Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor Design a learning algorithm that predict with small statistical risk

$$(D, \ell) \qquad \ell_d(h) = \mathbb{E}\left[\,\ell(y), h(x)\,\right]$$

were D is unknown

$$\ell(y, \hat{y}) \in [0, 1] \quad \forall y, \hat{y} \in Y$$

We cannot compute statistical risk of all predictor.

We assume statistical loss is bounded so between 0 and 1. Not true for all losses (like logarithmic).

Before design a learning algorithm with lowest risk, How can we estimate risk?

We can use test error \rightarrow way to measure performances of a predictor h. We want to link test error and risk.

Test set $S' = \{(x'_1, y'_1)...(x'_n, y'_n)\}$ is a random sample from DHow can we use this assumption?

Go back to the definition of test error

Sample mean (IT: Media campionaria)

$$\hat{\ell}_s(h) = \frac{1}{n} \cdot \sum_{t=1}^n \ell(\hat{y}_t, h(x'_t))$$

i can look at this as a random variable $\ell(y'_t, h(x'_t))$

$$\mathbb{E}\left[\ell(y'_t, h(x'_t))\right] = \ell_D(h) \longrightarrow risk$$

Using law of large number (LLN), i know that:

$$\ell \longrightarrow \ell_D(h) \qquad as \quad n \to \infty$$

We cannot have a sample of $n = \infty$ so we will introduce another assumption: the Chernoff-Hoffding bound

1.1 Chernoff-Hoffding bound

 $Z_1, ..., Z_n$ iid random variable $\mathbb{E}[Z_t] = u$

all drawn for the same distribution

$$t = 1, ..., n$$
 and $0 \le Z_t \le 1$ $t = 1, ..., n$ then $\forall \varepsilon > 0$

$$\mathbb{P}\left(\frac{1}{n} \cdot \sum_{t=1}^{n} z_t > u + \varepsilon\right) \le e^{-2\varepsilon^2 n} \qquad or \qquad \mathbb{P}\left(\frac{1}{n} \cdot \sum_{t=1}^{n} z_t < u + \varepsilon\right) \le e^{-2\varepsilon^2 n}$$

as sample size then \downarrow

$$Z_t = \ell(Y'_t, h(X'_t)) \in [0, 1]$$

 $(X'_1, Y'_1)...(X'_n, Y'_N)$ are *iid* therefore, $\ell(Y'_t, h(X'_t))$ t = 1, ..., n are also *iid* We are using the bound of e to bound the deviation of this.

1.2 Union Bound

Union bound: a collection of event not necessary disjoint, then i know that probability of the union of this event is the at most the sum of the probabilities of individual events

$$A_1, ..., A_n$$
 $\mathbb{P}(A_1 \cup ... \cup A_n) \le \sum_{t=1}^n \mathbb{P}(A_t)$

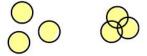


Figure 1.1: Example

that's why \leq

$$\mathbb{P}\left(\left|\hat{\ell}_{s'}\left(h\right)-\ell_{D}\left(h\right)\right| > \varepsilon\right)$$

This is the probability according to the random draw of the test set.

If test error differ from the risk by a number epsilon > 0. I want to bound the probability. This two thing will differ by more than epsilon. How can i use the Chernoff bound?

$$|\hat{\ell}_{s'}(h) - \ell_D(h)| > \varepsilon \quad \Rightarrow \quad \hat{\ell}_{s'}(h) - \ell_D(h) > \varepsilon \quad \lor \quad \hat{\ell}_D(h) - \ell_{s'}(h) > \varepsilon$$

Figure 1.2: Example

$$\begin{aligned} A, B & A \Rightarrow B & \mathbb{P}(A) < \mathbb{P}(B) \\ \mathbb{P}\left(\left|\hat{\ell}_{s'}\left(h\right) - \ell_{D}\left(h\right)\right| > \varepsilon\right) \leq \mathbb{P}\left(\left|\hat{\ell}_{s'}\left(h\right) - \ell_{D}\left(h\right)\right|\right) & \cup & \mathbb{P}\left(\left|\hat{\ell}_{D}\left(h\right) - \ell_{s'}\left(h\right)\right|\right) \leq \\ \leq \mathbb{P}\left(\hat{\ell}_{s'} > \ell_{D}\left(h\right) + \varepsilon\right) + \mathbb{P}\left(\hat{\ell}_{s'} < \ell_{D}\left(h\right) - \varepsilon\right) & \leq & 2 \cdot e^{-2\varepsilon^{2}n} \Rightarrow we \ call \ it \ \delta \\ & \varepsilon = \sqrt{\frac{1}{2 \cdot n} \ln \frac{2}{\delta}} \end{aligned}$$

