Commit Graph

129 Commits

Author SHA1 Message Date
Andrey Mizurov
f551db2bda
Provide ability to extend StompSubframeEncoder and improve full stomp frame encoding (allocate one buffer for full frame considering the size of the headers) (#10778)
Motivation:

At the moment `StompSubframeEncoder` encode a frame only to `ByteBuf` it is not convenient if further we need to convert it to another type of message,  e.g. `WebSocketFrame`. Also, if we send a full frame, it splits into two headers and a content what makes it difficult to convert it in the next handler. 

Modification:

Introduce additional converter methods e.g. (`Object protected convertFullFrame(StompFrame original, ByteBuf encoded`)...) for extending encoder functionality and allocate only one `ByteBuf` for full stomp frame. Change headers size calculation, previously used only 256 bytes that reallocate a new buffer each time when headers size more than this threshold. Add `StompEncoderBenchmark`.

Result:

Improved  `StompSubframeEncoder` fro extensions.

Previous version benchmark
```
Benchmark                              (contentLength)  (headersType)  (pooledAllocator)   Mode  Cnt        Score        Error  Units
StompEncoderBenchmark.writeStompFrame                0            ONE               true  thrpt   10  4432132.884 ± 178923.436  ops/s
StompEncoderBenchmark.writeStompFrame                0            ONE              false  thrpt   10  1281122.756 ±  52484.174  ops/s
StompEncoderBenchmark.writeStompFrame                0          THREE               true  thrpt   10  2980897.937 ± 130253.049  ops/s
StompEncoderBenchmark.writeStompFrame                0          THREE              false  thrpt   10  1116883.574 ±  35471.482  ops/s
StompEncoderBenchmark.writeStompFrame                0          SEVEN               true  thrpt   10  1988012.159 ±  74352.450  ops/s
StompEncoderBenchmark.writeStompFrame                0          SEVEN              false  thrpt   10   881772.343 ±  94633.870  ops/s
StompEncoderBenchmark.writeStompFrame                0         ELEVEN               true  thrpt   10  1048125.919 ± 151053.902  ops/s
StompEncoderBenchmark.writeStompFrame                0         ELEVEN              false  thrpt   10   429900.066 ±  47956.661  ops/s
StompEncoderBenchmark.writeStompFrame                0         TWENTY               true  thrpt   10   660584.122 ± 104973.439  ops/s
StompEncoderBenchmark.writeStompFrame                0         TWENTY              false  thrpt   10   278255.488 ±  20143.708  ops/s
StompEncoderBenchmark.writeStompFrame               10            ONE               true  thrpt   10  4251498.549 ± 625050.979  ops/s
StompEncoderBenchmark.writeStompFrame               10            ONE              false  thrpt   10  1214006.861 ±  60421.601  ops/s
StompEncoderBenchmark.writeStompFrame               10          THREE               true  thrpt   10  3117736.486 ± 173613.974  ops/s
StompEncoderBenchmark.writeStompFrame               10          THREE              false  thrpt   10  1046605.891 ±  94428.064  ops/s
StompEncoderBenchmark.writeStompFrame               10          SEVEN               true  thrpt   10  2006986.881 ± 108456.748  ops/s
StompEncoderBenchmark.writeStompFrame               10          SEVEN              false  thrpt   10   877983.112 ±  82919.387  ops/s
StompEncoderBenchmark.writeStompFrame               10         ELEVEN               true  thrpt   10  1132844.437 ±  84578.571  ops/s
StompEncoderBenchmark.writeStompFrame               10         ELEVEN              false  thrpt   10   429334.649 ±  35403.161  ops/s
StompEncoderBenchmark.writeStompFrame               10         TWENTY               true  thrpt   10   657093.390 ±  48092.947  ops/s
StompEncoderBenchmark.writeStompFrame               10         TWENTY              false  thrpt   10   252140.876 ±  37337.255  ops/s
StompEncoderBenchmark.writeStompFrame              100            ONE               true  thrpt   10  4720507.067 ± 100993.908  ops/s
StompEncoderBenchmark.writeStompFrame              100            ONE              false  thrpt   10  1266182.925 ±  85888.413  ops/s
StompEncoderBenchmark.writeStompFrame              100          THREE               true  thrpt   10  2898746.621 ± 452579.753  ops/s
StompEncoderBenchmark.writeStompFrame              100          THREE              false  thrpt   10  1019555.288 ±  65640.507  ops/s
StompEncoderBenchmark.writeStompFrame              100          SEVEN               true  thrpt   10  2259187.459 ±  20025.989  ops/s
StompEncoderBenchmark.writeStompFrame              100          SEVEN              false  thrpt   10   896405.412 ±  53750.148  ops/s
StompEncoderBenchmark.writeStompFrame              100         ELEVEN               true  thrpt   10  1110670.772 ± 107650.327  ops/s
StompEncoderBenchmark.writeStompFrame              100         ELEVEN              false  thrpt   10   445187.398 ±  28845.959  ops/s
