Master-DataScience-Notes/1year/3trimester/Machine Learning, Statistical Learning, Deep Learning and Artificial Intelligence/Machine Learning/main.aux
Andreaierardi e53137af8f up
2020-04-15 21:47:09 +02:00

84 lines
7.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\relax
\@nameuse{bbl@beforestart}
\babel@aux{english}{}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Lecture 1 - 09-03-2020}{4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Introduction of the course}{4}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Examples}{4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Spam filtering}{7}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Lecture 2 - 07-04-2020}{8}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Argomento}{8}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Loss}{8}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Absolute Loss}{8}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Square Loss}{9}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Example of information of square loss}{9}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}labels and losses}{10}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.5}Example TF(idf) documents encoding}{12}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Lecture 3 - 07-04-2020}{14}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Overfitting}{16}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Noise in the data}{16}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Underfitting}{17}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Nearest neighbour}{18}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Lecture 4 - 07-04-2020}{20}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Computing $h_{NN}$}{20}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Tree Predictor}{21}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Lecture 5 - 07-04-2020}{24}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Tree Classifier}{24}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Jensens inequality}{25}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Tree Predictor}{27}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.4}Statistical model for Machine Learning}{28}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Lecture 6 - 07-04-2020}{30}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Bayes Optimal Predictor}{30}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Square Loss}{31}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.2}Zero-one loss for binary classification}{32}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Bayes Risk}{34}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Example of Bayes Risk}}{34}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Lecture 7 - 07-04-2020}{35}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {7.1}Chernoff-Hoffding bound}{35}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {7.2}Union Bound}{36}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Example}}{36}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Example}}{37}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.3}{\ignorespaces Example}}{37}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.4}{\ignorespaces Example}}{38}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.5}{\ignorespaces Example}}{38}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.6}{\ignorespaces Draw of how $\hat {h}$, $h^*$ and $f^*$ are represented}}{39}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {7.3}Studying overfitting of a ERM}{40}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Lecture 8 - 07-04-2020}{42}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {8.1}{\ignorespaces Representation of $\hat {h}$, $h^*$ and $f^*$ }}{42}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {8.2}{\ignorespaces Example}}{43}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {8.1}The problem of estimating risk in practise}{43}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {8.2}Cross-validation}{45}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {8.3}{\ignorespaces Splitting test and training set}}{45}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {8.4}{\ignorespaces K-folds}}{46}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {8.3}Nested cross validation}{47}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {8.5}{\ignorespaces Nested Cross Validation}}{47}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Lecture 9 - 07-04-2020}{48}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {9.1}Tree predictors}{48}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces Tree building}}{48}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {9.2}{\ignorespaces Tree with at most N node}}{49}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.1}Catalan Number}{50}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {9.3}{\ignorespaces Algorithm for tree predictors}}{52}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {10}Lecture 10 - 07-04-2020}{54}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {10.1}TO BE DEFINE}{54}\protected@file@percent }
\bibstyle{abbrv}
\bibdata{main}