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Topics: Brownian motion, Functional central 

limit theorem, Limit properties of the 

sample mean of a random walk, Limit 

properties of the OLS estimate of the 

autoregressive parameter in a random walk, 

Limit properties of the t statistic associated 

to the OLS estimate of the autoregressive 

parameter in a random walk, The Dickey 

Fuller test for a unit root in a random walk: 

Case 1, The Dickey Fuller test for a unit root 

in a random walk: Case 2, The Dickey Fuller 

test for a unit root in a random walk with 

drift: Case 3, The Dickey Fuller test for a unit 

root in a random walk with drift: Case 4, 

Choice of the unit root test, Augmented 

Dickey Fuller test for a unit root when the 

disturbances have a stationary AR(p) 

structure: Case 1, Case 2, Case 3, Case 4, 

Choice of the order p in the ADF test, 

Phillips-Perron tests for a unit root in a 

generic I(1) process 



We saw that

Y t    Y t1   t,  t w. n. 0,2 , when t  0

Y t  0 when t  0

has different properties depending on whether
  1 or ||  1.

We want a test to distinguish between the two
cases.

Introduce

Brownian motion (heuristic)
A Browian motion W.  is a continuous time
stochastic process that associates to each date
t  0, 1 a value Wt such that
 W0  0
 for any date 0  t1  te . . . tk  1, the
differences Wt2  Wt1 , Wt3  Wt2 , ...,
Wtk  Wtk1  are normally independently
distributed random variables such that, for s,
0  t  s  1,

Ws Wt  N0, s  t

 Wt is continous with probability 1



Introduce the operator . , such that x returns
the integer part of a number x. Introduce

XTr  1
T 

t1

rT

 t,  t i.i.d.0,2 , for r  0,1

Functional Central Limit Theorem
(heuristic)

T XT. / d W. 

(here and after, these limits are as T  )

(The FCLT links functions on 0,1: we should
define what convergence in distribution means,
there. It turns out that the nature of the
convergence, and even the notation, have to be
generalised; however, we do not discuss this).

The Central Limit Theorem,

T 1
T 

t1

T

 t d N0,2 

is a byproduct of the FCLT:

T XT1/ d W1.

(just set r  1 in the FCLT)



Now, we can see what happens to
the sample mean of an I1 process

Y t  Y t1   t,  t i. i. d. 0,2 , when t  0

Y t  0 when t  0

We can express Y1,..., Y t as a function of XTr:

XT.  

0 for 0  r  1/T

Y1/T for 1/T  r  2/T

Y2/T for 2/T  r  3/T

. . .

Y t/T for t/T  r  t  1/T

. . .

YT1/T for T  1/T  r  1

YT/T for r  1

XT.  is a step function:
for t/T  r  t  1/T, XT.   Y t/T.



For any constant c,


t/T

t1/T

cdr  c|r| t/T
t1/T  c 1

T
.

In the same way, we can compute


t/T

t1/T

XTrdr  Y t/T  1/T  Y t/T2.

Then,
Y0/T2 . . .Y t/T2 . .YT1/T2

 
0/T

1/T
XTrdr . . 

t/T

t1/T
XTrdr . . 

T1/T

T/T
XTrdr

ie.

1
T2 

t1

T

Y t1  
0

1

XTrdr

From the FCLT we know that

T XT. / d W. ,

so

T 1
T2 

t1

T

Y t1/  
0

1

T XTr/dr d 
0

1

Wrdr



What is 
0

1
Wrdr? It is a random variable, obtained

by reweighting and averaging normally
distributed random variables.

In particular, 
0

1
Wrdr is a N0,1/3.

We can now conclude

1
T

1
T 

t1

T

Y t1 d  
0

1

Wrdr,

which is N0, 1/32 .

Since

1
T

Y  1
T

1
T 

t1

T

Y t

 1
T

1
T 

t0

T1

Y t  1
T

1
T

YT  1
T

1
T

Y0

 1
T

1
T 

t1

T

Y t1  1
T

1
T

YT  1
T

1
T

Y0,

notice that Y0  0, and that 1

T

1
T

YT p 0, so

1
T

Y d  
0

1

Wrdr

as well.



A test to check if Y t is a random walk:

Estimate  via OLS in

Y t  Y t1   t,  t i. i. d. 0,2 , when t  0

Y t  0 when t  0

When   1,


 


t2

T
Y tY t1


t2

T
Y t1

2



t2

T
Y t1   t Y t1


t2

T
Y t1

2

 1 


t2

T
 tY t1


t2

T
Y t1

2

In order to find out more about
t2

T
Y t1

2 ,

XT. 
2 

0 for 0  r  1/T

Y1
2/T2 for 1/T  r  2/T

Y2
2/T2 for 2/T  r  3/T

. . .

