mirror of
https://github.com/Andreaierardi/Master-DataScience-Notes.git
synced 2024-12-05 01:53:04 +01:00
97 lines
2.9 KiB
TeX
97 lines
2.9 KiB
TeX
\documentclass[../main.tex]{subfiles}
|
|
\begin{document}
|
|
|
|
\chapter{Lecture 10 - 07-04-2020}
|
|
\section{TO BE DEFINE}
|
|
|
|
$|E[z] = |E[|E[z|x]]$
|
|
\\\\
|
|
$|E[X] = \sum_{t = 1}^{m} |E[x \Pi(A\begin{small}
|
|
t \end{small} ) ]$
|
|
\\\\
|
|
$x \in \mathbb{R}^d
|
|
$
|
|
\\
|
|
$\mathbb{P}(Y_{\Pi(s,x)} = 1) = \\\\ \mathbb{E}[\Pi { Y_{\Pi(s,x)} = 1 } ] = \\\\
|
|
= \sum_{t = 1}^{m} \mathbb{E}[\Pi\{Y_t = 1\} \cdot \Pi { Pi(s,x) = t}] = \\\\
|
|
= \sum_{t = 1}^{m} \mathbb{E}[\mathbb{E}[\Pi\{Y_t = 1\} \cdot \Pi\{\Pi(s,x) = t\} | X_t]] = \\\\
|
|
given the fact that Y_t \sim \eta(X_t) \Rightarrow give me probability \\
|
|
Y_t = 1 and \Pi(s,x) = t are independent given X_Y (e. g. \mathbb{E}[Zx] = \mathbb{E}[x] \ast \cdot \mathbb{E}[z]\\\\
|
|
= \sum_{t = 1}^{m} \barra{E}[\barra{E}[\Pi\{Y_t = 1\}|X_t] \cdot \barra{E} [ \Pi(s,x) = t | Xt]] = \\\\
|
|
= \sum_{t = 1}^{m} \barra{E}[\eta(X_t) \cdot \Pi \cdot \{\Pi (s,x) = t \}] = \\\\
|
|
= \barra{E} [ \eta(X_{\Pi(s,x)}]
|
|
$
|
|
|
|
\[ \barra{P} (Y_{\Pi(s,x)}| X=x = \barra{E}[\eta(X_\Pi (s,x))] \]
|
|
\\\\
|
|
|
|
$
|
|
\barra{P} (Y_{\Pi(s,x)} = 1, y = -1 ) = \\\\
|
|
= \barra{E}[\Pi\{Y_{\Pi(s,x) }= 1\} \dot \Pi\{Y= -1|X\} ]] = \\\\
|
|
= \barra{E}[\Pi \{ Y_{\Pi(s,x)} = 1\} \cdot \Pi \{ y = -1 \} ] = \\\\
|
|
= \barra{E}[\barra{E}[\Pi \{ Y_{\Pi(s,x)} = 1\} \cdot \Pi \{ y = -1 | X \} ]] = \\\\
|
|
$
|
|
|
|
\[ Y_{\Pi(s,x)} = 1 \quad \quad y = -1 (1- \eta(x)) \quad when \quad X = x\]
|
|
|
|
$
|
|
\\\\ = \barra{E}[\barra{E}[\Pi \{Y_\Pi(s,x)\} = 1 | X] \cdot \barra{E}[\Pi \{y = -1\} |X ]] = \\\\
|
|
= \barra {E}[\eta_{\Pi(s,x)} \cdot (1-\eta(x))] = \\\\
|
|
similarly: \quad \barra{P}(Y_{\Pi(s,x)} = -1 , y = 1) = \\
|
|
\barra{E} [(1- \eta_{\Pi(s,x)}) \cdot \eta(x)]
|
|
\\\\
|
|
\barra{E} [ \ell_D (\hat{h}_s)] = \barra{P}(Y_{\Pi(s,x)} \neq y ) =
|
|
\\\\
|
|
= \barra{P}(Y_{\Pi(s,x)} = 1, y = -1) + \barra{P}(Y_{Pi(s,x)} = -1, y = 1) =
|
|
\\\\
|
|
= \barra{E} [\eta_{\Pi(s,x)} \cdot (1-eta(x))] + \barra{E}[( 1- \eta_{\Pi(s,x)})\cdot \eta(x)]$
|
|
\\\\
|
|
Make assumptions on $D_x \quad and \quad \eta$: \\
|
|
|
|
|
|
MANCAAAAAAA ROBAAA
|
|
\\\\
|
|
|
|
$
|
|
\eta(x') <= \eta(x) + c || X-x'|| --> euclidean distance
|
|
\\\\
|
|
1-\eta(x') <= 1- \eta(x) + c||X-x'||
|
|
\\\\
|
|
$
|
|
|
|
|
|
$
|
|
X' = X_{Pi(s,x)}
|
|
\\\\
|
|
\eta(X) \cdot (1-\eta(x')) + (1-\eta(x))\cdot \eta(x') <=
|
|
\\\\
|
|
<= \eta(x) \cdot((1-\eta(x))+\eta(x)\cdot c||X-x'|| + (1-\eta(x))\cdot c||X-x'|| =
|
|
\\\\
|
|
= 2 \cdot \eta(x) \cdot (1- \eta(x)) + c||X-x'|| \\\\
|
|
\barra{E}[\ell_d \cdot (\hat{h}_s)] <= 2 \cdot \barra{E} [\eta(x) - (1-\eta(x))] + c \cdot \barra(E)[||X-x_{\Pi(s,x)}||]
|
|
$
|
|
\\ where $<=$ mean at most
|
|
\\\\
|
|
Compare risk for zero-one loss
|
|
\\
|
|
$
|
|
\barra{E}[min\{\eta(x),1-\eta(x)\}] = \ell_D (f*)
|
|
\\\\
|
|
\eta(x) \cdot( 1- \eta(X)) <= min\{\eta(x), 1-eta(x) \} \quad \forall x
|
|
\\\\
|
|
\barra{E}[\eta(x)\cdot(1-\eta(x)] <= \ell_D(f*)
|
|
\\\\
|
|
\barra{E}[\ell_d(\hat{l}_s)] <= 2 \cdot \ell_D(f*) + c \cdot \barra{E}[||X-X_{\Pi(s,x)}||]
|
|
\\\\
|
|
\eta(x) \in \{0,1\}
|
|
$
|
|
\\\\
|
|
Depends on dimension: curse of dimensionality
|
|
\\\\--DISEGNO--
|
|
\\\\
|
|
$
|
|
\ell_d(f*) = 0 \iff min\{ \eta(x), 1-\eta(x)\} =0 \quad$ with probability = 1
|
|
\\
|
|
to be true $\eta(x) \in \{0,1\}$
|
|
|
|
\end{document} |