
slidenumbers: true
footer: A. Ferrara. Language models. Part 4: Word embeddings. email, corse website, slack, github

Information Retrieval

[fit]Language
models

Part 4: Word Embeddings. Prof. Alfio Ferrara
Master Degree in Computer Science

Master Degree in Data Science and Economics

Words as vectors
Representing words as vectors in the multidimensional space defined by the other words is a very
effective way of embedding words in a vector space representing the word meaning.

Moreover, it makes it possible to:

compute distances and similarity between words
represent documents as regions of the feature (i.e., words) space
providing a rich input for training neural language models (see Part 5 of these lectures)

Naive embeddings
A natural but naive way of embedding a set of words is to create an embedding matrix

 where each entry represents a relation between words and in a corpus.

Word relations may be

co-occurrence: is the number of times appear within words from in documents
pmi: the pointwise mutual information associated with the pair
context: and appear in the same context according to a context model such as skip-
gram models or continuous bag-of-words

However, this kind of embedding has two main limitations: i) very large number of dimensions
and ii) sparsity

Dense embeddings

mailto:alfio.ferrara@unimi.it
https://aferrarair.ariel.ctu.unimi.it/
https://github.com/afflint/inforet

In order to deal with the issues of dimensionality and sparsity, we aim at obtaining dense word
vectors.

This can be done by matrix factorization or machine learning

The goal of reducing the dimensionality is not only related to the cost of processing high
dimensional and sparse data, but also to minimize the impact of zero and outliers

[fit] Linguistic and Philosophical Issues
(I)

What is the semantics, the meaning of a word?

A common sense hypothesis is to say that the meaning of a word is the real object that word
represents. In this framework, words that are not known to be mapped on real objects (e.g., new
words for a reader or just random strings of characters like xvul) have no meaning at all.

However, this hypothesis is quite useless in a digital context, where we just have words, not real
objects.

Linguistic and Philosophical issues (II)
An alternative approach if the Distributional Hypothesis about language and word meaning that

states that words that occur in the same contexts tend to have similar meanings. 1 In other

words, you shall know a word by the company it keeps . 2

According to this hypothesis, any random word (i.e., xvul) may have a meaning that we can infer
from the other words in the context is appears. Distributional semantics is the research are
interested in quantifying semantic similarities between linguistic items according to their
distributional properties in large text corpora.

One of the main advantages for us is that this way the meaning of words is quantifiable and
measurable in terms of distances from the other words in a corpus.

Weight contextual relations
Given a word and a word in the context of , we need thus to quantify the relation

 and define the score in the emebedding matrix.

We can do this by just counting the occurrences of (i.e., how many times appears in
the context of) or taking the normalized count:

The drawback of this solution is to overestimate frequent words. So pairs like 'the apple' will have
higher scores than 'red apple', although the last one is more informative.

–––

Pointwise Mutual Information
A different option is to evaluate the relation between the words joint probability and their
marginal probability through the Pointwise Mutual Information (PMI)

or, to avoid negative values, positive PMI,

A drawback of PMI is that it tends to assign high value to rare events. It is therefore advisable to
apply a count threshold before using the PMI metric, or to otherwise discount rare events.

Distributed word representation
Count-based methods (such as PMI) represent a word as a vector where each dimension
corresponds to a word in the corpus dictionary, so that represents the score of the relation
between and a word (for example,). Such vectors are typically sparse
and is usually large.

On the opposite, the distributed representation of words meaning associates each word with
a dense vector with . The vector dimensions do not represent words nor concepts,
and we are not allowed to interpret them as concepts.

The semantics of words is completely represented by the mutual position of words in the vector
space. In particular, we want to preserve the proximity assumption for which if two word vectors
are close one to the other, then the two words have a similari meaning.

Neural network models (I)
An example is given in the work of Bengio at al. 3 We exploit a neural network having as input
an -gram of words and having as output a probability distribution over the next word.

Preliminary set up: The training set is a sequence of words, where is a word in
the corpus vocabulary .

The objective function is (for a -gram), under the
constraint that, for any

Neural network models (II)

Neural network models (II)
The function is decomposed in two parts:

1. A mapping from any word to a vector . The mapping is then a matrix
 of free parameters and represents the distributed feature vectors of each word in

the vocabulary;
2. A probability function over words, that is a function that maps and input sequence of word

vectors to a conditional probability distribution for the next word . The
output is then a vector such that

According to the decomposition:

Neural network models (III)
The function is then implemented by a neural network that has its own parameters . The
complete set of parameters is then . Learning is the performed by stochastic gradient
ascent (with as learning rate) as:

For an example on from scratch implementation see GitHub

https://github.com/afflint/inforet/blob/master/thematic-studies/language-models/L05-simple-neural-model.ipynb

Neural language models for word embeddings
As we have seen, the neural language model 'learns' the embedding as part of its parameter
estimation process.

From the work of Bengio, other models have been proposed in particular by relaxing the
probabilistic output requirement.

Instead of computing a probability distribution over target words given a context, the Collobert
and Weston model only attempts to assign a score to each word, such that the correct word

scores above incorrect ones. 4

Word2vec
Word2vec is a method for efficiently represent words in vector space. 5

It uses either the Continuous Bag of Words (CBOW) or the Skip-gram models for representing
the word context and two different optimization objectives that are Negative-Sampling and
Hierarchical Softmax. We will se Negative-Sampling.

