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Chapter 8: model selection

When we have the data we have to fit this guy (grafico). If i look at the correlogram i got an idea
of the data.

Model selection

How do we choose the lags p,q in an
ARMA (p,q) model?

by looking at the sample autocorrelations
and the sample partial autocorrelations,
and trying to recognize the pattern of a
model with given p,q.

by using an automatic selection criterion
(information criterion).

Simply looking at the correlogram it could be the starting point. The are mean 0 but they are not
exactlly 0. This bar checking where is significant. So, the first step is to attach some probability
to the correlogram. If the value is 0, this guys should be normalized.

Tests of "randomness”
If ¥; is i.i.d. (and has finite variance) then
pi,...,pr are all 0.
Then, the sample autocorrelations (p i Py

Jj # h,j>1,h>1)are asymptotically
independent and

JTH; -4 N(0.1) ( > 1)

We can use this property to design two tests to
check if the data are independently distributed.

"Test for randomness".

This test is so simple that it can be
inspected visually, so the computers
usually plots two error bars at +1.96//T
with the sample autocorrelation function.

(Notice: although it is called "test for randomness"
by some computer softwares and some references,
a more appropriate name would be "test for
independent distribution").

Test if each has a normal distribution. Square root in the variance and divide it to the square
root. And compare 1.96 / rad(T) and it's exactly what we're doing when we are testing.

"W" graph we can read as significant.

This test goes by the name of test of randomness. It's a bad name for a test, because regard if
process is independent process. The nice thing is that is very easy to implement.

There is a variation of this test that is very interesting.

Portmanteau test
We can also test a group of k
autocorrelations jointly: under the null,

k
~2
TY P »a 1}
=

(this test may be of particular interest when
we suspect a seasonal structure in the data:
for example with quarterly data the first
three autocorrelations may be zero, and
then the fourth one may be non-zero). (The
test may be sensitive to the choice of £ on
some occasions).

% The test for randomness and the
Portmanteau test can also be executed
using the sample partial autocorrelations.

The tests for independent distribution and
the Portmanteau test may provide
preliminary information about the sample
AC/PAC.

Examples

T =100, 1.96/JT = 0.196

1 2 3 4 5 6 7 8 9 10 1 12
P; -0041 0005 0.150 0.116 -0.027 0.048 0.072 0020 0.155 -0.052 -0.080 0.200
@) 0041 0003 0.150 0.132 -0.017 0021 0.040 0018 0.158 -0.064 -0.125 0.164

Portmanteau (12) = 12.47 (c.v. 21.02)

1 2 3 4 5 6 7 8 9 10 1 12
P 0631 0478 0448 0365 0257 0251 0240 0223 0229 0.133 0.103 0.194
@) 0631 0133 0.173 0.004 -0.062 0074 0.042 0050 0.057 -0.143 -0.001 0.176

Portmanteau (12) = 131.53 (c.v. 21.02)

In this case T = 100. So i have to check if my autocorrelation is below or above. | have 24 hits and
one of the is insignificant. I'm doing test and i got critical value of 0.196 i will have 5 % change
that something going beyond the critical value. So 5% accepting something that i don't want. If i
run the 24 times, i aspect there is one hit. 1/24 is not a surprise. So i need a bit of flexibility
reading this computer output of the autocorrelation. There is an easier way.

This guys s not certainly and independent process (Example 12.47)

There is a way to aggregate all these numbers in just one statistic. Pretending all guys are from
standard normal. CHI square 1,2,3,4 to 12 summing all the values. | can consider them together |
aggregate them, i squared them so i eliminate the sign and then i sum them to get a chi square
1,2 to 12. SO instead of looking them individually i can look at the sum of the square.

This test is called Portmanteau test and it's a test useful for a lot of situations.
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How do i choose the right value?

This is a convenient model to look at. The idea if i want to find out p and q i have to think a little
bit more. How do you normally choose between two model? Let's make an example.

Let's start with and example:
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Even when fi2 should be 0, the estimate wouldn't be zero because the estimate is a random
variable with a normal distribution. It will be very close to 0.
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How we will choose FI1 and F2? In the way to get the min of sums squares. We can do it
numerically and focus on the fat that is a function of FI1 and F2 with a three-dimensional
parameter. We could just think all possible value for F1 and F2. This procedure many times. We
choose our estimate as the pair that give us the low value of this pairs. Than after we got all best
value of FI1 we got the minimum.

