d.(0,02).
Whenp =1,6 = 0:

% the T(p — 1) and the t statistics to test

Ho : {p = 1} vsHa : {|p| < 1} do not converge to a
N(O,1).

X Test:

TestHo : {p =1} vs.Ha : {|p| < 1} withat
statistic (critical value is —3.41 at 5% significance
level) (can also use the T(p — 1) statistic, the 5%
critical value is —21. 8) (the limit distributions of the
t and of the T(p — 1) statistics are computed under
the assumption ¢ = 0).

Joint test, Ho : {p =16 = o} Vs
Ha : {p + 1&/oro # 0} (the F test statistic

associated to this test does not converge to 1/2 y3:
the 5% critical value is 6.25, as opposed to 2.99) .

Summarising

Case 4 seems to be the natural model when the
data may have a linear trend.



Augmented Dickey Fuller test
(ADF)

Allow for a more general dynamic structure:
Yt = Yt—l + U, whent > 0
Y = Owhent <0

what if u; is (stationary) AR(p—-1) (E(ut) = 0),
instead of an independent process?

Let
p-1
Ui = Z Ui + &, where gt is 1.1.d.(0,02)
=1

notice that u; is observable, because
Ur = AY;

SO
p-1
Yi = Y1 + U = Yo + Zé/jut_j + &€t
j=1
p-1
= Yt_]_ + Z CjAYt_j + &t

j=1



Case 1

Estimate (via OLS) p, {1, .., {p-1, in the model
p-1

Yt = ,OYt—l + Z CjAYt—j + &t
j=1

(¢11.1.d.(0,02)).
Whenp =1

% the t statistic to test Hg : {p = 1} vs

Ha : {|lp|] < 1} behaves asymptotically as in Case 1
of the basic D-F test (i.e. the limit properties of p
are not affected by the knowledge, or lack of, of {1,

ey gp—l)

* the limit properties of £, .., le are not affected

by the knowledge, or lack of, of p, so the limit
properties of ¢ 1 e 4 » 1 are the same ones as those

of the OLS estimates in the (stationary) AR(p — 1)
model
p-1

AYt = ZCjAYt_j + Et.
j=1



Case 2

Estimate (via OLS) a, p, {1, .., {p-1, in the model
p-1
Yt = a + ,OYt_l + ZC]AYH' + Et
=1
(¢11.1.d.(0,02)).
Whena =0, p = 1

% the t statistic to test Hg : {p = 1} vs

Ha @ {|p|] < 1} and the F statistic to jointly test

Ho : {a:O,pzl}vsHA: {a#O&/orpsél}
behave asymptotically as in Case 2 of the basic D-F
test (i.e. the limit properties of @ and p are not
affected by the knowledge, or lack of, of {1, .., {p-1)

* the limit properties of £, .., ,_, are not affected

p-
by the knowledge, or lack of, of a or of p, so the

limit properties of £, .., ¢ » 1 are the same ones as

those of the OLS estimates in the (stationary)
AR(p - 1) model
p-1

AYt = ZGJ‘AY'[—J' + Et.
j=1



Case 3

Estimate (via OLS) a, p, {1, .., {p-1, in the model
p-1
Yt = a + ,OYt_l + ZC]AYH' + Et
=1
(¢11.i.d.(0,02))
Whena #0, p = 1

% the t statistic to test Hg : {p = 1} vs

Ha : {|p|] < 1} behaves asymptotically as in Case 3
of the basic D-F test (i.e. the limit properties of @
and p are not atfected by the knowledge, or lack of,

of C:l; XY é:p—l)

* the limit properties of £, .., le are not affected
by the knowledge, or lack of, of o and of p, so the
limit properties of ¢ ,, .., 4 » 1 are the same ones as

those of the OLS estimates in the (stationary)
AR(p — 1) model
p-1
AYt = + ZCJAY'[—] + Et.
j=1



Case 4

Estimate (via OLS) a, p, {1, .., {p-1, in the model
p-1
Yt = q + ,OYt—l + ot + ZC]AY'[_J' + &t
i=1
(¢11.i.d.(0,02))
Wheno =0, p = 1.

% the t statistic to test Hg : {p = 1} vs

Ha @ {|p|] < 1} and the F statistic to jointly test

Ho: {p=16=0} vsHa: {p#1&/ors + 0}
behave asymptotically as in Case 4 of the basic D-F
test (the limit properties of @, of p and of & are not
atfected by the knowledge, or lack of, of {1, .., {p-1).

* the limit properties of ¢ ey 4 , are not affected

p—
by the knowledge, or lack of, of a, of p and of 9, so

the limit properties of £ ,, .., ¢ o1 are the same ones

as those of the OLS estimates in the (stationary)
AR(p - 1) model
p-1
AYt =+ ZCjAYt_j + Et.
j=1



Summarising;
%once that the lags AYi_y,...,AYp1 have been
added to the model, we can just test if p = 1 using

the t or the F statistic, and refer to the "basic" (ie,
with no lags) case for the limit distributions.

This is a very useful result, because it means that
we do not have to adjust the limit distributions to
the structure of u;: the adjustment is made
automatically by the t or by the F statistic.

% The result that the limit properties of c 1 s Z\IH

are the same ones as those of the estimates in the

(stationary) AR(p — 1) and therefore do not depend
on p is very useful as well, because we can use it to
determine the order p — 1 of the AR(p — 1) structure
when indeed p — 1 is unkown.

* If we don’t know p — 1, we can select the order of
the AR model for u; using an information criterion;
otherwise, we may select a tentative order, say,
pmax (obviously, pmax> p), and test if C L C omex_1
are not statistically significant.