Y t
2/T2 for t/T  r  t  1/T

. . .

YT1
2 /T2 for T  1/T  r  1

YT
2 /T2 for r  1



XT. 
2 is a step function: for t/T  r  t  1/T,

XT. 
2  Y t

2/T2, so


t/T

t1/T

XTr
2dr  Y t

2/T2  1/T  Y t
2/T3.

Then,
Y0

2/T3 . . . .Y t
2/T3 . . .YT1

2 /T3

 
0/T

1/T
XTr

2dr . . . 
t/T

t1/T
XTr

2dr . . .

 
T1/T

T/T
XTr

2dr

i.e.

1
T3 

t1

T

Y t1
2  

0

1

XTr
2dr

From the FCLT, we can immediately derive

TXT. 
2/2 d W. 2,

(Wr2 is a well defined random variable, because
Wr2/r is a 1

2) so

T 1
T3 

t1

T

Y t1
2 /2  

0

1

TXTr
2/2dr d 

0

1

Wr2dr,

so we can conclude

1
T2 

t1

T

Y t1
2  

0

1

TXTr
2dr d 2 

0

1

Wr2dr.



In order to find out more about
t2

T
 tY t1,

consider

Y t
2  Y t1   t 

2  Y t1
2   t

2  2Y t1 t

so, rearranging terms,

Y t
2  Y t1

2   t
2  2Y t1 t.

Summing over t, t  1, . . . , T,


t1

T

Y t
2 

t1

T

Y t1
2 

t1

T

 t
2  2

t1

T

Y t1 t

and


t1

T

Y t
2 

t1

T

Y t1
2

 Y1
2  Y2

2 . . .Y t
2 . . .YT1

2  YT
2 

 Y0
2  Y1

2 . . .Y t1
2 . . .YT2

2  YT1
2 

 YT
2  Y0

2  YT
2

because Y0  0, so


t1

T

Y t1 t  1
2

YT
2 

t1

T

 t
2 .



Normalising by T,

1
T 

t1

T

Y t1 t  1
2

1
T

YT
2  1

T 
t1

T

 t
2 .

Since

1
T

YT
2  TXT1

2 d 2W12

(by the CLT), and

1
T 

t1

T

 t
2 p 2

(by the law of large numbers) then

1
T 

t1

T

Y t1 t d
1
2
2 W12  1 .

Summarising,

T

  1 

1
T


t2

T
 tY t1

1

T2  t2

T
Y t1

2
d

1
2

W12  1


0

1
Wr2dr





 is still consistent (


 p 1)

 indeed,

 is "superconsistent" (see the rate T

rather then the usual T )


1
2

W121


0

1
Wr2dr

is not a normal distribution

 in small samples (and  t Nid0,2 ),



underestimates 1 (in a probabilistic sense)


1
2

W121


0

1
Wr2dr

is skewed to the left

Testing

H0 :   1 vs HA : ||  1

in

Y t  Y t1   t,  t i. i. d. 0,2  when t  0

Y t  0 when t  0

the 5% critical value for the T

  1 statistic is

8. 1.



t statistic:

t 


  



where 
2
 s2


t2

T
Y t1

2

and s2  1
T  1

t2

T

Y t 

Y t1 

2

When ||  1,

rewrite

t 
T

  

T
.

Look at T first.

again,


 p , so s2  1

T  1

t2

T

Y t 

Y t1 

2 p 2.

Since we already saw that

1
T2 

t2

T

Y t1
2 d 2 

0

1

Wr2dr,

then



T2
2
 s2

1

T2  t2

T
Y t1

2

 d
2

2 
0

1
Wr2dr

 1


0

1
Wr2dr

and T  d
1


0

1
Wr2dr

As for the numerator,

T

  1 d

1
2

W12  1


0

1
Wr2dr

summarising,

t 
T

  1

T
, t d

1
2

W12  1


0

1
Wr2dr

.




1
2

W121


0

1
Wr2dr

is not normally distributed; it is

skewed to the left.

Testing H0 :   1 vs. HA : ||  1 with a t
statistic using a 5% significance level, the critical
value is 1.95.

Compare with the case ||  1:

 p ,

T
2
 s2

1
T


t2

T
Y t1

2
p

2

2

12

 1  2

so

t 
T 

  

T 
, t d N0,1.

