
slidenumbers: true
footer: A. Ferrara. Language models. Part 4: Word embeddings. email, corse website, slack, github

 

Information Retrieval  

[fit]Language
models

 

Part 4: Word Embeddings. Prof. Alfio Ferrara  
Master Degree in Computer Science

Master Degree in Data Science and Economics

Words as vectors  
Representing words as vectors in the multidimensional space defined by the other words is a very 
effective way of embedding words in a vector space representing the word meaning.

Moreover, it makes it possible to:

compute distances and similarity between words
represent documents as regions of the feature (i.e., words) space
providing a rich input for training neural language models (see Part 5 of these lectures)

Naive embeddings  
A natural but naive way of embedding a set of  words is to create an embedding matrix 

 where each entry  represents a relation between words  and  in a corpus.

Word relations may be

co-occurrence:  is the number of times  appear within  words from  in documents
pmi: the pointwise mutual information associated with the pair 
context:  and  appear in the same context according to a context model such as skip-
gram models or continuous bag-of-words

However, this kind of embedding has two main limitations: i) very large number of dimensions 
and ii) sparsity

Dense embeddings  
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In order to deal with the issues of dimensionality and sparsity, we aim at obtaining dense word 
vectors.

This can be done by matrix factorization or machine learning

The goal of reducing the dimensionality is not only related to the cost of processing high 
dimensional and sparse data, but also to minimize the impact of zero and outliers 

[fit] Linguistic and Philosophical Issues
(I)

 

What is the semantics, the meaning of a word?

A common sense hypothesis is to say that the meaning of a word is the real object that word 
represents. In this framework, words that are not known to be mapped on real objects (e.g., new 
words for a reader or just random strings of characters like xvul) have no meaning at all.

However, this hypothesis is quite useless in a digital context, where we just have words, not real 
objects.

Linguistic and Philosophical issues (II)  
An alternative approach if the Distributional Hypothesis about language and word meaning that 

states that words that occur in the same contexts tend to have similar meanings. 1  In other 

words, you shall know a word by the company it keeps . 2

 

 

According to this hypothesis, any random word (i.e., xvul) may have a meaning that we can infer 
from the other words in the context is appears. Distributional semantics is the research are 
interested in quantifying semantic similarities between linguistic items according to their 
distributional properties in large text corpora.

One of the main advantages for us is that this way the meaning of words is quantifiable and 
measurable in terms of distances from the other words in a corpus.

Weight contextual relations  
Given a word  and a word  in the context of , we need thus to quantify the relation 

 and define the score  in the emebedding matrix.

We can do this by just counting the occurrences of  (i.e., how many times  appears in 
the context of ) or taking the normalized count:



The drawback of this solution is to overestimate frequent words. So pairs like 'the apple' will have 
higher scores than 'red apple', although the last one is more informative.

–––

Pointwise Mutual Information  
A different option is to evaluate the relation between the words joint probability and their 
marginal probability through the Pointwise Mutual Information (PMI)

or, to avoid negative values, positive PMI, 

A drawback of PMI is that it tends to assign high value to rare events. It is therefore advisable to 
apply a count threshold before using the PMI metric, or to otherwise discount rare events.

Distributed word representation  
Count-based methods (such as PMI) represent a word as a vector  where each dimension 
corresponds to a word in the corpus dictionary, so that  represents the score of the relation 
between  and a word  (for example, ). Such vectors are typically sparse 
and  is usually large.

On the opposite, the distributed representation of words meaning associates each word  with 
a dense vector  with . The vector dimensions do not represent words nor concepts, 
and we are not allowed to interpret them as concepts. 

The semantics of words is completely represented by the mutual position of words in the vector 
space. In particular, we want to preserve the proximity assumption for which if two word vectors 
are close one to the other, then the two words have a similari meaning.

Neural network models (I)  
An example is given in the work of Bengio at al. 3  We exploit a neural network having as input 
an -gram of words  and having as output a probability distribution over the next word. 

 

Preliminary set up: The training set is a sequence  of words, where  is a word in 
the corpus vocabulary .

The objective function is  (for a -gram), under the 
constraint that, for any 

Neural network models (II)



Neural network models (II)  
The function  is decomposed in two parts:

1. A mapping from any word  to a vector . The mapping is then a matrix 
 of free parameters and represents the distributed feature vectors of each word in 

the vocabulary;
2. A probability function over words, that is a function  that maps and input sequence of word 

vectors  to a conditional probability distribution for the next word . The 
output is then a vector  such that 

According to the decomposition:

Neural network models (III)  
The function  is then implemented by a neural network that has its own parameters . The 
complete set of parameters is then . Learning is the performed by stochastic gradient 
ascent (with  as learning rate) as:

  

For an example on from scratch implementation see GitHub

https://github.com/afflint/inforet/blob/master/thematic-studies/language-models/L05-simple-neural-model.ipynb


Neural language models for word embeddings  
As we have seen, the neural language model 'learns' the embedding as part of its parameter 
estimation process.