StompEncoderBenchmark.writeStompFrame              100         TWENTY               true  thrpt   10   611506.846 ±  25304.240  ops/s
StompEncoderBenchmark.writeStompFrame              100         TWENTY              false  thrpt   10   247687.007 ±  43471.578  ops/s
StompEncoderBenchmark.writeStompFrame             1000            ONE               true  thrpt   10  4140949.576 ± 270274.087  ops/s
StompEncoderBenchmark.writeStompFrame             1000            ONE              false  thrpt   10  1154515.598 ± 134413.876  ops/s
StompEncoderBenchmark.writeStompFrame             1000          THREE               true  thrpt   10  3349996.875 ± 162309.889  ops/s
StompEncoderBenchmark.writeStompFrame             1000          THREE              false  thrpt   10  1141040.562 ±   5895.693  ops/s
StompEncoderBenchmark.writeStompFrame             1000          SEVEN               true  thrpt   10  2184632.248 ±   8957.833  ops/s
StompEncoderBenchmark.writeStompFrame             1000          SEVEN              false  thrpt   10   959545.704 ±   5835.161  ops/s
StompEncoderBenchmark.writeStompFrame             1000         ELEVEN               true  thrpt   10  1081113.327 ±   3957.527  ops/s
StompEncoderBenchmark.writeStompFrame             1000         ELEVEN              false  thrpt   10   467524.660 ±   1383.236  ops/s
StompEncoderBenchmark.writeStompFrame             1000         TWENTY               true  thrpt   10   568411.797 ± 108712.493  ops/s
StompEncoderBenchmark.writeStompFrame             1000         TWENTY              false  thrpt   10   260764.231 ±  43149.129  ops/s
StompEncoderBenchmark.writeStompFrame            10000            ONE               true  thrpt   10  4369787.147 ± 619367.939  ops/s
StompEncoderBenchmark.writeStompFrame            10000            ONE              false  thrpt   10  1246782.845 ±  47468.764  ops/s
StompEncoderBenchmark.writeStompFrame            10000          THREE               true  thrpt   10  3333328.810 ± 253061.481  ops/s
StompEncoderBenchmark.writeStompFrame            10000          THREE              false  thrpt   10  1108278.988 ±  81905.149  ops/s
StompEncoderBenchmark.writeStompFrame            10000          SEVEN               true  thrpt   10  2062961.266 ± 247096.284  ops/s
StompEncoderBenchmark.writeStompFrame            10000          SEVEN              false  thrpt   10   925199.985 ±  36734.594  ops/s
StompEncoderBenchmark.writeStompFrame            10000         ELEVEN               true  thrpt   10  1223240.034 ±  58833.801  ops/s
StompEncoderBenchmark.writeStompFrame            10000         ELEVEN              false  thrpt   10   460864.117 ±   2361.459  ops/s
StompEncoderBenchmark.writeStompFrame            10000         TWENTY               true  thrpt   10   655864.762 ±  35237.335  ops/s
StompEncoderBenchmark.writeStompFrame            10000         TWENTY              false  thrpt   10   286388.865 ±   1002.460  ops/s
```
A new version benchmark
```
Benchmark                              (contentLength)  (headersType)  (pooledAllocator)   Mode  Cnt        Score        Error  Units
StompEncoderBenchmark.writeStompFrame                0            ONE               true  thrpt   10  4366110.018 ± 420377.867  ops/s
StompEncoderBenchmark.writeStompFrame                0            ONE              false  thrpt   10  1289437.153 ± 215271.656  ops/s
StompEncoderBenchmark.writeStompFrame                0          THREE               true  thrpt   10  2818791.355 ± 218894.471  ops/s
StompEncoderBenchmark.writeStompFrame                0          THREE              false  thrpt   10  1040151.615 ±  75352.695  ops/s
StompEncoderBenchmark.writeStompFrame                0          SEVEN               true  thrpt   10  1842144.001 ±  94668.864  ops/s
StompEncoderBenchmark.writeStompFrame                0          SEVEN              false  thrpt   10   916742.825 ±  65467.820  ops/s
StompEncoderBenchmark.writeStompFrame                0         ELEVEN               true  thrpt   10  1310454.012 ± 100747.490  ops/s
StompEncoderBenchmark.writeStompFrame                0         ELEVEN              false  thrpt   10   679934.001 ±  82168.249  ops/s
StompEncoderBenchmark.writeStompFrame                0         TWENTY               true  thrpt   10   746867.549 ±  68373.269  ops/s
StompEncoderBenchmark.writeStompFrame                0         TWENTY              false  thrpt   10   483316.314 ±  50978.009  ops/s
StompEncoderBenchmark.writeStompFrame               10            ONE               true  thrpt   10  4791698.722 ± 263890.510  ops/s
StompEncoderBenchmark.writeStompFrame               10            ONE              false  thrpt   10  1289877.116 ± 128677.185  ops/s
StompEncoderBenchmark.writeStompFrame               10          THREE               true  thrpt   10  2984662.187 ± 395567.524  ops/s
StompEncoderBenchmark.writeStompFrame               10          THREE              false  thrpt   10  1079028.782 ±  43548.555  ops/s