Then testing H0 :    vs. HA :    (when

||  1) with a t statistic, with a 5% significance
level, the critical value is 1.65.



Which unit root test?
Recall the model

Y t  Y t1   t,  t i. i. d. 0,2  when t  0

Y t  0 when t  0

and   1 or ||  1;

let

 be the OLS estimate of :

since

 p , we can use the T


  1 or the t

statistic to test for a unit root testing H0 :   1
vs HA : ||  1.

However, when ||  1, so far we only considered
processes Y t that have EY t   0. How about
processes that are mean reverting and yet the
mean to which they revert is not zero? Processes of
this kind would be generated by

Y t    Y t1   t with   0, ||  1

( t i. i. d. 0,2 ).

If this is the true model and we omit , estimating


 


t2

T
Y t1Y t


t2

T
Y t1

2
instead, then


 is no longer a

consistent estimate of : however,

 converges in

probability to a number smaller than one, so we
can still rely on the T


  1 or the t statistics to

effectively test for a unit root.



"Case 1"

Estimate  via OLS in

Y t  Y t1   t

assuming  t i. i. d. 0,2 .

When   1,

T

  1 d

1
2

W12  1


0

1
Wr2dr

, t d

1
2

W12  1


0

1
Wr2dr

 Test:

Test H0 :   1 vs. HA : ||  1 with a t
statistic (critical value is 1.95 at 5% significance
level) (can also use the T


  1 statistic, the 5%

critical value is 8.1).



"Case 2"

Estimate ,  via OLS in

Y t    Y t1   t

assuming  t i. i. d. 0,2 .

Here

 is a consistent estimate of  regardless of 

and .

When   1, in order to have Y t as a random walk
(i.e., no linear trend) we also need   0: we take it
into account when computing the limit

distribution of T

  1 and of the t statistic



1


.

When   0,   1:

T

  1 d

1
2

W12  1 W1 
0

1
Wrdr


0

1
Wr2dr  

0

1
Wrdr

2

t d

1
2

W12  1 W1 
0

1
Wrdr


0

1
Wr2dr  

0

1
Wrdr

2



the limit distributions of T

  1 and of t when

  0 are not normal; they are also even more
asymmetric than in Case 1

the limit distribution of T

 when   0 is not

normal

 Test:

Test H0 :   1 vs. HA : ||  1 with a t
statistic (critical value is 2.86 at 5% significance
level) (can use the T


  1 statistic, the 5% critical

value would be 14.1) (the limit distributions of
the t and of the T


  1 statistics are computed

under the assumption   0).

Joint test, H0 :   0,   1 vs

HA :   0 &/or   1 (the F test statistic

associated to this test does not converge to
1/2 2

2: the 5% critical value is 4.59, as opposed to
2.99).



Which test then?
If Y t does not have a unit root and EY t   0, in
Case 1 we overestimate  (in a probabilistic sense)
a bit: the test will still be useful to detect a unit
root, but it may have less power than a test in
which a consistent estimate of  is used.

On the other hand, if If Y t does not have a unit root
and EY t   0, then the two estimates of  (using
Case 2 or Case 1) have the same limit distribution:
however, the critical value for case 2 is smaller
(2.86 instead of 1.95), so in a finite sample there
will be a higher proportion of Type 2 errors when
using Case 2.

Finally, also notice that the t test has "one-sided"
alternative, as opposed to the "two-sided"
alternatives in the joint test in Case 2: one-sided
alternative use more information (in this case, the
knowledge that  is not bigger than 1) and this
pays off because it gives more power.

The choice between the Case 1 and the Case 2
model then depends on how confident we can be
of   0 if ||  1: if we have no reasons to expect
  0 if ||  1, Case 2 should be preferred.



What if there is a linear trend?
If   0 in Y t    Y t1   t (t  0), by repeated
substitution

Y t  t 
j1

t

 j,

so the process has a linear trend, together with the
random walk

j1

t
 j.



"Case 3"

estimate ,  in

Y t    Y t1   t

assuming  t i. i. d. 0,2 .

When   0,   1

T3/2

  1 d N 0, 12

2
2 , t d N0,1.

even faster rate of convergence, and limit
normality

 Test:

Test H0 :   1 vs. HA : ||  1 with a
T3/2


  1 or a t statistic (the limit distributions of

the T3/2

  1 and of the t statistics are computed

under the assumption   0)



"Case 4"

estimate , ,  in

Y t    Y t1  t   t

assuming  t i. i. d. 0,2 .

When   1,   0:

 the T

  1 and the t statistics to test

H0 :   1 vs HA : ||  1 do not converge to a
N0,1.