The two events are disjoint

This mean that probability of this deviation is at least delta!

$$|\hat{\ell}_{s'}(h) - \ell_D(h)| \leq \sqrt{\frac{1}{2 \cdot n} \ln \frac{2}{\delta}}$$
 with probability at least $1 - \delta$

Test error of true estimate is going to be good for this value (δ) Confidence interval for risk at confidence level 1-delta.

$$(confidence interime) = z \sqrt{\frac{2}{2m} lm \frac{z}{5}}$$

 $\hat{l}_{s}(l_{n})$

Figure 1.3: Example

I want to take $\delta = 0,05$ so that $1 - \delta$ is 95%. So test error is going to be an estimate of the true risk which is precise that depend on how big is the test set (n).

As n grows I can pin down the position of the true risk.

This is how we can use probability to make sense of what we do in practise. If we take a predictor h we can compute the risk error estimate. We can measure how accurate is our risk error estimate. Test error is an estimate of risk for a given predictor (h).

$$\mathbb{E}\left[\ell\left(Y_{t}^{\prime},h\left(X_{t}^{\prime}\right)\right)\right]=\ell_{D}\left(h\right)$$

h is fixed with respect to $S' \longrightarrow h$ does not depend on the test set. So learning algorithm which produce h not have access to test set. If we use test set we break down this equation.

Now, how to **build a good algorithm?** Training set $S = \{(x_1, y_1) \dots (x_m, y_m)\}$ random sample $A \qquad A(S) = h$ predictor output by A given S where A is learning algorithm as function of training set S. $\forall S \qquad A(S) \in H \qquad h^* \in H$

 $\ell_D(h^*) = \min \ell_D(h)$ $\hat{\ell}_s(h^*)$ is closed to $\ell_D(h^*) \longrightarrow$ it is going to have small error where $\ell_D(h^*)$ is the training error of h^*

$$\sim$$
 $l_{0}(l_{1})$ $l_{0}(l_{1})$

Figure 1.4: Example

This guy $\ell_D(h^*)$ is closest to 0 since optimum

Figure 1.5: Example

In risk we get opt in h^* but in empirical one we could get another h' better than h^+

In order to fix on a concrete algorithm we are going to take the empirical Islam minimiser (ERM) algorithm. $A ext{ is } ERM ext{ on } H ext{ (A) } = \hat{h} = (\in) argmin \hat{\ell}_S(h)$

Once I piack \hat{h} i can look at training error of ERM

$$\hat{\ell}_S\left(\hat{h}\right)of\hat{h} = A(S)$$

where $\hat{\ell}_S$ is the training error

Should $\hat{\ell}_S(\hat{h})$ be close to $\ell_D(\hat{h})$? I'm interested in empirical error minimiser and do a trivial decomposition.

$$\ell_d\left(\hat{h}
ight) = \ell_D\left(\hat{h}
ight) - \ell_d\left(h^*
ight) + \longrightarrow ext{Variance error} \Rightarrow ext{Overfitting} \ + \ell_d\left(h^+
ight) - \ell_d\left(f^*
ight) + \longrightarrow ext{Bias error} \Rightarrow ext{Underfitting} \ + \ell_D\left(f^*
ight) \longrightarrow ext{Bayes risk} \Rightarrow ext{Unavoidable}$$

Even the best predictor is going to suffer that

$$f^* \text{ is } \textbf{Bayes } \textbf{Optimal } for (D, \ell)$$
$$\forall h \qquad \ell_D(h) \ge \ell_D(f^*)$$
If $f^* \notin H$ then $\ell_D(h^*) > \ell_D(f^*)$

If i pick h^* I will pick some error because we are not close enough to the risk.

We called this component **bias error**.

