

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Economia, Management e Metodi Quantitativi

Academic Year 2019-2020 Time Series Econometics Fabrizio Iacone

Chapter 11: Regressions with I(0) and I(1) processes

Topics: Regression with stationary and invertible ARMA processes, Spurious regression for I(1) processes, Cointegration for I(1) processes, Testing for cointegration with the ADF test

Two notes on the notation

\mathbf{H}

$$
Y_t = Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ i.i.d. (0, \sigma^2), \text{if } t > 0
$$

$$
Y_t = 0 \text{ if } t \le 0,
$$

we saw that the initialisation $Y_0 = 0$ is used to have a finite variance (and a finite covariance structure) and also in some limits, like

 $\sqrt{T} \frac{1}{T^2} \sum_{t=1}^{T} Y_{t-1} \rightarrow_d \sigma \int_0^1 W(r) dr$. However, this is often neglected in many references, and we too will omit the repetition in the next lecture, and write

$$
Y_t = Y_{t-1} + \varepsilon_t, \varepsilon_t \text{ i.i.d.} (0, \sigma^2)
$$

instead.

♦ We will discuss the linear model

$$
Y_t = X_t \beta + e_t
$$

and the estimate $\widehat{\beta}$.

Notice that Hamilton discussed

$$
Y_t=X_t\gamma+e_t
$$

and then $\hat{\gamma}$. We used a different symbol because γ and $\hat{\gamma}$ refers to the autocovariances.

Regressions with time series

$$
Y_t = X_t \beta + e_t
$$

$$
\widehat{\beta} = \left(\sum_{t=1}^T X_t^2\right)^{-1} \sum_{t=1}^T X_t Y_t
$$

 X_t stationary and invertible $ARMA(p,q)$ with i.i.d. innovations, with $E(X_t X_{t+j}) = \Gamma_i^X(|\Gamma_i^X| < \infty)$; e_t stationary and invertible ARMA (p, q) with i.i.d. innovations, with $E(e_t) = 0$, $E(e_t e_{t+j}) = \gamma_i^e$ $(|\gamma_i^e| < \infty);$

 X_t independent from e_s at all t, s. Then,

$$
\widehat{\beta} \to_{p} \widehat{\beta}
$$

$$
\sqrt{T}(\widehat{\beta} - \beta) \to_{d} N(0, V)
$$

where

$$
V = \left(\Gamma_0^X\right)^{-2} \sum_{j=-\infty}^{\infty} \Gamma_j^X \gamma_j^e
$$

 \bigstar i.e. we can generalise the results of the standard regression model to ARMA dependent structures in X_t and e_t

What does it happen if X_t &/or e_t are $I(1)$?

The Granger Newbold experiment

$$
Y_{1,t} = Y_{1,t-1} + \varepsilon_{1,t}, \varepsilon_{1,t} \ i.i.d. (0, \sigma_1^2)
$$

$$
Y_{2,t} = Y_{2,t-1} + \varepsilon_{2,t}, \varepsilon_{2,t} \ i.i.d. (0, \sigma_2^2)
$$

 $\varepsilon_{1,t}$ independent from $\varepsilon_{2,s}$ for all t, s

Regress $Y_{2,t}$ on $Y_{1,t}$:

$$
\widehat{\beta} = \frac{\sum_{t=1}^{T} Y_{1,t} Y_{2,t}}{\sum_{t=1}^{T} Y_{2,t}^2}
$$

Since $\varepsilon_{1,t}$ is independent from $\varepsilon_{2,s}$ for all t, s, then $Y_{1,t}$ independent from $Y_{2,s}$ for all t, s, so the parameter that $\widehat{\beta}$ is estimating is 0. However, $\widehat{\beta}$ does not converge to 0 as $T \rightarrow \infty$.

On the contrary, let $W_1(.)$, $W_2(.)$ two Brownian motions, such that

$$
\frac{1}{\sqrt{T}}\sum_{t=1}^{[rT]}\varepsilon_{1,t} \rightarrow_d \sigma_1 W_1(r)
$$

$$
\frac{1}{\sqrt{T}}\sum_{t=1}^{[rT]}\varepsilon_{2,t} \rightarrow_d \sigma_2 W_2(r)
$$

Then, $W_1(.)$ and $W_2(.)$ are independent, i.e. $E(W_1(r)W_2(s)) = 0$ for any $r, s (r \in [0,1], s \in [0,1])$; Rewriting

$$
\widehat{\beta} = \frac{\frac{1}{T^2} \sum_{t=1}^{T} Y_{1,t} Y_{2,t}}{\frac{1}{T^2} \sum_{t=1}^{T} Y_{2,t}^2}
$$
\n
$$
= \frac{\frac{1}{T} \sum_{t=1}^{T} \frac{1}{\sqrt{T}} Y_{1,t} \frac{1}{\sqrt{T}} Y_{2,t}}{\frac{1}{T} \sum_{t=1}^{T} \left(\frac{1}{\sqrt{T}} Y_{2,t}\right)^2},
$$
\n
$$
\widehat{\beta} \rightarrow_d \frac{\sigma_1}{\sigma_2} \frac{\int_0^1 W_1(r) W_2(r) dr}{\int_0^1 W_2(r)^2 dr}
$$

 $\bigstar \widehat{\beta}$ does not converge to 0 as $T \to \infty$

★ if we test H_0 : $\{\beta = 0\}$ vs. H_A : $\{\beta \neq 0\}$, we reject H_0 as $T \to \infty$ ("spurious evidence of a significant regression parameter")

 \star including a constant in the regression changes the limit distribution of $\widehat{\beta}$ but not the essence of the results

 \bigstar These results can be generalised even further, to $Y_t = X_t \beta + e_t$

where X_t and e_t are generic $I(1)$ processes with no deterministic trend: even when $\beta \neq 0$,

(i) the OLS estimate $\widehat{\beta}$ is still inconsistent, and

(ii) the correct null hypothesis is rejected as $T \rightarrow \infty$ (in this sense, it still is a "spurious regression").

