Windows2000/private/ntos/ke/mips/allproc.c
2020-09-30 17:12:32 +02:00

247 lines
5.8 KiB
C

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
allproc.c
Abstract:
This module allocates and intializes kernel resources required
to start a new processor, and passes a complete processor state
structure to the HAL to obtain a new processor.
Author:
David N. Cutler 29-Apr-1993
Environment:
Kernel mode only.
Revision History:
--*/
#include "ki.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, KeStartAllProcessors)
#endif
// Define macro to round up to 64-byte boundary and define block sizes.
#define ROUND_UP(x) ((sizeof(x) + 63) & (~63))
#define BLOCK1_SIZE ((3 * KERNEL_STACK_SIZE) + PAGE_SIZE)
#define BLOCK2_SIZE (ROUND_UP(KPRCB) + ROUND_UP(ETHREAD) + 64)
// Define barrier wait static data.
#if !defined(NT_UP)
ULONG KiBarrierWait = 0;
#endif
// Define forward referenced prototypes.
VOID
KiInitializeSystem (
IN PLOADER_PARAMETER_BLOCK Loaderblock
);
VOID
KeStartAllProcessors(
VOID
)
/*++
Routine Description:
This function is called during phase 1 initialize on the master boot
processor to start all of the other registered processors.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG MemoryBlock1;
ULONG MemoryBlock2;
ULONG Number;
ULONG PcrAddress;
ULONG PcrPage;
PKPRCB Prcb;
KPROCESSOR_STATE ProcessorState;
PRESTART_BLOCK RestartBlock;
BOOLEAN Started;
#if !defined(NT_UP)
// If the registered number of processors is greater than the maximum
// number of processors supported, then only allow the maximum number
// of supported processors.
if (KeRegisteredProcessors > MAXIMUM_PROCESSORS) {
KeRegisteredProcessors = MAXIMUM_PROCESSORS;
}
// Set barrier that will prevent any other processor from entering the
// idle loop until all processors have been started.
KiBarrierWait = 1;
// Initialize the processor state that will be used to start each of
// processors. Each processor starts in the system initialization code
// with address of the loader parameter block as an argument.
Number = 1;
RtlZeroMemory(&ProcessorState, sizeof(KPROCESSOR_STATE));
ProcessorState.ContextFrame.IntA0 = (ULONG)KeLoaderBlock;
ProcessorState.ContextFrame.Fir = (ULONG)KiInitializeSystem;
while (Number < KeRegisteredProcessors) {
// Allocate a DPC stack, an idle thread kernel stack, a panic
// stack, a PCR page, a processor block, and an executive thread
// object. If the allocation fails or the allocation cannot be
// made from unmapped nonpaged pool, then stop starting processors.
MemoryBlock1 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK1_SIZE);
if (((PVOID)MemoryBlock1 == NULL) ||
((MemoryBlock1 & 0xc0000000) != KSEG0_BASE)) {
if ((PVOID)MemoryBlock1 != NULL) {
ExFreePool((PVOID)MemoryBlock1);
}
break;
}
MemoryBlock2 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK2_SIZE);
if (((PVOID)MemoryBlock2 == NULL) ||
((MemoryBlock2 & 0xc0000000) != KSEG0_BASE)) {
ExFreePool((PVOID)MemoryBlock1);
if ((PVOID)MemoryBlock2 != NULL) {
ExFreePool((PVOID)MemoryBlock2);
}
break;
}
// Zero both blocks of allocated memory.
RtlZeroMemory((PVOID)MemoryBlock1, BLOCK1_SIZE);
RtlZeroMemory((PVOID)MemoryBlock2, BLOCK2_SIZE);
// Set address of interrupt stack in loader parameter block.
KeLoaderBlock->u.Mips.InterruptStack = MemoryBlock1 + (1 * KERNEL_STACK_SIZE);
// Set address of idle thread kernel stack in loader parameter block.
KeLoaderBlock->KernelStack = MemoryBlock1 + (2 * KERNEL_STACK_SIZE);
// Set address of panic stack in loader parameter block.
KeLoaderBlock->u.Mips.PanicStack = MemoryBlock1 + (3 * KERNEL_STACK_SIZE);
// Change the color of the PCR page to match the new mapping and
// set the page frame of the PCR page in the loader parameter block.
PcrAddress = MemoryBlock1 + (3 * KERNEL_STACK_SIZE);
PcrPage = (PcrAddress ^ KSEG0_BASE) >> PAGE_SHIFT;
HalChangeColorPage((PVOID)KIPCR, (PVOID)PcrAddress, PcrPage);
KeLoaderBlock->u.Mips.PcrPage = PcrPage;
// Set the address of the processor block and executive thread in the
// loader parameter block.
KeLoaderBlock->Prcb = (MemoryBlock2 + 63) & ~63;
KeLoaderBlock->Thread = KeLoaderBlock->Prcb + ROUND_UP(KPRCB);
// Attempt to start the next processor. If attempt is successful,
// then wait for the processor to get initialized. Otherwise,
// deallocate the processor resources and terminate the loop.
Started = HalStartNextProcessor(KeLoaderBlock, &ProcessorState);
if (Started == FALSE) {
HalChangeColorPage((PVOID)PcrAddress, (PVOID)KIPCR, PcrPage);
ExFreePool((PVOID)MemoryBlock1);
ExFreePool((PVOID)MemoryBlock2);
break;
} else {
// Wait until boot is finished on the target processor before
// starting the next processor. Booting is considered to be
// finished when a processor completes its initialization and
// drops into the idle loop.
Prcb = (PKPRCB)(KeLoaderBlock->Prcb);
RestartBlock = Prcb->RestartBlock;
while (RestartBlock->BootStatus.BootFinished == 0) {
}
}
Number += 1;
}
// Allow all processor that were started to enter the idle loop and
// begin execution.
KiBarrierWait = 0;
#endif
// Reset and synchronize the performance counters of all processors, by
// applying a null adjustment to the interrupt time
KiAdjustInterruptTime (0);
return;
}