Master-DataScience-Notes/1year/3trimester/Machine Learning, Statistical Learning, Deep Learning and Artificial Intelligence/Machine Learning/Notes/main.toc
Andreaierardi 4b2dc8b037 dataset
2020-05-25 16:25:06 +02:00

96 lines
6.7 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\babel@toc {english}{}
\contentsline {chapter}{\numberline {1}Lecture 1 - 09-03-2020}{7}%
\contentsline {section}{\numberline {1.1}Introduction of the course}{7}%
\contentsline {section}{\numberline {1.2}Examples}{7}%
\contentsline {subsection}{\numberline {1.2.1}Spam filtering}{10}%
\contentsline {chapter}{\numberline {2}Lecture 2 - 10-03-2020}{11}%
\contentsline {section}{\numberline {2.1}Argomento}{11}%
\contentsline {section}{\numberline {2.2}Loss}{11}%
\contentsline {subsection}{\numberline {2.2.1}Absolute Loss}{11}%
\contentsline {subsection}{\numberline {2.2.2}Square Loss}{12}%
\contentsline {subsection}{\numberline {2.2.3}Example of information of square loss}{13}%
\contentsline {subsection}{\numberline {2.2.4}labels and losses}{14}%
\contentsline {subsection}{\numberline {2.2.5}Example TF(idf) documents encoding}{16}%
\contentsline {chapter}{\numberline {3}Lecture 3 - 16-03-2020}{18}%
\contentsline {section}{\numberline {3.1}Overfitting}{20}%
\contentsline {subsection}{\numberline {3.1.1}Noise in the data}{20}%
\contentsline {section}{\numberline {3.2}Underfitting}{22}%
\contentsline {section}{\numberline {3.3}Nearest neighbour}{22}%
\contentsline {chapter}{\numberline {4}Lecture 4 - 17-03-2020}{25}%
\contentsline {section}{\numberline {4.1}Computing $h_{NN}$}{25}%
\contentsline {section}{\numberline {4.2}Tree Predictor}{27}%
\contentsline {chapter}{\numberline {5}Lecture 5 - 23-03-2020}{31}%
\contentsline {section}{\numberline {5.1}Tree Classifier}{31}%
\contentsline {section}{\numberline {5.2}Jensens inequality}{33}%
\contentsline {section}{\numberline {5.3}Tree Predictor}{37}%
\contentsline {section}{\numberline {5.4}Statistical model for Machine Learning}{38}%
\contentsline {chapter}{\numberline {6}Lecture 6 - 24-03-2020}{40}%
\contentsline {section}{\numberline {6.1}Bayes Optimal Predictor}{40}%
\contentsline {subsection}{\numberline {6.1.1}Square Loss}{41}%
\contentsline {subsection}{\numberline {6.1.2}Zero-one loss for binary classification}{42}%
\contentsline {section}{\numberline {6.2}Bayes Risk}{45}%
\contentsline {chapter}{\numberline {7}Lecture 7 - 30-03-2020}{47}%
\contentsline {section}{\numberline {7.1}Chernoff-Hoffding bound}{47}%
\contentsline {section}{\numberline {7.2}Union Bound}{48}%
\contentsline {section}{\numberline {7.3}Studying overfitting of a ERM}{52}%
\contentsline {chapter}{\numberline {8}Lecture 8 - 31-03-2020}{54}%
\contentsline {section}{\numberline {8.1}The problem of estimating risk in practise}{55}%
\contentsline {section}{\numberline {8.2}Cross-validation}{57}%
\contentsline {section}{\numberline {8.3}Nested cross validation}{59}%
\contentsline {chapter}{\numberline {9}Lecture 9 - 06-04-2020}{60}%
\contentsline {section}{\numberline {9.1}Tree predictors}{60}%
\contentsline {subsection}{\numberline {9.1.1}Catalan Number}{62}%
\contentsline {chapter}{\numberline {10}Lecture 10 - 07-04-2020}{66}%
\contentsline {section}{\numberline {10.1}TO BE DEFINE}{66}%
\contentsline {section}{\numberline {10.2}MANCANO 20 MINUTI DI LEZIONE}{66}%
\contentsline {section}{\numberline {10.3}Compare risk for zero-one loss}{68}%
\contentsline {chapter}{\numberline {11}Lecture 11 - 20-04-2020}{70}%
\contentsline {section}{\numberline {11.1}Analysis of $K_{NN}$}{70}%