 Test:

Test H0 :   1 vs. HA : ||  1 with a t
statistic (critical value is 3.41 at 5% significance
level) (can also use the T


  1 statistic, the 5%

critical value is 21.8) (the limit distributions of the
t and of the T


  1 statistics are computed under

the assumption   0).

Joint test, H0 :   1,   0 vs

HA :   1 &/or   0 (the F test statistic

associated to this test does not converge to 1/2 2
2:

the 5% critical value is 6.25, as opposed to 2.99) .

Summarising
Case 4 seems to be the natural model when the
data may have a linear trend.



Augmented Dickey Fuller test
(ADF)
Allow for a more general dynamic structure:

Y t  Y t1  u t, when t  0

Y t  0 when t  0

what if u t is (stationary) ARp  1 (Eu t   0),
instead of an independent process?

Let

u t 
j1

p1

 ju tj   t, where  t is i.i.d.0,2 

notice that u t is observable, because

u t  Y t

so

Y t  Y t1  u t  Y t1 
j1

p1

 ju tj   t

 Y t1 
j1

p1

 jY tj   t



Case 1

Estimate (via OLS) , 1, .., p1, in the model

Y t  Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 ).

When   1 :

 the t statistic to test H0 :   1 vs
HA : ||  1 behaves asymptotically as in Case 1
of the basic D-F test (i.e. the limit properties of




are not affected by the knowledge, or lack of, of 1,
.., p1)

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of , so the limit

properties of

 1, ..,


 p1 are the same ones as those

of the OLS estimates in the (stationary) AR(p  1)
model

Y t 
j1

p1

 jY tj   t.



Case 2

Estimate (via OLS) , , 1, .., p1, in the model

Y t    Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 ).

When   0,   1:

 the t statistic to test H0 :   1 vs
HA : ||  1 and the F statistic to jointly test
H0 :   0,   1 vs HA :   0 &/or   1

behave asymptotically as in Case 2 of the basic D-F
test (i.e. the limit properties of


 and


 are not

affected by the knowledge, or lack of, of 1, .., p1)

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of  or of , so the

limit properties of

 1, ..,


 p1 are the same ones as

those of the OLS estimates in the (stationary)
AR(p  1) model

Y t 
j1

p1

 jY tj   t.



Case 3

Estimate (via OLS) , , 1, .., p1, in the model

Y t    Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 )

When   0,   1:

 the t statistic to test H0 :   1 vs
HA : ||  1 behaves asymptotically as in Case 3
of the basic D-F test (i.e. the limit properties of




and

 are not affected by the knowledge, or lack of,

of 1, .., p1)

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of  and of , so the

limit properties of

 1, ..,


 p1 are the same ones as

those of the OLS estimates in the (stationary)
AR(p  1) model

Y t   
j1

p1

 jY tj   t.



Case 4

Estimate (via OLS) , , 1, .., p1, in the model

Y t    Y t1  t 
j1

p1

 jY tj   t

( t i. i. d. 0,2 )

When   0,   1:

 the t statistic to test H0 :   1 vs
HA : ||  1 and the F statistic to jointly test
H0 :   1,   0 vs HA :   1 &/or   0

behave asymptotically as in Case 4 of the basic D-F

test (the limit properties of

, of


 and of


 are not

affected by the knowledge, or lack of, of 1, .., p1).

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of , of  and of , so

the limit properties of

 1, ..,


 p1 are the same ones

as those of the OLS estimates in the (stationary)
AR(p  1) model

Y t   
j1

p1

 jY tj   t.



Summarising:

once that the lags Y t1,...,Y tp1 have been
added to the model, we can just test if   1 using
the t or the F statistic, and refer to the "basic" (ie,
with no lags) case for the limit distributions.

This is a very useful result, because it means that
we do not have to adjust the limit distributions to
the structure of u t: the adjustment is made
automatically by the t or by the F statistic.

The result that the limit properties of

 1, ..,


 p1

are the same ones as those of the estimates in the
(stationary) AR(p  1) and therefore do not depend
on  is very useful as well, because we can use it to
determine the order p  1 of the AR(p  1) structure
when indeed p  1 is unkown.

If we don’t know p  1, we can select the order of
the AR model for u t using an information criterion;
otherwise, we may select a tentative order, say,

pmax (obviously, pmax p), and test if

 p, . . . ,


 pmax1

are not statistically significant.