From the work of Bengio, other models have been proposed in particular by relaxing the 
probabilistic output requirement.

Instead of computing a probability distribution over target words given a context, the Collobert 
and Weston model only attempts to assign a score to each word, such that the correct word 

scores above incorrect ones. 4  

Word2vec  
Word2vec is a method for efficiently represent words in vector space. 5  



It uses either the Continuous Bag of Words (CBOW) or the Skip-gram models for representing 
the word context and two different optimization objectives that are Negative-Sampling and 
Hierarchical Softmax. We will se Negative-Sampling.

The image is taken from the online Word2Vec Tutorial (link) where it is possible too find a intuitive 
view of the Word2vec main ideas.

Word2vec  
Consider a set  of correct word pairs  (e.g., valid bigrams) and a set  of bad word pairs. 
The goal of the algorithm is to estimate . The objective is to maximize the log-
likelihood of the pairs in 

where, given the score 

Word2vec  
The positive samples  are taken from the corpus, while the negative ones are sampled 
according to the word frequency in the corpus.

CBOW: the scoring function is defined as  for a word context of  words

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Skip-gram: in the skip-gram variant, assumes that the elements of the context are all 
independent, such that

Word2vec  
In practice, Word2vec is implemented by a neural network composed by a  input layer, a 

 hidden layer, and a  output layer, where  is the size of the vocabulary (  is the 
one-hot encoding representation of words) and  is the dimension of the embedding vectors.

The hidden layer stores the weights that are used to feed the output layer and that are learned by 
the network. See the example in the word2vec tutorial:

 

Word2vec  
The output layer is a softmax regression classifier that given the one-hot vector of a word  and 
the weights in the hidden layer estimates the probability of each word  to be a word in the 
context of .

The main idea of Word2vec is to discard the input and the output layers and keep the hidden 
layer as the word embedding dense matrix of dimension .

The main interesting property of Word2vec is that it assigns similar vectors to words that have 
similar contexts. Why? Suppose to have  and  such that the word  appears in 
the contexts of both  and . Since the target to estimate for  and  is the same, the only 
way the network has to assign the same prediction to  and  is to learn the same weights in 

 and .

GloVe  
GloVe 6  stands for Global vectors and this summarizes them main idea of the algorithm. We have 
seen that Word2vec relies only on local information about a word because the word semantics is 
only affected by the surrounding words.

 

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Glove starts instead from a global co-occurence matrix having the intuition that ratios of word-
word co-occurrence probabilities have the potential for encoding some form of meaning (see the 
overview on the GloVe web page).

By learning the vectors that are good for predicting co-occurrences instead of single words (like in 
Word2vec) we inject more information in the final word embedding vectors.

GloVe  
The main intuition of GloVe is represented by its objective function that is

where   represent bias parameters that are learned together with the word vectors.

In other terms, the training objective of GloVe is to learn word vectors such that their dot product 
equals the logarithm of the words' probability of co-occurrence. Owing to the fact that the logarithm of 
a ratio equals the difference of logarithms, this objective associates (the logarithm of) ratios of co-
occurrence probabilities with vector differences in the word vector space. Because these ratios can 
encode some form of meaning, this information gets encoded as vector differences as well. link

Using word embeddings  
Word vectors can be used in two ways: training a specific word embedding model (Word2vec, 
GloVe or others) for a corpus (assuming to have enough contents) or exploit a pre-trained model 
(trained usually over milions or even bilions of data) to embed the corpus words

Word embedding is extremely useful for a variety of applications:

Text search and retrieval
Measuring the semantic distance among words
Feeding a neural network language model (see next lecture)
Text classification, either supervised or unsupervised

Some interesting properties of word embedding
vectors

 

Similarity among group of words: thanks to linearity, computing the average cosine similarity 
from a group of words to all other words can be calculated as

Analogy

Example

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


 1 2 3 4 5 6 7

genre crime mystery romance thriller action drama comedy

lines 75435 51662 77518 124082 70257 172557 94575

sequences 1313534 875790 1300360 2060898 1142600 3042069 1557657
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Example  
As an example, we will train our word embedding model on the Movie Dialogs dataset. However, 
a single movie does not provide enough text to have meaningful results. Thus, we will train a 
different model for each of the 7 genres having at least 50 000 lines of text, by aggregating movies 
of that genre into a unique corpus.

Text sequences have been generated using 2-skip-3-grams. See the complete example on GitHub
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