Bias error is responsible for underfitting (when training and test are close to each but they are both high :() $\,$

Variance error over fitting

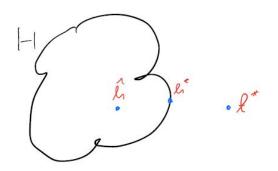


Figure 1.6: Draw of how \hat{h} , h^* and f^* are represented

Variance is a random quantity and we want to study this. We can always get risk from training error.

1.3 Studying overfitting of a ERM

We can bound it with probability. I add and subtract trivial traning error $\hat{\ell}_{S}(h)$

$$\ell_{D}\left(\hat{h}\right) - \ell_{d}\left(h^{*}\right) = \ell_{D}\left(\hat{h}\right) - \hat{\ell}_{S}\left(h\right) + \hat{\ell}_{S}\left(\hat{h}\right) - \ell_{D}\left(h^{*}\right) \leq \\ \leq \ell_{D}\left(\hat{h}\right) - \hat{\ell}_{S}\left(\hat{h}\right) + \hat{\ell}_{S}\left(h^{*}\right) - \ell_{D}\left(h^{*}\right) \leq \\ \leq |\ell_{D}\left(\hat{h}\right) - \hat{\ell}_{S}\left(h\right)| + |\hat{\ell}_{S}\left(h^{+}\right) - \ell_{D}\left(h^{*}\right)| \leq \\ \leq 2 \cdot \max |\hat{\ell}_{S}\left(h\right) - \ell_{D}\left(h\right)|$$

(no probability here) **Any given** \hat{h} **minising** $\hat{\ell}_{S}(h)$

Now assume we have a large deviation

$$\begin{aligned} Assume \quad \ell_D\left(\hat{h}\right) - \ell_D\left(h^*\right) > \varepsilon \quad \Rightarrow \quad \max |\hat{\ell}_S\left(h\right) - \ell_D\left(h\right)| > \frac{\varepsilon}{2} \\ \text{We know } \ell_d\left(\hat{h}\right) - \ell_D\left(h^*\right) \quad \le \quad 2 \cdot \max |\hat{\ell}_S\left(h\right) - \ell_D\left(h\right)| \quad \Rightarrow \\ \Rightarrow \quad \exists h \in H \qquad |\hat{\ell}_S\left(h\right) - \ell_D\left(h\right)| > \frac{3}{2} \qquad \Rightarrow \end{aligned}$$

with $|H| < \infty$

$$\Rightarrow U\left(\left|\hat{\ell}_{S}\left(h\right)-\ell_{D}\left(h\right)\right|\right) > \frac{3}{2}$$

$$\mathbb{P}\left(\ell_{D}\left(\hat{h}\right) - \ell_{D}\left(h^{*}\right) > \varepsilon\right) \leq \mathbb{P}\left(U\left(\left|\hat{\ell}_{S}\left(h\right) - \ell_{D}\left(h\right)\right|\right) > \frac{3}{2}\right) \leq \sum_{h \in H} \mathbb{P}\left(\left|\hat{\ell}_{S}\left(h\right) - \ell_{D}\left(h\right)\right| > \frac{3}{2}\right) \leq \sum_{h \in H} 2 \cdot e^{-2\left(\frac{\varepsilon}{2}\right)^{2}m} \leq \left(1 - \frac{1}{2}\right)^{2} + \frac{1}{2}\left(1 - \frac{1}{2}\right)^{2}\right) \leq \left(1 - \frac{1}{2}\right)^{2} + \frac{1}{2}\left(1 - \frac{1}{2}\right)^{2}\right)$$

Union Bound Chernoff. Hoffding bound $(\mathbb{P}(...))$

$$\leq 2 \cdot |H| e^{-\frac{\varepsilon^2}{2}m}$$

Solve for ε $2 \cdot |H| e^{-\frac{\varepsilon^2}{2}m} = \delta$

Solve for
$$\varepsilon \longrightarrow \varepsilon = \sqrt{\frac{2}{m} \cdot \ln \cdot \frac{2|H|}{\delta}}$$

$$\ell_D\left(\hat{h}\right) - \ell_D\left(h^*\right) \le \sqrt{\frac{2}{m} \cdot \ln \cdot \frac{2|H|}{\delta}}$$

With probability at least $1 - \delta$ with respect to random draw of S. We want $m >> ln|H| \longrightarrow$ in order to avoid overfitting