The hypotesis of an AR(p  1) model for u t is rather
general, because it corresponds to an ARp model
for Y t (at least, when no linear trends are present).
We can see it by looking, for example, at the Case 1
representation

Y t  Y t1 
j1

p1

 jY tj   t

Y t  Y t1 
j1

p1

 jY tj   t

Using the lag operator, replacing
Y t1 by LY t,  by 1  L and Y tj by L jY t,

Y t  Y t1 
j1

p1

 jY tj

 1  L 
j1

p1

 j1  LL j Y t

and



1  L 
j1

p1

 j1  LL j

 1  L  1  L
j1

p1

 jL j

 1  L  1  L1L  1  L2L2 . . .

 1  Lp1Lp1

 1  L  1L  1L2  2L2  2L3 . . .

 p1Lp1  p1Lp

 1    1 L  1  2 L2 . . .

 p2  p1 Lp1  p1Lp

 1    1 L  2  1 L2 . . .

 p1  p2 Lp1  p1 Lp

so

1    1

2  2  1

. . .

p1  p1  p2

p  p1



We can also notice that the  j are such that

1  2 . . .p1  p

   1  2  1 . . .p1  p2  p1

 

so

when   1,

1  2 . . .p1  p  1.



An alternative regression for
DF/ADF
Consider again, for example, the regression model
for Case 2:

Y t    Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 ). Subctracting Y t1 by both sides, we
get

Y t      1Y t1 
j1

p1

 jY tj   t

This model is equivalent to the previous one, but
instead of testing H0  1 we then test
H0  1  0.

The test is equivalent to the previous one (so, it
also uses the same limit distribution).

Of course, it is also possible to adapt the other
cases (Case 1 to Case 4) to test H0  1  0
instead.



Phillips and Perron test (PP)
Allow for a more general dynamic structure:

Y t  Y t1  u t, when t  0

Y t  0 when t  0

what if u t is (stationary and invertible) ARMAp, q
(with Eu t   0), instead of an independent
process?

Case 1

Let

 


t2

T
Y tY t1


t2

T
Y t1

2
,

T

  1 d

1
2

W12  1


0

1
Wr2dr

 

where  is a shift term.

This can be consistently estimated: call that
estimate


, we can test for a unit root using

T

  1 


 d

1
2

W12  1


0

1
Wr2dr



Case 2, Case 3 and Case 4 work in the same way
(the shift term  may be different).

The same considerations for the choice Case 1 vs
Case 2, and Case 3 vs Case 4 apply.



 is still "superconsistent" (compare with ||  1:


 would in general inconsistent, in this case)

 the PP test works in a more general set up than
the ADF

 the ADF has more power than the PP if p is
known; otherwise, the performance of the two tests
are not much different.



Appendix 
 

• The distributions of the Dickey and 

Fuller t statistics 

 

• Which Case in the unit root test? 



The distributions of the Dickey and
Fuller t statistics
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Note: Generated using 5000 repetitions and
T  1000.

Note: Black, N0, 1; Blue, Case 1; Red, Case 2,
Green Case 4.



Which Case in the unit root test?
Case 1 and Case 2 both have the same null
hypothesis,

Y t  Y t1   t, i.e.,   1.

If indeed   1, then both tests will NOT Reject the
null hypothesis with probability 95% (as we set
the size to 5%). So, we can only choose between the
two tests if we look at what happens when in fact
the null hypothesis is not correct and ||  1.

Two alternatives are possible: "c  0", i.e,
Y t  Y t1   t, and "c  0", i.e. Y t  c  Y t1   t.



 c  0. In this example, we used T  100 and
  0. 85:
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The BLUE distribution is the distribution of the
standardized t statistic if Case 1 is estimated, and
the RED if Case 2 is estimated (note that the
theoretical limit distribution of


 is the same, the

apparent difference in the distribution of t is only
due to the sample variability).

The critical value for Case 1 is 1.95, and in our
example, 97.9% was below it (i.e., in 97.9% of the
samples we correctly concluded that ||  1);

The critical value for Case 2 is 2.86, and in our
example, 67.7% was below it (i.e., in 67.7% of the
samples we correctly concluded that ||  1).



 c  0. The distribution of the estimate of  and of
the standardized t under Case 2 are unaffected.
Under case 1, however,  is no longer consistently
estimated. Here we kept T  100 and   0.85 but
set c  2.5:
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The BLUE distribution is for the standardized t
statistic if Case 1 is estimated, and the RED if Case
2 is estimated (note that the theoretical limit
distributions of t are no longer same; the RED
distribution is the same as in the case with c  0).

Case 1: in our example in 29.3% of the samples we
correctly concluded ||  1;

Case 2: in our example in 67.7% of the samples we
correctly concluded ||  1.


