
Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor
Design a learning algorithm that predict with small statistical risk

(D, `) `d(h) = E [ `(y), h(x) ]

were D is unknown
`(y, ŷ) ∈ [0, 1] ∀y, ŷ ∈ Y

We cannot compute statistical risk of all predictor.
We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).
Before design a learning algorithm with lowest risk, How can we estimate
risk?
We can use test error → way to measure performances of a predictor h. We
want to link test error and risk.
Test set S ′ = {(x′1, y′1)...(x′n, y′n)} is a random sample from D
How can we use this assumption?
Go back to the de�nition of test error

Sample mean (IT: Media campionaria)

ˆ̀
s(h) =

1

n
·

n∑
t=1

`(ŷt, h(x
′
t))

i can look at this as a random variable `(y′t, h(x
′
t))

E [ `(y′t, h(x
′
t))] = `D(h) −→ risk

Using law of large number (LLN), i know that:

ˆ̀−→ `D(h) as n→∞

We cannot have a sample of n =∞ so we will introduce another assumption:
the Cherno�-Ho�ding bound

1.1 Cherno�-Ho�ding bound

Z1, ..., Zn iid random variable E [Zt] = u

all drawn for the same distribution

t = 1, ..., n and 0 ≤ Zt ≤ 1 t = 1, ..., n then ∀ε > 0
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P

(
1

n
·

n∑
t=1

zt > u+ ε

)
≤ e−2 ε

2 n or P

(
1

n
·

n∑
t=1

zt < u+ ε

)
≤ e−2 ε

2 n

as sample size then ↓

Zt = `(Y ′t , h(X
′
t)) ∈ [0, 1]

(X ′1, Y
′
1)...(X

′
n, Y

′
N) are iid therefore,

` (Y ′t , h (X
′
t)) t = 1, ..., n are also iid

We are using the bound of e to bound the deviation of this.

1.2 Union Bound

Union bound: a collection of event not necessary disjoint, then i know that
probability of the union of this event is the at most the sum of the probabil-
ities of individual events

A1, ..., An P (A1 ∪ ... ∪ An) ≤
n∑

t=1

P (At)

Figure 1.1: Example

that's why ≤

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
This is the probability according to the random draw of the test set.

If test error di�er from the risk by a number epsilon > 0. I want to bound
the probability. This two thing will di�er by more than epsilon. How can i
use the Cherno� bound?

| ˆ̀s′ (h)− `D (h) | > ε ⇒ ˆ̀
s′ (h)− `D (h) > ε ∨ ˆ̀

D (h)− `s′ (h) > ε
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Figure 1.2: Example

A,B A⇒ B P (A) < P (B)

P
(
| ˆ̀s′ (h)− `D (h) | > ε

)
≤ P

(
|ˆ̀s′ (h)− `D (h) |

)
∪ P

(
|ˆ̀D (h)− `s′ (h) |

)
≤

≤ P
(
ˆ̀
s′ > `D (h) + ε

)
+P
(
ˆ̀
s′ < `D (h)− ε

)
≤ 2·e−2 ε2 n ⇒ we call it δ

ε =

√
1

2 · n
ln

2

δ

The two events are disjoint

This mean that probability of this deviation is at least delta!

| ˆ̀s′ (h)− `D (h) | ≤
√

1

2 · n
ln

2

δ
with probability at least 1− δ

Test error of true estimate is going to be good for this value (δ)
Con�dence interval for risk at con�dence level 1-delta.

Figure 1.3: Example

I want to take δ = 0, 05 so that 1− δ is 95%. So test error is going to be an
estimate of the true risk which is precise that depend on how big is the test
set (n).
As n grows I can pin down the position of the true risk.
This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.
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We can measure how accurate is our risk error estimate.
Test error is an estimate of risk for a given predictor (h).

E [ ` (Y ′t , h (X
′
t)) ] = `D (h)

h is �xed with respect to S' −→ h does not depend on the test set. So
learning algorithm which produce h not have access to test set.
If we use test set we break down this equation.