StompEncoderBenchmark.writeStompFrame               10          SEVEN               true  thrpt   10  1806763.709 ±  59162.209  ops/s
StompEncoderBenchmark.writeStompFrame               10          SEVEN              false  thrpt   10   935274.980 ±  22064.148  ops/s
StompEncoderBenchmark.writeStompFrame               10         ELEVEN               true  thrpt   10  1284172.151 ± 119068.047  ops/s
StompEncoderBenchmark.writeStompFrame               10         ELEVEN              false  thrpt   10   687174.498 ±  30270.916  ops/s
StompEncoderBenchmark.writeStompFrame               10         TWENTY               true  thrpt   10   803843.483 ±  29106.133  ops/s
StompEncoderBenchmark.writeStompFrame               10         TWENTY              false  thrpt   10   502134.552 ±  23653.215  ops/s
StompEncoderBenchmark.writeStompFrame              100            ONE               true  thrpt   10  4337438.694 ± 378524.452  ops/s
StompEncoderBenchmark.writeStompFrame              100            ONE              false  thrpt   10  1289174.213 ±  50640.853  ops/s
StompEncoderBenchmark.writeStompFrame              100          THREE               true  thrpt   10  3232767.156 ± 311934.194  ops/s
StompEncoderBenchmark.writeStompFrame              100          THREE              false  thrpt   10  1115247.028 ±  15683.477  ops/s
StompEncoderBenchmark.writeStompFrame              100          SEVEN               true  thrpt   10  2213147.232 ±  86326.187  ops/s
StompEncoderBenchmark.writeStompFrame              100          SEVEN              false  thrpt   10   901120.188 ±  71344.491  ops/s
StompEncoderBenchmark.writeStompFrame              100         ELEVEN               true  thrpt   10  1238317.714 ±  68148.477  ops/s
StompEncoderBenchmark.writeStompFrame              100         ELEVEN              false  thrpt   10   671336.339 ±  72735.337  ops/s
StompEncoderBenchmark.writeStompFrame              100         TWENTY               true  thrpt   10   754565.791 ±  28574.382  ops/s
StompEncoderBenchmark.writeStompFrame              100         TWENTY              false  thrpt   10   498939.383 ±  38146.118  ops/s
StompEncoderBenchmark.writeStompFrame             1000            ONE               true  thrpt   10  3722594.471 ± 515861.000  ops/s
StompEncoderBenchmark.writeStompFrame             1000            ONE              false  thrpt   10  1265629.633 ±  84113.347  ops/s
StompEncoderBenchmark.writeStompFrame             1000          THREE               true  thrpt   10  2829696.349 ± 172520.267  ops/s
StompEncoderBenchmark.writeStompFrame             1000          THREE              false  thrpt   10  1111454.609 ±  26275.913  ops/s
StompEncoderBenchmark.writeStompFrame             1000          SEVEN               true  thrpt   10  1901506.449 ±  37701.353  ops/s
StompEncoderBenchmark.writeStompFrame             1000          SEVEN              false  thrpt   10   912528.888 ±  46221.215  ops/s
StompEncoderBenchmark.writeStompFrame             1000         ELEVEN               true  thrpt   10  1299674.123 ±  21889.002  ops/s
StompEncoderBenchmark.writeStompFrame             1000         ELEVEN              false  thrpt   10   724527.644 ±   2757.370  ops/s
StompEncoderBenchmark.writeStompFrame             1000         TWENTY               true  thrpt   10   811389.799 ±   2606.626  ops/s
StompEncoderBenchmark.writeStompFrame             1000         TWENTY              false  thrpt   10   504955.449 ±   6737.804  ops/s
StompEncoderBenchmark.writeStompFrame            10000            ONE               true  thrpt   10  3837912.649 ± 380742.919  ops/s
StompEncoderBenchmark.writeStompFrame            10000            ONE              false  thrpt   10  1375544.306 ±   3157.068  ops/s
StompEncoderBenchmark.writeStompFrame            10000          THREE               true  thrpt   10  3224743.448 ± 297369.719  ops/s
StompEncoderBenchmark.writeStompFrame            10000          THREE              false  thrpt   10  1125772.007 ±   4051.498  ops/s
StompEncoderBenchmark.writeStompFrame            10000          SEVEN               true  thrpt   10  2127352.136 ± 106787.777  ops/s
StompEncoderBenchmark.writeStompFrame            10000          SEVEN              false  thrpt   10   934848.418 ±   4564.147  ops/s
StompEncoderBenchmark.writeStompFrame            10000         ELEVEN               true  thrpt   10  1379672.772 ±   8778.640  ops/s
StompEncoderBenchmark.writeStompFrame            10000         ELEVEN              false  thrpt   10   723169.459 ±   2317.767  ops/s
StompEncoderBenchmark.writeStompFrame            10000         TWENTY               true  thrpt   10   802275.113 ±   4155.137  ops/s
StompEncoderBenchmark.writeStompFrame            10000         TWENTY              false  thrpt   10   517604.265 ±   3398.384  ops/s
```
For headers over 256 bytes we get a speedup.
2020-12-07 09:00:52 +01:00
Norman Maurer
221c1a1ed7
Fix caching for normal allocations (#10825)
Motivation:

https://github.com/netty/netty/pull/10267 introduced a change that reduced the fragmentation. Unfortunally it also introduced a regression when it comes to caching of normal allocations. This can have a negative performance impact depending on the allocation sizes.

Modifications:

- Fix algorithm to calculate the array size for normal allocation caches
- Correctly calculate indeox for normal caches
- Add unit test

Result:

Fixes https://github.com/netty/netty/issues/10805
2020-11-25 15:05:30 +01:00
Frédéric Brégier
1c230405fd
Fix for performance regression on HttpPost RequestDecoder (#10623)
Fix issue #10508 where PARANOID mode slow down about 1000 times compared to ADVANCED.
Also fix a rare issue when internal buffer was growing over a limit, it was partially discarded
using `discardReadBytes()` which causes bad changes within previously discovered HttpData.

Reasons were:

Too many `readByte()` method calls while other ways exist (such as keep in memory the last scan position when trying to find a delimiter or using `bytesBefore(firstByte)` instead of looping externally).

Changes done:
- major change on way buffer are parsed: instead of read byte per byte until found delimiter, try to find the delimiter using `bytesBefore()` and keep the last unfound position to skeep already parsed parts (algorithms are the same but implementation of scan are different)
- Change the condition to discard read bytes when refCnt is at most 1.

Observations using Async-Profiler:
==================================

1) Without optimizations, most of the time (more than 95%) is through `readByte()` method within `loadDataMultipartStandard` method.
2) With using `bytesBefore(byte)` instead of `readByte()` to find various delimiter, the `loadDataMultipartStandard` method is going down to 19 to 33% depending on the test used. the `readByte()` method or equivalent `getByte(pos)` method are going down to 15% (from 95%).

Times are confirming those profiling:
- With optimizations, in SIMPLE mode about 82% better, in ADVANCED mode about 79% better and in PARANOID mode about 99% better (most of the duplicate read accesses are removed or make internally through `bytesBefore(byte)` method)

A benchmark is added to show the behavior of the various cases (one big item, such as File upload, and many items) and various level of detection (Disabled, Simple, Advanced, Paranoid). This benchmark is intend to alert if new implementations make too many differences (such as the previous version where about PARANOID gives about 1000 times slower than other levels, while it is now about at most 10 times).

Extract of Benchmark run:
=========================

Run complete. Total time: 00:13:27

Benchmark                                                                           Mode  Cnt  Score   Error   Units
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigAdvancedLevel   thrpt    6  2,248 ± 0,198 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigDisabledLevel   thrpt    6  2,067 ± 1,219 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigParanoidLevel   thrpt    6  1,109 ± 0,038 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigSimpleLevel     thrpt    6  2,326 ± 0,314 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighAdvancedLevel  thrpt    6  1,444 ± 0,226 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighDisabledLevel  thrpt    6  1,462 ± 0,642 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighParanoidLevel  thrpt    6  0,159 ± 0,003 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighSimpleLevel    thrpt    6  1,522 ± 0,049 ops/ms
2020-11-19 08:00:35 +01:00
Artem Smotrakov
e5951d46fc
Enable nohttp check during the build (#10708)
Motivation:

HTTP is a plaintext protocol which means that someone may be able
to eavesdrop the data. To prevent this, HTTPS should be used whenever
possible. However, maintaining using https:// in all URLs may be
difficult. The nohttp tool can help here. The tool scans all the files
in a repository and reports where http:// is used.

Modifications:

- Added nohttp (via checkstyle) into the build process.
- Suppressed findings for the websites
  that don't support HTTPS or that are not reachable

Result:

- Prevent using HTTP in the future.
- Encourage users to use HTTPS when they follow the links they found in
  the code.
2020-10-23 14:44:18 +02:00
Francesco Nigro
69b44c6d06
Reduce DefaultAttributeMap lookup cost (#10530)
Motivation:

DefaultAttributeMap::attr has a blocking behaviour on lookup of an existing attribute:
it can be made non-blocking.

Modification:

Replace the existing fixed bucket table using a locked intrusive linked list
with an hand-rolled copy-on-write ordered single array

Result:
Non blocking behaviour for the lookup happy path
2020-10-02 18:24:35 +02:00
Francesco Nigro
162e59848a
Improve predictability of writeUtf8/writeAscii performance (#10368)
Motivation:

writeUtf8 can suffer from inlining issues and/or megamorphic call-sites on the hot path due to ByteBuf hierarchy

Modifications:

Duplicate and specialize the code paths to reduce the need of polymorphic calls

Result:

Performance are more stable in user code
2020-09-09 16:10:26 +02:00
Francesco Nigro
38f01e0840
Reduce garbage on MQTT (#10509)
Reduce garbage on MQTT encoding

Motivation:

MQTT encoding and decoding is doing unnecessary object allocation in a number of places:
- MqttEncoder create many byte[] to encode Strings into UTF-8 bytes
- MqttProperties uses Integer keys instead of int
- Some enums valueOf create unnecessary arrays on the hot paths
- MqttDecoder was using unecessary Result<T>

Modification:

- ByteBufUtil::utf8Bytes and ByteBufUtil::reserveAndWriteUtf8 allows to perform the same operation GC-free
- MqttProperties uses a primitive key map
- Implemented GC free const table lookup/switch valueOf
- Use some bit-tricks to pack 2 ints into a single primitive long to store both result and numberOfBytesConsumed and use byte[].length to compute numberOfByteConsumed on fly. These changes allowed to save creating Result<T>.