FI2 estimates that is -0.1, is better than having 0 as estimates. Lower Mssquare with 0.1 instead
of 0. With probability 1 is lower than the best possible AR(1). The answer is bigger aumentando
il numero di regressioni.

| estimate the bigger model and i test in this example: i estimate the AR(2) and i estimate FI2 ==
0. If the estimation of FI2 is not significant i will go with the AR(1) model. This works well on
regression. We'll be able to compare them, but how versus MA(2)??

MA(2) Yt = Eps + thetal epst-1 + theta2 Epst-2

The argument before is i can test and check if parameter is 0. It works when i test AR(2) with
AR(1). But can i compare AR(1) to MA(2)? There is no way to restrict the parameter of AR(1) and
get the model of MA(2). SO this model are not comparable. So this works when the model are
comparable. This is called nasty. So ARMA models cannot be compare is they are not
comparable.

There is an information of the like hood. | cannot check the like hood of MA and AR. Like hood
would be higher in the case of AR(2) between AR(1). We will compare the maximize like hood ad
we will think that the bigger model has an advantage: lower Min of sums square and bigger like
hood. And that's is presented on this Slide:

Model Selection - Information criteria
an automatic way to select g, p.

The idea: use "maximum likelihood" to choose p,q.
The problem: if you compare an ARMA (p, g) with

an ARMA(p + 1,g), the ARMA(p, q) has always less
likelihood.

This is because the estimate from the ARMA(p, q)
model maximises the likelihood with the
constraint that ¢ 1 = 0, while the ARMA(p + 1,9)
does not impose that constraint, so the

ARMA(p + 1,g) has higher maximum likelihood
unless $p+| = 0 exactly (which is an event with
probability zero in finite sample even when the
true ¢, = 0 actually) (Notice analogy with
regression here: when you increase the number of
regressors, the R? does not decrease, and in general
increases, even when the regressors are irrelevant).

ARMA(p,1) and ARMA(p+1, q) will have more like hood

The solution: add a penalty which increases with p
and q.

1C = 2£(B) + penalty

2(p+q)  AkaikeIC
penalty :
(InT)(p+¢q) BayesIC

BIC: consistent estimation of p, g.

AIC: inconsistent estimation of p, g (may select
larger than correct p, ¢ in large samples).

Both BIC and AIC may select smaller then correct
P, q in finite samples (this however is not
necessarily a bad thing: it may result, in small
samples, in smaller forecast MSE).

An alternative approach: of course, we can also
compare an ARMA(p,q) with an ARMA(p + 1,9),
or with an ARMA(p,q + 1), using a likelihood ratio
test. The criterion is then adding lags as long as the
likelihood ratio test statistic is above a user-chosen
critical value (for example, 5% significance would
have c.v. 3.84).

We have two penalties possibilities. Akaike information criteria and Bayes information criteria.

If we go to the example Z and verify this procedure:
Information Criteria example

Example: automatic lag selection for Z

p+q Lik® AIC BIC LR
iid 0 -17299 34598 34598
MA(1) 1 -14617 29435 30156 53.63
AR(1) 1 -14028 28257 289.78 65.41

ARMA(1,1) 2 13615 27631 29073 2004, 8260

MA(2) 2 13115 26630 280.72 30.05
AR(2) 2 13540 27479 289.21 9.77
MA(3) 3 -13096 26791 289.55 039

ARMA(1,2) 3  -13064 26729 28892 11.02¢%),1.010)

ARMA((21) 3 13537 27674 29837 157©),0057

AR(3) 3 413439 27478 29641 2,01
Notes:
(1): Log-likelihood adjusted for endpoints
(2): vs MA(1), (3): vs AR(1)
(4): vs ARMA(L,1), (5): vs MA(2)
(6): vs ARMA(1,1), (7): vs AR(2)

AR(1): asiincrease like hood increasing the penalty.

| can do it for all the model and parameters. This procedure makes me compute 10 model
instead of computing every value. Lowest value is 280 but now the best for the like hood.
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When we look at these SLIDE with numerical examples we wouldn't normally do that. We
understand how to compute AIC and BIC. There is one problem: if i have both AIC and BIC gave
me same number, but if i have different model and numbers? Every choice will be good, but we
will never do it in practise. We will have a process that will calculate this criteria. If i have
something that given me wo different answer how do i choose? | can choose thanks to this
information criteria. The BIC five a consistent estimation for p and q which means that if i have a
very large sample the BIC will return the right value of p and q but the AIC will not. If large
samples will select a model that is bigger than it needs to be. | will always choose for BIC then.
But if i ho for AIC is equally fine but BIC works better.