\contentsline {subsection}{\numberline {11.1.1}Study of $K_{NN}$}{73}%
\contentsline {subsection}{\numberline {11.1.2}study of trees}{74}%
\contentsline {section}{\numberline {11.2}Non-parametric Algorithms}{75}%
\contentsline {subsection}{\numberline {11.2.1}Example of parametric algorithms}{76}%
\contentsline {chapter}{\numberline {12}Lecture 12 - 21-04-2020}{77}%
\contentsline {section}{\numberline {12.1}Non parametrics algorithms}{77}%
\contentsline {subsection}{\numberline {12.1.1}Theorem: No free lunch}{77}%
\contentsline {section}{\numberline {12.2}Highly Parametric Learning Algorithm}{79}%
\contentsline {subsection}{\numberline {12.2.1}Linear Predictors}{79}%
\contentsline {subsection}{\numberline {12.2.2}MinDisagreement}{83}%
\contentsline {chapter}{\numberline {13}Lecture 13 - 27-04-2020}{84}%
\contentsline {section}{\numberline {13.1}Linear prediction}{84}%
\contentsline {subsection}{\numberline {13.1.1}MinDisOpt}{84}%
\contentsline {section}{\numberline {13.2}The Perception Algorithm}{87}%
\contentsline {subsection}{\numberline {13.2.1}Perception convergence Theorem}{88}%
\contentsline {chapter}{\numberline {14}Lecture 14 - 28-04-2020}{91}%
\contentsline {section}{\numberline {14.1}Linear Regression}{91}%
\contentsline {subsection}{\numberline {14.1.1}The problem of linear regression}{91}%
\contentsline {subsection}{\numberline {14.1.2}Ridge regression}{92}%
\contentsline {section}{\numberline {14.2}Percetron}{93}%
\contentsline {subsection}{\numberline {14.2.1}Online Learning }{94}%
\contentsline {subsection}{\numberline {14.2.2}Online Gradiant Descent (OGD)}{96}%
\contentsline {chapter}{\numberline {15}Lecture 15 - 04-05-2020}{97}%
\contentsline {section}{\numberline {15.1}Regret analysis of OGD}{97}%
\contentsline {subsection}{\numberline {15.1.1}Projected OGD}{98}%
\contentsline {chapter}{\numberline {16}Lecture 16 - 05-05-2020}{102}%
\contentsline {section}{\numberline {16.1}Analysis of Perceptron in the non-separable case using OGD framework.}{102}%
\contentsline {subsection}{\numberline {16.1.1}Strongly convex loss functions}{106}%
\contentsline {chapter}{\numberline {17}Lecture 17 - 11-05-2020}{108}%
\contentsline {section}{\numberline {17.1}Strongly convex loss functions}{108}%
\contentsline {subsection}{\numberline {17.1.1}OGD for Strongly Convex losses}{108}%
\contentsline {subsection}{\numberline {17.1.2}Relate sequential risk and statistical risk}{109}%
\contentsline {chapter}{\numberline {18}Lecture 18 - 12-05-2020}{112}%
\contentsline {section}{\numberline {18.1}Kernel functions}{112}%
\contentsline {subsection}{\numberline {18.1.1}Feature expansion}{112}%
\contentsline {subsection}{\numberline {18.1.2}Kernels implements feature expansion (Efficiently}{113}%
\contentsline {section}{\numberline {18.2}Gaussian Kernel}{114}%
\contentsline {chapter}{\numberline {19}Lecture 19 - 18-05-2020}{117}%
\contentsline {section}{\numberline {19.1}Support Vector Machine (SVM)}{120}%
\contentsline {chapter}{\numberline {20}Lecture 20 - 19-05-2020}{121}%
\contentsline {section}{\numberline {20.1}Support Vector Machine Analysis}{121}%
\contentsline {subsection}{\numberline {20.1.1}Fritz John Optimality Conditions}{121}%
\contentsline {subsection}{\numberline {20.1.2}Non-separable case}{122}%
\contentsline {section}{\numberline {20.2}Pegasos: OGD to solve SVM}{124}%
\contentsline {chapter}{\numberline {21}Lecture 21 - 25-05-2020}{126}%
\contentsline {section}{\numberline {21.1}Pegasos in Kernel space}{126}%
\contentsline {section}{\numberline {21.2}Stability}{126}%