Result:
Significantly less garbage produced in MQTT encoding/decoding
2020-09-04 18:27:22 +02:00
Francesco Nigro
d2c03c9a29
Improve MqttMessageType::valueOf cost (#10400)
Motivation:

MqttMessageType::valueOf has O(N) cost

Modifications:

MqttMessageType::valueOf uses a const lookup table

Result:

MqttMessageType::valueOf has O(1) cost
2020-08-31 10:32:33 +02:00
Linas Medžiūnas
fb5e2cd3aa
Efficient BytBuf search algorithms (#9914) (#9955)
Motivation:

We have found out that ByteBufUtil.indexOf can be inefficient for substring search on
ByteBuf, both in terms of algorithm complexity (worst case O(needle.readableBytes *
haystack.readableBytes)), and in constant factor (esp. on Composite buffers).
With implementation of more performant search algorithms we have seen improvements on
the order of magnitude.

Modifications:

This change introduces three search algorithms:
1. Knuth Morris Pratt - classical textbook algorithm, a good default choice.
2. Bit mask based algorithm - stable performance on any input, but limited to maximum
search substring (the needle) length of 64 bytes.
3. Aho–Corasick - worse performance and higher memory consumption than [1] and [2], but
it supports multiple substring (the needles) search simultaneously, by inspecting every
byte of the haystack only once.

Each algorithm processes every byte of underlying buffer only once, they are implemented
as ByteProcessor.

Result:

Efficient search algorithms with linear time complexity available in Netty (I will share
benchmark results in a comment on a PR).
2020-04-15 10:21:24 +02:00
Dmitry Konstantinov
ea31b59037
Replace usage() with freeBytes() in thresholds within hot paths of PoolChunkList (#10141)
Motivation:
PoolChunk.usage() method has non-trivial computations. It is used currently in hot path methods invoked when an allocation and de-allocation are happened.
The idea is to replace usage() output comparison against percent thresholds by Chunk.freeBytes plain comparison against absolute thresholds. In such way the majority of computations from the threshold conditions are moved to init logic.

Modifications:
Replace PoolChunk.usage() conditions in PoolChunkList with equivalent conditions for PoolChunk.freeBytes()

Result:
Improve performance of allocation and de-allocation of ByteBuf from normal size cache pool
2020-03-31 22:11:16 +02:00
Francesco Nigro
bc026ef8ba Faster decodeHexNibble (#9896)
Motivation:

decodeHexNibble can be a lot faster using a lookup table

Modifications:

decodeHexNibble is made faster by using a lookup table

Result:

decodeHexNibble is faster
2019-12-23 21:15:56 +01:00
Anuraag Agrawal
687308b4de Separate out query string encoding for non-encoded strings. (#9887)
Motivation:

Currently, characters are appended to the encoded string char-by-char even when no encoding is needed. We can instead separate out codepath that appends the entire string in one go for better `StringBuilder` allocation performance.

Modification:

Only go into char-by-char loop when finding a character that requires encoding.

Result:

The results aren't so clear with noise on my hot laptop - the biggest impact is on long strings, both to reduce resizes of the buffer and also to reduce complexity of the loop. I don't think there's a significant downside though for the cases that hit the slow path.

After
```
Benchmark                                     Mode  Cnt   Score   Error   Units
QueryStringEncoderBenchmark.longAscii        thrpt    6   1.406 ± 0.069  ops/us
QueryStringEncoderBenchmark.longAsciiFirst   thrpt    6   0.046 ± 0.001  ops/us
QueryStringEncoderBenchmark.longUtf8         thrpt    6   0.046 ± 0.001  ops/us
QueryStringEncoderBenchmark.shortAscii       thrpt    6  15.781 ± 0.949  ops/us
QueryStringEncoderBenchmark.shortAsciiFirst  thrpt    6   3.171 ± 0.232  ops/us
QueryStringEncoderBenchmark.shortUtf8        thrpt    6   3.900 ± 0.667  ops/us
```

Before
```
Benchmark                                     Mode  Cnt   Score    Error   Units
QueryStringEncoderBenchmark.longAscii        thrpt    6   0.444 ±  0.072  ops/us
QueryStringEncoderBenchmark.longAsciiFirst   thrpt    6   0.043 ±  0.002  ops/us
QueryStringEncoderBenchmark.longUtf8         thrpt    6   0.047 ±  0.001  ops/us
QueryStringEncoderBenchmark.shortAscii       thrpt    6  16.503 ±  1.015  ops/us
QueryStringEncoderBenchmark.shortAsciiFirst  thrpt    6   3.316 ±  0.154  ops/us
QueryStringEncoderBenchmark.shortUtf8        thrpt    6   3.776 ±  0.956  ops/us
```
2019-12-20 08:51:18 +01:00
Anuraag Agrawal
95b8db0633 Use array to buffer decoded query instead of ByteBuffer. (#9886)
Motivation:

In Java, it is almost always at least slower to use `ByteBuffer` than `byte[]` without pooling or I/O. `QueryStringDecoder` can use `byte[]` with arguably simpler code.

