mirror of
https://github.com/Andreaierardi/Master-DataScience-Notes.git
synced 2025-01-27 11:47:36 +01:00
174 lines
7.1 KiB
TeX
174 lines
7.1 KiB
TeX
\documentclass[../main.tex]{subfiles}
|
|
\begin{document}
|
|
|
|
\chapter{Lecture 17 - 11-05-2020}
|
|
|
|
\section{Strongly convex loss functions}
|
|
We will saw with OGD but we will see Support Vector Machine(SVM). Very popular learning model.
|
|
\\
|
|
We will see SVM next to see the part of linear predictor and also speak about Kernel function used with linear predictor to obtain non -linear classifier from a linear classifier.
|
|
\\\\
|
|
$\ell$ is $\sigma$-SC if $ \quad \forall u,w$:
|
|
$$\ell(w) -\ell(u) \leq \nabla \ell(w)^T \, (w-u)- \frac{\sigma}{2} |\ w -u \|^2$$
|
|
\\
|
|
\subsection{OGD for Strongly Convex losses}
|
|
|
|
Init: $w_1 =(0,...,0)$\\
|
|
For $t = 1,2...$\\
|
|
$\qquad w_{t+1} = w_t -\frac{1}{\sigma \, t} \nabla \ell_t(w_t)$ \qquad $\eta_t = \frac{1}{\eta \, t}$
|
|
\\
|
|
(no projection steps)\\
|
|
$$
|
|
\ell_t (w_t) - \ell_t(u) \leq \nabla \ell_t (w_t)^T \, (w-u) - \frac{\sigma}{2} \| w_t - u \|^2 \ =
|
|
$$
|
|
$$
|
|
= \ - \frac{1}{\eta_t} (w_{t+1} - w_t)^T \, (w_t-u) - \frac{\sigma}{2} \| w_t -u \|^2 \ =
|
|
$$
|
|
$$
|
|
= \frac{1}{\eta_t} \left( \frac{1}{2} \| w_t - u\|^2 - \frac{1}{2} \| w_{t+1} - u \|^2 + \frac{1}{2} \| w_{t+1} - w_t \|^2 \right) - \frac{\sigma}{2} \| w_t -u \|^2
|
|
$$
|
|
$$
|
|
R_T(u) \ \leq \ \frac{1}{2 \, \eta_1} \|w_1 -u \|^2
|
|
\red{- \frac{1}{2 \, \eta_{T+1} } \| w_{T+1} - u \|^2}
|
|
- \frac{\sigma
|
|
}{2} \| w_1 -u \|^2 +
|
|
$$
|
|
$$
|
|
+ \blue{ $\frac{1}{2} \sum_{t=1}^{T-1} \| w_{t+1} - u \|^2 \left( \frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} - \sigma \right) $} +
|
|
\red{\frac{1}{2} \| w_{T+1} - u \|^2 \left( \frac{1}{\eta_{T+1}}
|
|
- \frac{1}{\eta_T} \right) }
|
|
+ \frac{G^2}{2} \sum_{t=1}^T \eta_t
|
|
$$
|
|
where red terms cancel out, \blue{blue} (sum) instead is $0$ since $ \sigma(t+1) - \sigma \, t - \sigma$
|
|
$$
|
|
G = \max_t \| \nabla \ell_t(w_t) \|
|
|
$$
|
|
$$
|
|
R_T(U) \leq \frac{1}{2} \left( \sigma - \sigma \right) \| w_1 -u \|^2 + \frac{G^2}{2} \sum_{t=1}^T \frac{1}{\sigma \, t} \ = \
|
|
$$
|
|
$$
|
|
R_T(U) \leq \frac{G^2}{2} \sum_{t=1}^T \frac{1}{\sigma \, t} \
|
|
$$
|
|
We know that $\sum_{t=1}^T \frac{1}{T} \leq \ln \left( T+1 \right)$
|
|
so:
|
|
$$
|
|
R_T(U) \ \leq \ \frac{G^2}{2 \, \sigma} \, \ln \left( T+1 \right)
|
|
$$
|
|
$$
|
|
\frac{R_T(U)}{T} \ \ \textbf{vanishes at rate } \ \frac{\ln \, T}{T} < < \frac{1}{\sqrt[]{T}} \ \ \textbf{provided } max_t \| \nabla \ell_t (w_t) \| \ \textbf{remains bounded}
|
|
$$
|
|
We assume it in special case.