We find two ways to find p and g. But what is the value of p and g that i really want to use? |
want to use the p and g to simplify the model to get the best forecast. And something we're
better of simplify the model.

EXAMPLE

1. Adding non-necessary parameters results
in larger variation of the estimates, i.e. the
estimates (and the forecasts) are not precise.

We can see this easily in the AR(1) example:
Yo = ¢1Y, + &1 (model)

Suppose that we fitted the AR(2),
Yer... = a, Yi+ $2Y,_1 (forecast)
then
Yir = Ve = (61— 8, ) Yi+ (=8, ) Yer + &2
(forecast error)
Fitting the AR(2) instead of the AR(1) increases the

variance of (¢| - al) and adds the variance of ?b:

to the forecast error. This means that the forecast
MSE is larger when the AR(2) instead of the AR(1)
is used.

| will have the variance of the errors. The more parameter we estimates the more variance we
stick in the model. So, estimates a model that is bigger will increase variance for no reason.

Adding non-necessary parameters results
in larger variation of the estimates, ie the
estimates (and the forecasts) are not precise.
% Example 1. AR(1).

The series
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was generated as AR(1) with ¢ = 0.75.

* If we pretend not to know the true model, and
that we are uncertain between an AR(1) and an
AR(2), we estimate ¢ with both models.

Call a,_m(l) the estimate of ¢ when the AR(1) is

assumed, and 51_ RQ)” 31 1r(2) the estimates of ¢, and
¢> when the AR(2) is assumed. We found
Oy = 0.747, 140y = 0.729

so in this particular example $|.4 (1) 8ot closer to ¢,
so the AR(1) worked better.

| estimate model with AR(1) and i get 0.747 and i will make a forecast. If i have AR(2) i got 0.729
and is not good as the AR(1) in this particular example. Run the forecast and the forecast for
AR(1) is -0.93 and AR(2) -0.94 and the forecast for the smaller is better. How many parameter i
want to estimates? Not so many because the more i have the more is the variance! Don't go
past the MA(2). But this is just one experiment. If i do it 1000 times

* If we forecast Y71,
ARQ) Yrapr. = al_m(,)yr
ARQ) Yrr. = ¢
In our example,
Yra =-0.34
AR(1) Yruyr. = —0.93
ARQ2) Yrr.. = -0.94

so in this particular example the AR(1) gave the
best forecast.

LR YT+ Doy Y1

% Example 2. 1000s AR(1), an experiment.

Take 1000 different (random) similar series:

* the estimate ¢, , (1) Tesults to be closer to 0.75
than ¢, ;) in 58.7% of the cases;

f the standard error of the estimated values
®14rq1) 15 0.072, the standard error of the estimated
values al.{R(l) is 0.101.

* the forecast ¥7.i._from AR(1) results closer to
Yr.1 than from AR(2) in 54% of the cases;

% the standard error of the forecast error
Y1 — Yz from AR(1) is 0.968, the standard
error of the forecast error from AR(2) is 0.977.

Let's look at this example.

Sometimes, using a smaller model may

even give more precise forecasts than the

correct model.

% Example 3. AR(2), an experiment.

Suppose now that we have 1000 series from
Yi=¢p Y +¢2Yio+e,t=1,..T\T+1

with ¢, = 0.65, ¢ = 0.1 and we consider again:

using t = 1,... T to estimate ¢1,¢2, in AR(2) and
then forecast Yz.1;

using t = 1,... T to estimate ¢, in AR(1) and then
forecast Yr.;.

% when T = 100, the forecast Y7.,7_from AR(1)
results closer to Y7, than from AR(2) in 50% of the
cases;

% the standard error of the forecast error
Y71 — Yrapr... from AR(1) is 0.996, the standard
error of the forecast error from AR(2) is 0.997.

Of course, this depends on the fact that 7 is small
and ¢ is small: both things make estimating ¢:
and ¢ in the AR(2) not precise, and therefore the
forecast is better with an AR(1). With larger 7 and
larger ¢ the result would be better for the AR(2)
model.

The AR(1) is too small, so it bound to not to be consistent becuase impose thewrong value for
F12. But if we run the race the AR(1) has a better forcast. Why is that? Aldthoguht FI2 is 0.1 and
for AR(1) we stick 0. SO the price of having FI2 = 0 is lesser than the incresing the variance during
the estimations.

