Master-DataScience-Notes/1year/3trimester/Machine Learning, Statistical Learning, Deep Learning and Artificial Intelligence/Machine Learning/lectures/lecture12.aux
Andreaierardi 3b87604df7 up
2020-05-15 17:55:36 +02:00

19 lines
1.6 KiB
TeX

\relax
\@nameuse{bbl@beforestart}
\babel@aux{english}{}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Lecture 12 - 21-04-2020}{1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Non parametrics algorithms}{1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}Theorem: No free lunch}{1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Tree building}}{2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Highly Parametric Learning Algorithm}{3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Linear Predictors}{3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Dot product}}{3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Dot product}}{4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Hyperplane}}{4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Hyperplane}}{5}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces Hyperplane}}{5}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces Example of one dimensional hyperplane}}{6}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}MinDisagreement}{7}\protected@file@percent }