|
|
\\\\
|
|
Where are these SC losses?
|
|
\\
|
|
Minimising strongly convex version of standard convex losses helps a lot.
|
|
\\
|
|
We will see how Regularitation imply Stability. Before studing SVM and stability we going to do something before.
|
|
\\
|
|
\subsection{Relate sequential risk and statistical risk}
|
|
It is important: I have this algorith that control sequential risk and regret but I am also courious to use this algorithms.
|
|
\\\\
|
|
We assume:\\
|
|
Data $(x_t,y_) $ drawm i.i.d. from fixed unknown $D$.
|
|
\\
|
|
Convex loss function $\ell$.
|
|
\\ For example compare square loss and hinge loss(convex upper bound on $0$-$1$ $loss$:
|
|
$$
|
|
\ell(\hat{y}, y = (\hat{y},y)^2 \qquad \ell(\hat{y},y) = \left[ 1- \hat{y} \, y \right]_+
|
|
$$
|
|
We will focus on linear predictors $h(x) = f(w^T \, x) $\quad (easily to analise with OGD framework).
|
|
\\
|
|
Risk $\ell_D(w) =$ \expt{\ell(w^T \, X, Y) }
|
|
\\
|
|
where $ \hat{y} = w^T \, X$
|
|
\\
|
|
Assume we have a training set $S$ of example $(X_1,Y_1)...(X_m,Y_m)$ \qquad (in maiusc since are random sequence of data point from a distribution)
|
|
\\
|
|
$$
|
|
Convex \quad \ell_t(w) = \ell(w^T \, X_t, Y_t) \qquad t= 1,...m
|
|
$$
|
|
Became a sequence of convex losses.
|
|
\\
|
|
I run OGD on $\ell_1,\ell_2,..., \ell_m$ and get $w_1,..., w_m \quad \|w_t\| \leq U$\\
|
|
OGD projects onto: $$\{ U \in \barra{R}^d : \| u \| \leq U \} \qquad U^* = arg \min_{u: \|u\| \leq U} \ell_D(u)$$
|
|
where $U^*$ is the best linear predictor in class.\\
|
|
So i take a bunch of predictors but i need one, so I take the average of those (since the expected value is convex):
|
|
$$
|
|
\bar{w} = \frac{1}{m}\sum_{t=1}^m w_t
|
|
$$
|
|
I want to study the variance error:
|
|
$$
|
|
\ell_D(\bar{w}) - \ell_D(u^*) \ ?
|
|
$$
|
|
I am using Online Learning.
|
|
\\
|
|
Using Jensen inequality:
|
|
$$
|
|
\ell_D(\bar{w}) = \barra{E} \left[ \ell(\bar{w}^T \, X, Y \right] \ \leq \ \barra{E} \left[ \frac{1}{m} \sum_{t=1}^m \ell(w_t^T \, X, Y) \right] = \frac{1}{m} \sum_t \barra{E} \left[ \ell(w_t^T \, X, Y) \right]
|
|
$$
|
|
where $\barra{E} \left[ \ell(w_t^T \, X, Y) \right]$ is equals to $\ell_D(w_t)$
|
|
\\
|
|
$$
|
|
\ell_D(\bar{w}) \leq \frac{1}{m} \sum_{t=1}^n \ell_D(w_t) \qquad \textbf{for any given training set } (x_1,y_1)...(x_m,y_m) \quad
|
|
$$
|
|
I want to look at the difference:
|
|
$$
|
|
\ell_D(w_t) - \ell(w_t^T \, X_t, Y_t)
|
|
$$
|
|
$
|
|
\ell_D = \ $\expt{\ell(w^T_t \, X, Y) }$
|
|
$\\
|
|
Now I fix $t-1$ example in the training set \quad $(X_1, Y_1) ...(X_{t-1},Y_{t-1})$
|
|
\\
|
|
$w_t$ is \bred{determined} by $(X_1, Y_1),...(X_{t-1},Y_{t-1})$\\
|
|
$(X_t,Y_t)$ is distribuited like any $(X,Y) \sim D$
|
|
$$
|
|
\barra{E}_{t-1} \left[ \, \cdot \, \right] = \barra{E} \left[ \, \cdot \, | (X_1,Y_1)...(X_{t-1}, Y_{t-1} \right] \qquad z_t = \ell_D(w_t) - \ell( w_t^T \, X_t, Y_t)
|
|
$$
|
|
$$
|
|
\frac{1}{m} \sum_{t=1}^m \barra{E}_{t-1} \left[ Z_t \right] = 0
|
|
$$
|
|
I want to show the average of $\ell_D(w_t)$ is equal to average of $\ell(w^T_t \, X_t, Y)$
|
|
\\
|
|
I want to prove:
|
|
$$
|
|
\frac{1}{m} \sum_{t=1}^m \ell_D (w_t) \ \leq \ \red{\frac{1}{m} \sum_{t=1}^m \ell(w_t^T \, X_t, Y_t)}+ \ \sqrt[]{\frac{1}{m} \, \ln \frac{1}{\delta}} \qquad \textit{ with high probability w.r.t. S}
|
|
$$
|
|
where (red part) is the sequential risk of OGD.