Another example

FI =-0.55 and Theta = 0.45

% Example 4. ARMA(1,1), an experiment.

Suppose now that we have 1000 series from
Yi=0Y 1 +&,+0g,t=1,.. T.T+1

with ¢ = —0.55, 8 = 0.45 and we consider:

using ¢ = 1,... T to estimate ¢, 6, in ARMA(1,1) and

then forecast Y7.1;

using ¢ = 1,... T forecast Y., assumung that Y, is

an independent process (the rationale for this is

that ¢ = —0.55, 6 = 0.45 is very close to ¢ = —0.5,

6 = 0.5, in which case we would have a common

factor so actually ¥, would be an independent

process).

% when 7 = 100, the forecast Y77 from iid

results closer to Y71 than from ARMA(1,1) in

51.3% of the cases;

% the standard error of the forecast error

Yr1 — Yrar.. from iid is 1.010, the standard error
of the forecast error from ARMA(1,1) is 1.028.

Of course, this depends on the fact that T'is small
and —¢ and 6 are close to each other. With larger T
the estimates would be more precise and the result
would be better for the ARMA(1,1) model.

The simplify win in sense of having a better forecast and a better version of the forecast.
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This example show that not only getting a model small, but also a model that is really smaller
than the real p and g. Smaller model tends to perform better than bigger ones. So when i go
back and i comparing the Bayes tends to get a smaller example. This means that it will going to
get the better forecast.

We call this model Parsimonious model, because we have to be parsimonious.

Parsimonious modelling

Large econometrics models tend to do badly in
terms of forecasting, and are outperfomed by small
ARMA models (Box & Jenkins).

Even in ARMA models, increasing the number of
parameters reduces the precision of with which
each parameter is estimated: this may worsen the
MSE. This is because when the parameters are
estimated, their variance contributed to the
variance of the forecast. Adding extra parameters
may then help to reduce or eliminate the forecast
bias, but the gain in terms of reduction bias? is
outweighted by the loss in increased variance of the
forecast.

Should balance the number of estimated
parameters and the number of observations.

Sometimes, Information Criteria have been
advocated also to select more parsimonious
models.

Last thing: suppose that i look at series Z and i look it's an MA(2) and i got estimate and select
model using criteria and so i estimate the model and i get the MA(2). This could be the end of
the story but we want the model to be small. The estimate of Eps (model validation).

Model validation
We just estimated B for an ARMA (p,q). We can
then compute the residuals
51<B> =Y, -C—- $|Y,_| —...—apY,_l,

- @18,4 (E) —. .—9481_4 (E)
(initialising the sequence setting
£p = €p1 =...= Epgs1 = 0as usual): if the data are
really ARMA(p, g), the residuals 81<B> should
approximate well the true &,.

Introduce for the residuals the abbreviation

b - (5)
and consider the sample autocorrelation of the
residuals

T

LT Z,:j-l E1€1
= 1 T A2
T ZI:I €

then the Portmanteau statistic for the sample

autocorrelation has limit distribution
k

2 2
TZ T =d Xi-(p+g)-

j=1

’

BIC and AIC is an estimation but there is not optimality. The test is takin this Eps and throw
them in the Portmanteau statistic. The final step is taking the residuals, calculate autocorrelation
and then compute the Portmanteau statistic.

EXAMPLE
Model validation

Correlograms of the residuals when we fitted
either a MA(1) ora MA(2) to Z.

For example, when k = 3 lags are selected, we can
compute the Portmanteau statistics as

MA(1) residuals: (asy. 3 under no autocorrelation)
100 x (0.285%2 +0.3212 +0.110%) = 19.637

MA(2) residuals: (asy. 7 under no autocorrelation)
100 x (0.039% +0.027% + 0.0412) = 0.3931

Under the assumption of no residual
autocorrelation, the Portmanteau statistic is
asymptotically y7 ., distributed.

In this example, this distribution is 3 when the
MA(1) is fitted, and x7 when the MA(2) is fitted.
The 5% critical values are 5.99 for the 3 and 3.84
for the y7.

Thus, the assumption that the residuals are not
autocorrelated when the MA(1) is fitted is rejected.
On the other hand, when the MA(2) is fitted, the
assumption is not rejected.

This backward test seals the estimation procedure. We check with the test at the end.