The hypotesis of an AR(p — 1) model for u; is rather
general, because it corresponds to an AR(p) model
for Y; (at least, when no linear trends are present).
We can see it by looking, for example, at the Case 1
representation
p-1
Yt = th_]_ + Z CjAYt_j + &t
j=1
p-1
Yt — ,DYt—l — Z CjAYt—j = &t
j=1
Using the lag operator, replacing
Yt_]_ by LYt, A by (1 — L) and Yt_j by Lth,
p-1

Yi—pYea— D A
-1

p-1
= (1—pL—Z§,-<1—L>Li>Yt
j=1

and



SO

1-pL 3
_ Ci(1— '
jz_l', j(1-LL

—1-—
L — 3
pL—(1-L) ) gL
—1- |
pL—(1-
7 (1-L)01L-(1-L
L)QHUH )§2L2 -
— 11—
pL -
. (il + L% = ¢oL?
p_le_l ) C Lp 2 + C2L3
p_l T s

=14+ (-
(—p—C1)L+ (1 - ¢2)L?
+...

1

=1-(p+¢
] )L = (C2 -
(Cm—CH)LM—g“LZ )_
p-1)LP

¢1=p+41
P2 =C2—C1

¢p-1 = Cp-1—Cp-2

¢p = —Cp-1



We can also notice that the ¢; are such that
P1+ P2 +...+Pp1+ ¢Pp
=p+C1+Ca—C1+..+p1—Cp2—Cpa
=p
SO

when p = 1,

P1+ P2 +...+Pp-1+ ¢p = 1.



An alternative regression for
DF/ADF

Consider again, for example, the regression model
for Case 2:
p-1
Yt =+ th—l + ZZ;J'AYH + &t
j=1
(¢t1.i.d.(0,02)). Subctracting Y:_1 by both sides, we
get
p-1
AYi = a+(p—1)Yea+ DAYy + &
j=1
This model is equivalent to the previous one, but
instead of testing Ho{p = 1} we then test

Ho{p -1= O}
The test is equivalent to the previous one (so, it
also uses the same limit distribution).

Of course, it is also possible to adapt the other
cases (Case 1 to Case 4) to test Hp{p — 1 = O}
instead.



Phillips and Perron test (PP)

Allow for a more general dynamic structure:
Yt = Yt_]_ + U, whent > 0
Yt = Owhent <0

what if Uy is (stationary and invertible) ARMA(p, q)
(with E(Uy) = 0), instead of an independent
process?

Case 1
T Yves
Letp = —==——,
\G
=2
1 W) -1
T(ﬁ—l)—nj 2< () >+V

f; W(r)?dr
where v is a shift term.

This can be consistently estimated: call that
estimate v, we can test for a unit root using

L (w - )
j;W(r)zdr

T(p—1) -V -4



% Case 2, Case 3 and Case 4 work in the same way
(the shift term v may be different).

Y The same considerations for the choice Case 1 vs
Case 2, and Case 3 vs Case 4 apply.

% p is still "superconsistent" (compare with |p| < 1:
p would in general inconsistent, in this case)

% the PP test works in a more general set up than
the ADF

% the ADF has more power than the PP if pis
known; otherwise, the performance of the two tests
are not much different.



Appendix

e The distributions of the Dickey and
Fuller t statistics

e Which Case in the unit root test?



The distributions of the Dickey and
Fuller t statistics

Note: Generated using 5000 repetitions and
T = 1000.

Note: Black, N(0, 1); Blue, Case 1; Red, Case 2,
Green Case 4.



Which Case in the unit root test?

Case 1 and Case 2 both have the same null
hypothesis,

Yt = Yt_]_ + &y, i.e., p = 1.

If indeed p = 1, then both tests will NOT Reject the
null hypothesis with probability 95% (as we set
the size to 5%). So, we can only choose between the
two tests if we look at what happens when in fact
the null hypothesis is not correct and |p| < 1.

Two alternatives are possible: "c = 0", i.e,
Yi = pYr1+ e, and "c # 0", ie. Yy = C+ pYi1 + &t



% C = 0. In this example, we used T = 100 and
p = 0.85:

.8

e

.6

.5 4

Density
N

a4

.0

-6 5 -4 -3 -2 -1

The BLUE distribution is the distribution of the
standardized t statistic if Case 1 is estimated, and
the RED if Case 2 is estimated (note that the
theoretical limit distribution of p is the same, the
apparent difference in the distribution of t is only
due to the sample variability).

The critical value for Case 1 is —1.95, and in our
example, 97.9% was below it (i.e., in 97.9% of the
samples we correctly concluded that |p| < 1);

The critical value for Case 2 is —2.86, and in our
example, 67.7% was below it (i.e., in 67.7% of the
samples we correctly concluded that |p| < 1).



X C #+ 0. The distribution of the estimate of p and of
the standardized t under Case 2 are unaffected.
Under case 1, however, p is no longer consistently
estimated. Here we kept T = 100 and p = 0.85 but
setc = 2.5:

1.2

1.0 4

0.8

0.6 1

Density

0.4 -

0.2 1

0.0

6 5 4 3 -2 1 0
The BLUE distribution is for the standardized t
statistic if Case 1 is estimated, and the RED if Case
2 is estimated (note that the theoretical limit
distributions of t are no longer same; the RED
distribution is the same as in the case with ¢ = 0).

Case 1: in our example in 29.3% of the samples we
correctly concluded |p| < 1;

Case 2: in our example in 67.7% of the samples we
correctly concluded |p| < 1.