|
|
$$
|
|
\frac{1}{m} \sum_{t=1}^m Z_t \leq \sqrt[]{\frac{1}{m} \, \ln \frac{1}{\delta}} \qquad \textbf{with prob. at least $1-\delta$}
|
|
$$
|
|
I know that $\barra{E}_{t-1} \left[ Z_t\right] = 0 $
|
|
$$ |Z_t| \in [0, M] \quad \Rightarrow \quad \frac{1}{m} \sum_{t=1}^m Z_t \leq M \sqrt[]{\frac{2}{m} \, \ln \frac{1}{\delta}} \quad \textit{w.p $1-\delta$}
|
|
$$\\
|
|
Version of Chernoff-Hoffdiwg bounds for sums of dependent random variables.
|
|
\\
|
|
$$
|
|
\frac{1}{m} \sum_{t=1}^m \ell_D(w_t) \ \leq \ \frac{1}{m} \sum_{t=1}^m \ell_t(w_t) + M \ \sqrt[]{\frac{2}{m} \ln \frac{1}{\delta}} \quad \textit{ w.p $1-\delta$}
|
|
$$
|
|
\\
|
|
This tells me that$ \ell_D(\bar{w})$ is controlled by the sequential risk of OGD + $O \left(\frac{1}{\sqrt[]{m}} \right)$
|
|
\\
|
|
Variance Error for $(w^T \, x-y)^2 \qquad \| x_t\| \leq X, \quad |y_t| \leq U \, X$
|
|
$$
|
|
G = \max_t \| \nabla \ell_t (w_t) \| \leq 4\, (U \, X)^2
|
|
$$
|
|
$$
|
|
\ell_D(\bar{w}) \leq \red{ \min_{u: \|u\| \leq U} \frac{1}{m} \sum_{t=1}^m \ell_D(u) + 8 \, (U \, X)^2 \sqrt[]{\frac{2}{m}}}+ 4 \, (U \, X)^2 \ \sqrt[]{\frac{2}{m} \, \ln\frac{1}{\delta}}
|
|
$$
|
|
where \red{red} is \bred{OGD analysis}
|
|
$$
|
|
\ell_D(\bar{w}) \ \leq \ \min \frac{1}{m} \sum_{t=1}^m \ell_t(u) + 12 \, (U \, X)^2 \sqrt[]{\frac{2}{m} \, \ln \frac{1}{\delta}} \quad \textit{with prob. $1-\delta$}
|
|
$$
|
|
By C-H bounds:
|
|
$$
|
|
where \quad \min \frac{1}{m} \sum_{t=1}^m \ell_t(u) \ \leq \ \frac{1}{m} \sum_{t=1}^m \ell_t(u^*) \ \leq \ \ell_D(u^*) + 4\, (U \, X)^2 \ \sqrt[]{\frac{1}{2 \, m} \ln \, \frac{1}{\delta}}
|
|
$$
|
|
where the sum is the test error of $u^*$
|
|
\\
|
|
At the end:
|
|
$$
|
|
\ell_D(\bar{w}) \leq \ell_D(u^*) + 16 \, (U \, X)^2 \ \sqrt[]{\frac{1}{m} \, \ln \, \frac{1}{\delta}} \qquad \textit{w.p $1-\delta$}
|
|
$$
|
|
Even with m large, I can run it since i bounded in the small "ball".
|
|
\end{document} |