The image is taken from the online Word2Vec Tutorial (link) where it is possible too find a intuitive
view of the Word2vec main ideas.

Word2vec
Consider a set of correct word pairs (e.g., valid bigrams) and a set of bad word pairs.
The goal of the algorithm is to estimate . The objective is to maximize the log-
likelihood of the pairs in

where, given the score

Word2vec
The positive samples are taken from the corpus, while the negative ones are sampled
according to the word frequency in the corpus.

CBOW: the scoring function is defined as for a word context of words

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Skip-gram: in the skip-gram variant, assumes that the elements of the context are all
independent, such that

Word2vec
In practice, Word2vec is implemented by a neural network composed by a input layer, a

 hidden layer, and a output layer, where is the size of the vocabulary (is the
one-hot encoding representation of words) and is the dimension of the embedding vectors.

The hidden layer stores the weights that are used to feed the output layer and that are learned by
the network. See the example in the word2vec tutorial:

Word2vec
The output layer is a softmax regression classifier that given the one-hot vector of a word and
the weights in the hidden layer estimates the probability of each word to be a word in the
context of .

The main idea of Word2vec is to discard the input and the output layers and keep the hidden
layer as the word embedding dense matrix of dimension .

The main interesting property of Word2vec is that it assigns similar vectors to words that have
similar contexts. Why? Suppose to have and such that the word appears in
the contexts of both and . Since the target to estimate for and is the same, the only
way the network has to assign the same prediction to and is to learn the same weights in

 and .

GloVe
GloVe 6 stands for Global vectors and this summarizes them main idea of the algorithm. We have
seen that Word2vec relies only on local information about a word because the word semantics is
only affected by the surrounding words.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Glove starts instead from a global co-occurence matrix having the intuition that ratios of word-
word co-occurrence probabilities have the potential for encoding some form of meaning (see the
overview on the GloVe web page).

By learning the vectors that are good for predicting co-occurrences instead of single words (like in
Word2vec) we inject more information in the final word embedding vectors.

GloVe
The main intuition of GloVe is represented by its objective function that is

where represent bias parameters that are learned together with the word vectors.

In other terms, the training objective of GloVe is to learn word vectors such that their dot product
equals the logarithm of the words' probability of co-occurrence. Owing to the fact that the logarithm of
a ratio equals the difference of logarithms, this objective associates (the logarithm of) ratios of co-
occurrence probabilities with vector differences in the word vector space. Because these ratios can
encode some form of meaning, this information gets encoded as vector differences as well. link

Using word embeddings
Word vectors can be used in two ways: training a specific word embedding model (Word2vec,
GloVe or others) for a corpus (assuming to have enough contents) or exploit a pre-trained model
(trained usually over milions or even bilions of data) to embed the corpus words

Word embedding is extremely useful for a variety of applications:

Text search and retrieval
Measuring the semantic distance among words
Feeding a neural network language model (see next lecture)
Text classification, either supervised or unsupervised

Some interesting properties of word embedding
vectors

Similarity among group of words: thanks to linearity, computing the average cosine similarity
from a group of words to all other words can be calculated as

Analogy

Example

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

 1 2 3 4 5 6 7

genre crime mystery romance thriller action drama comedy

lines 75435 51662 77518 124082 70257 172557 94575

sequences 1313534 875790 1300360 2060898 1142600 3042069 1557657

1. Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162. ↩

2. John R. Firth. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis, Special volume of the Philological Society, pages 1–
32. Firth, John Rupert, Haas William, Halliday, Michael A. K., Oxford, Blackwell Ed., 1957. ↩

3. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of machine learning research, 3(Feb),
1137-1155. ↩

4. Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing: Deep neural networks with multitask learning.
In Proceedings of the 25th international conference on Machine learning (pp. 160-167). ↩

5. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781. ↩

6. Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). ↩

Example
As an example, we will train our word embedding model on the Movie Dialogs dataset. However,
a single movie does not provide enough text to have meaningful results. Thus, we will train a
different model for each of the 7 genres having at least 50 000 lines of text, by aggregating movies
of that genre into a unique corpus.

Text sequences have been generated using 2-skip-3-grams. See the complete example on GitHub

https://arxiv.org/abs/1301.3781
https://github.com/afflint/inforet/blob/master/thematic-studies/language-models/L04-wordembeddings.ipynb

	Information Retrieval
	[fit]Language
models
	Part 4: Word Embeddings. Prof. Alfio Ferrara
	Words as vectors
	Naive embeddings
	Dense embeddings
	[fit] Linguistic and Philosophical Issues (I)
	Linguistic and Philosophical issues (II)
	Weight contextual relations
	Pointwise Mutual Information
	Distributed word representation
	Neural network models (I)
	Neural network models (II)
	Neural network models (III)
	Neural language models for word embeddings
	Word2vec
	Word2vec
	Word2vec
	Word2vec
	Word2vec
	GloVe
	GloVe
	Using word embeddings
	Some interesting properties of word embedding vectors
	Example