 \bigstar Modelling strategy: model ΔY_t and ΔX_t

Cointegration

$$
Y_{1,t} = \beta Y_{2,t} + \varepsilon_{1,t}, \varepsilon_{1,t} \ i.i.d. (0, \sigma_1^2)
$$

$$
Y_{2,t} = Y_{2,t-1} + \varepsilon_{2,t}, \varepsilon_{2,t} \ i.i.d. (0, \sigma_2^2)
$$

 $\varepsilon_{1,t}$ independent from $\varepsilon_{2,s}$ for all t, s

Letting again $W_1(.)$, $W_2(.)$ such that

$$
\frac{1}{\sqrt{T}}\sum_{t=1}^{[rT]}\varepsilon_{1,t}\rightarrow_d\sigma_1W_1(r),\frac{1}{\sqrt{T}}\sum_{t=1}^{[rT]}\varepsilon_{2,t}\rightarrow_d\sigma_2W_2(r)
$$

 $(W_1(.)$ and $W_2(.)$ are independent) then

$$
T(\widehat{\beta}-\beta) \rightarrow_d \frac{\sigma_1}{\sigma_2} \frac{\int_0^1 W_2(r) dW_1(r)}{\int_0^1 W_2(r)^2 dr}
$$

 $\star \widehat{\beta}$ is "superconsistent" (see rate T rather than \sqrt{T}) **★** the limit distribution of $T(\hat{\beta} - \beta)$ is known; it is possible to test H_0 : $\{\beta = \beta_0\}$ vs. H_A : $\{\beta \neq \beta_0\}$ (for any β_0 except $\beta_0 = 0$).

 \bigstar including a constant in the regression changes the limit distribution of $\widehat{\beta}$ but not the essence of the results.

★ Modelling strategy: Error Correction Mechanism:

The first equation can be rewritten as

$$
Y_{1,t} - Y_{1,t-1} = \beta Y_{2,t} - \beta Y_{2,t-1} + \beta Y_{2,t-1} - Y_{1,t-1} + \varepsilon_{1,t}
$$

$$
\Delta Y_{1,t} = \beta \Delta Y_{2,t} - (Y_{1,t-1} - \beta Y_{2,t-1}) + \varepsilon_{1,t}
$$

Here, $\beta \Delta Y_{2,t}$ gives the effect of changes of $Y_{2,t}$ on $Y_{1,t}$ ("short term dynamics"), and $(Y_{1,t-1} - \beta Y_{2,t-1})$ gives the "adjustment to the long run equilibrium". These results can be generalised even further, to

$$
Y_t = X_t \beta + e_t,
$$

where X_t is a generic $I(1)$ process with no deterministic trends and e_t is a generic $I(0)$ process with $E(e_t) = 0$: then, there is a non-degenerate limit distribution ϖ such that

$$
T(\widehat{\beta}-\beta) \rightarrow_d \varpi
$$

 \star the estimate $\widehat{\beta}$ can be rearranged, so it is possible to test H_0 : $\{\beta = \beta_0\}$ vs. H_A : $\{\beta \neq \beta_0\}$ (for any β_0 except $\beta_0 = 0$)

 $\star \hat{\beta}$ is "superconsistent"

 $\bigstar X_t$ does not need to be independent from e_s

 \star the example can also be generalised to multidimensional X_t , and to X_t with linear deterministic trends (however, some additional conditions may have to be specified, for these cases)

 \bigstar The ECM may be generalised to allow for stationary AR processes in ΔX_t and/or e_t

Testing for cointegration Consider the generic model

$$
Y_t = \alpha + X_t' \beta + e_t
$$

where X_t and Y_t are $I(1)$ (possibly with deterministic trends) and e_t may either be $I(1)$ or $I(0).$

In order to know wheter to go for the ECM modelling or for the differencing, and in order to know if the estimates of α and β are reliable, we must find out if e_t is $I(1)$.

If we don't know e_i :

 $\mathbf \Psi$ estimate $\widehat{\alpha}$, $\widehat{\beta}$ by regressing Y_t on a constant and on X_t , compute the residuals

$$
\widehat{e}_t = Y_t - \widehat{\alpha} - X_t' \widehat{\beta}
$$

and test applying the ADF test statistic (Case 1) to \hat{e}_{t} .

However,

 \star the limit distribution of the *t* statistic of the ADF test statistic for \hat{e}_t depends on: the number of regressors included; the type of deterministic components included.

 \star The limit distribution is even more skewed to the left, and it gets more and more so the more regressors and the more deterministic terms are considered (for example, when X_t is a scalar and it has no linear deterministic trend, α is included in the regression, the 5% critical value is -3.37 as opposed to -1.95 , the one we would use if e_t was observable).

If we think we know β , then, it would then be advisable to test $Y_t - X_t^{\prime} \beta$ instead; If we think we know α and β , then, it would then be advisable to test $Y_t - \alpha - X_t^{\prime} \beta$ instead.