Now, how to build a good algorithm?
Training set S = {(x1, y1) ... (xm, ym)} random sample
A A (S) = h predictor output by A given S where A is learning algo-
rithm as function of traning set S.
∀S A (S) ∈ H h∗ ∈ H

`D (h∗) = min `D (h) ˆ̀
s (h

∗) is closed to `D (h∗) −→ it is going to have small error

where `D (h∗) is the training error of h∗

Figure 1.4: Example

This guy `D (h∗) is closest to 0 since optimum

Figure 1.5: Example

In risk we get opt in h∗ but in empirical one we could get another h′ better
than h+

In order to �x on a concrete algorithm we are going to take the empiri-
cal Islam minimiser (ERM) algorithm.
A is ERM on H (A) = ĥ = (∈) argmin ˆ̀

S (h)
Once I piack ĥ i can look at training error of ERM

ˆ̀
S

(
ĥ
)
ofĥ = A(S)
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where ˆ̀
S is the training error

Should ˆ̀
S

(
ĥ
)
be close to `D

(
ĥ
)
?

I'm interested in empirical error minimiser and do a trivial decomposition.

`d

(
ĥ
)
= `D

(
ĥ
)
− `d (h∗)+ −→ Variance error ⇒ Over�tting

+ `d
(
h+
)
− `d (f ∗)+ −→ Bias error ⇒ Under�tting

+ `D (f ∗) −→ Bayes risk ⇒ Unavoidable

Even the best predictor is going to su�er that

f ∗ is Bayes Optimal for (D, `)

∀h `D (h) ≥ `D (f ∗)

If f ∗ 6∈ H then `D (h∗) > `D(f
∗)

If i pick h∗ I will pick some error because we are not close enough to the
risk.
We called this component bias error.
Bias error is responsible for under�tting (when training and test are close to
each but they are both high :( )
Variance error over �tting

Figure 1.6: Draw of how ĥ, h∗ and f ∗ are represented

Variance is a random quantity and we want to study this. We can always
get risk from training error.
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1.3 Studying over�tting of a ERM

We can bound it with probability.
I add and subtract trivial traning error ˆ̀

S (h)

`D

(
ĥ
)
− `d (h∗) = `D

(
ĥ
)
− ˆ̀

S (h) + ˆ̀
S

(
ĥ
)
− `D (h∗) ≤

≤ `D

(
ĥ
)
− ˆ̀

S

(
ĥ
)
+ ˆ̀

S (h
∗)− `D (h∗) ≤

≤ | `D
(
ĥ
)
− ˆ̀

S (h) |+ | ˆ̀S
(
h+
)
− `D (h∗) | ≤

≤ 2 ·max |ˆ̀S (h)− `D (h) |
(no probability here)
Any given ĥ minising ˆ̀

S (h)

Now assume we have a large deviation

Assume `D

(
ĥ
)
− `D (h∗) > ε ⇒ max | ˆ̀S (h)− `D (h) | > ε

2

We know `d

(
ĥ
)
− `D (h∗) ≤ 2 ·max | ˆ̀S (h)− `D (h) | ⇒

⇒ ∃h ∈ H | ˆ̀S (h)− `D (h) | > 3

2
⇒

with |H| <∞
⇒ U

(
| ˆ̀S (h)− `D (h) |

)
>

3

2

P
(
`D

(
ĥ
)
− `D (h∗) > ε

)
≤ P

(
U
(
| ˆ̀S (h)− `D (h) |

)
>

3

2

)
≤

≤
∑
h∈H

P
(
| ˆ̀S (h)− `D (h) | > 3

2

)
≤

∑
h∈H

2 · e−2 (
ε
2)

2
m ≤

Union Bound Cherno�. Ho�ding bound (P (...))

≤ 2 · |H|e−
ε2

2
m

Solve for ε 2 · |H|e− ε2

2
m = δ

Solve for ε −→ ε =

√
2

m
· ln ·2|H|

δ
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`D

(
ĥ
)
− `D (h∗) ≤

√
2

m
· ln ·2|H|

δ

With probability at least 1− δ with respect to random draw of S.
We want m >> ln|H| −→ in order to avoid over�tting
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