Modification:

Replace `ByteBuffer` / `CharsetDecoder` with `byte[]` and `new String`

Result:

After
```
Benchmark                                   Mode  Cnt  Score   Error   Units
QueryStringDecoderBenchmark.noDecoding     thrpt    6  5.612 ± 2.639  ops/us
QueryStringDecoderBenchmark.onlyDecoding   thrpt    6  1.393 ± 0.067  ops/us
QueryStringDecoderBenchmark.mixedDecoding  thrpt    6  1.223 ± 0.048  ops/us
```

Before
```
Benchmark                                   Mode  Cnt  Score   Error   Units
QueryStringDecoderBenchmark.noDecoding     thrpt    6  6.123 ± 0.250  ops/us
QueryStringDecoderBenchmark.onlyDecoding   thrpt    6  0.922 ± 0.159  ops/us
QueryStringDecoderBenchmark.mixedDecoding  thrpt    6  1.032 ± 0.178  ops/us
```

I notice #6781 switched from an array to `ByteBuffer` but I can't find any motivation for that in the PR. Unit tests pass fine with an array and we get a reasonable speed bump.
2019-12-18 21:11:28 +01:00
时无两丶
0cde4d9cb4 Uniform null pointer check. (#9840)
Motivation:
Uniform null pointer check.

Modifications:

Use ObjectUtil.checkNonNull(...)

Result:
Less code, same result.
2019-12-09 09:47:35 +01:00
Nick Hill
feb804dca8 Avoid extra Runnable allocs when scheduling tasks outside event loop (#9744)
Motivation

Currently when future tasks are scheduled via EventExecutors from a
different thread, at least two allocations are performed - the
ScheduledFutureTask wrapping the to-be-run task, and a Runnable wrapping
the action to add to the scheduled task priority queue. The latter can
be avoided by incorporating this logic into the former.

Modification

- When scheduling or cancelling a future task from outside the event
loop, enqueue the task itself rather than wrapping in a Runnable
- Have ScheduledFutureTask#run first verify the task's deadline has
passed and if not add or remove it from the scheduledTaskQueue depending
on its cancellation state
- Add new outside-event-loop benchmarks to ScheduleFutureTaskBenchmark

Result

Fewer allocations when scheduling/cancelling future tasks
2019-11-04 11:57:53 +01:00
康智冬
bd8cea644a Fix typos in javadocs (#9527)
Motivation:

We should have correct docs without typos

Modification:

Fix typos and spelling

Result:

More correct docs
2019-10-09 17:12:52 +04:00
Nick Hill
2791f0fefa Avoid use of global AtomicLong for ScheduledFutureTask ids (#9599)
Motivation

Currently a static AtomicLong is used to allocate a unique id whenever a
task is scheduled to any event loop. This could be a source of
contention if delayed tasks are scheduled at a high frequency and can be
easily avoided by having a non-volatile id counter per queue.

Modifications

- Replace static AtomicLong ScheduledFutureTask#nextTaskId with a long
field in AbstractScheduledExecutorService
- Set ScheduledFutureTask#id based on this when adding the task to the
queue (in event loop) instead of at construction time
- Add simple benchmark

Result

Less contention / cache-miss possibility when scheduling future tasks

Before:

Benchmark      (num)   Mode  Cnt    Score    Error  Units
scheduleLots  100000  thrpt   20  346.008 ± 21.931  ops/s

Benchmark      (num)   Mode  Cnt    Score    Error  Units
scheduleLots  100000  thrpt   20  654.824 ± 22.064  ops/s
2019-09-25 07:34:25 +02:00
Norman Maurer
6da809dc11
Increase maxHeaderListSize for HpackDecoderBenchmark to be able to be… (#9321)
Motivation:

The previous used maxHeaderListSize was too low which resulted in exceptions during the benchmark run:

```
io.netty.handler.codec.http2.Http2Exception: Header size exceeded max allowed size (8192)
	at io.netty.handler.codec.http2.Http2Exception.connectionError(Http2Exception.java:103)
	at io.netty.handler.codec.http2.Http2Exception.headerListSizeError(Http2Exception.java:188)
	at io.netty.handler.codec.http2.Http2CodecUtil.headerListSizeExceeded(Http2CodecUtil.java:231)
	at io.netty.handler.codec.http2.HpackDecoder$Http2HeadersSink.finish(HpackDecoder.java:545)
	at io.netty.handler.codec.http2.HpackDecoder.decode(HpackDecoder.java:132)
	at io.netty.handler.codec.http2.HpackDecoderBenchmark.decode(HpackDecoderBenchmark.java:85)
	at io.netty.handler.codec.http2.generated.HpackDecoderBenchmark_decode_jmhTest.decode_thrpt_jmhStub(HpackDecoderBenchmark_decode_jmhTest.java:120)
	at io.netty.handler.codec.http2.generated.HpackDecoderBenchmark_decode_jmhTest.decode_Throughput(HpackDecoderBenchmark_decode_jmhTest.java:83)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:453)
	at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:437)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
	at java.lang.Thread.run(Thread.java:748)

```

Also we should ensure we only use ascii for header names.

Modifications:

Just use Integer.MAX_VALUE as limit

Result:

Be able to run benchmark without exceptions
2019-07-04 11:24:13 +02:00
Carl Mastrangelo
ff0045e3e1 Use Table lookup for HPACK decoder (#9307)
Motivation:
Table based decoding is fast.

Modification:
Use table based decoding in HPACK decoder, inspired by
https://github.com/python-hyper/hpack/blob/master/hpack/huffman_table.py

This modifies the table to be based on integers, rather than 3-tuples of
bytes.  This is for two reasons:

1.  It's faster
2.  Using bytes makes the static intializer too big, and doesn't
compile.

Result:
Faster Huffman decoding.  This only seems to help the ascii case, the
other decoding is about the same.

Benchmarks:

```
Before:
Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode  Cnt        Score       Error  Units
HpackDecoderBenchmark.decode            true         true   SMALL  thrpt   20   426293.636 ±  1444.843  ops/s
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt   20    57843.738 ±   725.704  ops/s
HpackDecoderBenchmark.decode            true         true   LARGE  thrpt   20     3002.412 ±    16.998  ops/s
HpackDecoderBenchmark.decode            true        false   SMALL  thrpt   20   412339.400 ±  1128.394  ops/s
HpackDecoderBenchmark.decode            true        false  MEDIUM  thrpt   20    58226.870 ±   199.591  ops/s
HpackDecoderBenchmark.decode            true        false   LARGE  thrpt   20     3044.256 ±    10.675  ops/s
HpackDecoderBenchmark.decode           false         true   SMALL  thrpt   20  2082615.030 ±  5929.726  ops/s
HpackDecoderBenchmark.decode           false         true  MEDIUM  thrpt   10   571640.454 ± 26499.229  ops/s
HpackDecoderBenchmark.decode           false         true   LARGE  thrpt   20    92714.555 ±  2292.222  ops/s
HpackDecoderBenchmark.decode           false        false   SMALL  thrpt   20  1745872.421 ±  6788.840  ops/s
HpackDecoderBenchmark.decode           false        false  MEDIUM  thrpt   20   490420.323 ±  2455.431  ops/s
HpackDecoderBenchmark.decode           false        false   LARGE  thrpt   20    84536.200 ±   398.714  ops/s

After(bytes):
Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode  Cnt        Score      Error  Units
HpackDecoderBenchmark.decode            true         true   SMALL  thrpt   20   472649.148 ± 7122.461  ops/s
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt   20    66739.638 ±  341.607  ops/s
HpackDecoderBenchmark.decode            true         true   LARGE  thrpt   20     3139.773 ±   24.491  ops/s
HpackDecoderBenchmark.decode            true        false   SMALL  thrpt   20   466933.833 ± 4514.971  ops/s
HpackDecoderBenchmark.decode            true        false  MEDIUM  thrpt   20    66111.778 ±  568.326  ops/s
HpackDecoderBenchmark.decode            true        false   LARGE  thrpt   20     3143.619 ±    3.332  ops/s
HpackDecoderBenchmark.decode           false         true   SMALL  thrpt   20  2109995.177 ± 6203.143  ops/s
HpackDecoderBenchmark.decode           false         true  MEDIUM  thrpt   20   586026.055 ± 1578.550  ops/s
HpackDecoderBenchmark.decode           false        false   SMALL  thrpt   20  1775723.270 ± 4932.057  ops/s
HpackDecoderBenchmark.decode           false        false  MEDIUM  thrpt   20   493316.467 ± 1453.037  ops/s
HpackDecoderBenchmark.decode           false        false   LARGE  thrpt   10    85726.219 ±  402.573  ops/s

After(ints):
Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode  Cnt        Score       Error  Units
HpackDecoderBenchmark.decode            true         true   SMALL  thrpt   20   615549.006 ±  5282.283  ops/s
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt   20    86714.630 ±   654.489  ops/s
HpackDecoderBenchmark.decode            true         true   LARGE  thrpt   20     3984.439 ±    61.612  ops/s
HpackDecoderBenchmark.decode            true        false   SMALL  thrpt   20   602489.337 ±  5397.024  ops/s
HpackDecoderBenchmark.decode            true        false  MEDIUM  thrpt   20    88399.109 ±   241.115  ops/s
HpackDecoderBenchmark.decode            true        false   LARGE  thrpt   20     3875.729 ±   103.057  ops/s
HpackDecoderBenchmark.decode           false         true   SMALL  thrpt   20  2092165.454 ± 11918.859  ops/s
HpackDecoderBenchmark.decode           false         true  MEDIUM  thrpt   20   583465.437 ±  5452.115  ops/s
HpackDecoderBenchmark.decode           false         true   LARGE  thrpt   20    93290.061 ±   665.904  ops/s
HpackDecoderBenchmark.decode           false        false   SMALL  thrpt   20  1758402.495 ± 14677.438  ops/s
HpackDecoderBenchmark.decode           false        false  MEDIUM  thrpt   10   491598.099 ±  5029.698  ops/s
HpackDecoderBenchmark.decode           false        false   LARGE  thrpt   20    85834.290 ±   554.915  ops/s
```
2019-07-02 20:09:44 +02:00
jimin
856f1185e1 All override methods must be added @override (#9285)
Motivation:

Some methods that either override others or are implemented as part of implementation an interface did miss the `@Override` annotation

Modifications:

Add missing `@Override`s

Result:

Code cleanup
2019-06-27 13:51:26 +02:00
Alex Blewitt
52169cba95 Replace accumulation with blackhole.consume (#9275)
Motivation:

SpotJMHBugs reports that accumulating a value as a way of eliding dead code
elimination may be inadvisable, as discussed in
`JMHSample_34_SafeLooping::measureWrong_2`. Change the test so that it consumes
the response with `Blackhole::consume` instead.

Modifications:

- Replace addition of results with explicit `blackhole.consume()` call

Result:

Tests work as before, but with different benchmark numbers.
2019-06-25 21:47:07 +02:00
Francesco Nigro
672fa0c779 Documented non-usage of BlackHole::consume on ByteBufAccessBenchmark (#9279)
Motivation:

Some JMH benchmarks need additional explanations to motivate
specific code choices.

Modifications:

Introduced comment to explai why calling BlackHole::consume
in a loop is not always the right choice for some benchmark.

Result:

The relevant method shows a comment that warn about changing
the code to introduce BlackHole::consume in the loop.
2019-06-25 14:52:21 +02:00
Alex Blewitt
430eeee2f6 Return the result of the list.recycle() call (#9264)
Motivation:

Resolve the issue highlighted by SpotJMHBugs that the creation of the RecyclableArrayList may be elided by the JIT since the result isn't consumed or returned.

Modifications:

Return the result of `list.recycle()` so that the list isn't elided.

Result:

The JMH benchmark shows a change in performance indicating that the prior results of this may be unsound.
2019-06-22 07:22:15 +02:00
Carl Mastrangelo
9abeaf16fd Properly debounce wakeups (#9191)
Motivation:
The wakeup logic in EpollEventLoop is overly complex

Modification:
* Simplify the race to wakeup the loop
* Dont let the event loop wake up itself (it's already awake!)
* Make event loop check if there are any more tasks after preparing to
sleep.  There is small window where the non-eventloop writers can issue
eventfd writes here, but that is okay.

Result:
Cleaner wakeup logic.

Benchmarks:

```
BEFORE
Benchmark                                   Mode  Cnt       Score      Error  Units
EpollSocketChannelBenchmark.executeMulti   thrpt   20  408381.411 ± 2857.498  ops/s
EpollSocketChannelBenchmark.executeSingle  thrpt   20  157022.360 ± 1240.573  ops/s
EpollSocketChannelBenchmark.pingPong       thrpt   20   60571.704 ±  331.125  ops/s

Benchmark                                   Mode  Cnt       Score      Error  Units
EpollSocketChannelBenchmark.executeMulti   thrpt   20  440546.953 ± 1652.823  ops/s
EpollSocketChannelBenchmark.executeSingle  thrpt   20  168114.751 ± 1176.609  ops/s
EpollSocketChannelBenchmark.pingPong       thrpt   20   61231.878 ±  520.108  ops/s
```
2019-06-04 05:17:23 -07:00
Nick Hill
2ca526fac6 Ensure "full" ownership of msgs passed to EmbeddedChannel.writeInbound() (#9058)
Motivation

Pipeline handlers are free to "take control" of input buffers if they have singular refcount - in particular to mutate their raw data if non-readonly via discarding of read bytes, etc.

However there are various places (primarily unit tests) where a wrapped byte-array buffer is passed in and the wrapped array is assumed not to change (used after the wrapped buffer is passed to EmbeddedChannel.writeInbound()). This invalid assumption could result in unexpected errors, such as those exposed by #8931.

Modifications

Anywhere that the data passed to writeInbound() might be used again, ensure that either:
- A copy is used rather than wrapping a shared byte array, or
- The buffer is otherwise protected from modification by making it read-only

For the tests, copying is preferred since it still allows the "mutating" optimizations to be exercised.

Results

Avoid possible errors when pipeline assumes it has full control of input buffer.
2019-05-22 12:08:49 +02:00
Francesco Nigro
fb50847e39 The benchmark is not taking into account nanoTime granularity (#9033)
Motivation:

Results are just wrong for small delays.

Modifications:

Switching to AvarageTime avoid to rely on OS nanoTime granularity.

Result:

Uncontended low delay results are not reliable
2019-04-15 15:14:36 +02:00
Norman Maurer
8f7ef1cabb
Skip execution of Channel*Handler method if annotated with @Skip and … (#8988)
Motivation:

Invoking ChannelHandlers is not free and can result in some overhead when the ChannelPipeline becomes very long. This is especially true if most handlers will just forward the call to the next handler in the pipeline. When the user extends Channel*HandlerAdapter we can easily detect if can just skip the handler and invoke the next handler in the pipeline directly. This reduce the overhead of dispatch but also reduce the call-stack in many cases.

This backports https://github.com/netty/netty/pull/8723 and https://github.com/netty/netty/pull/8987 to 4.1

Modifications:

Detect if we can skip the handler when walking the pipeline.

Result:

Reduce overhead for long pipelines.

Benchmark                                       (extraHandlers)   Mode  Cnt       Score      Error  Units
DefaultChannelPipelineBenchmark.propagateEventOld             4  thrpt   10  267313.031 ± 9131.140  ops/s
DefaultChannelPipelineBenchmark.propagateEvent                4  thrpt   10  824825.673 ± 12727.594  ops/s
2019-04-09 09:36:52 +02:00
Nick Hill
0811409ca3 Further reduce ensureAccessible() overhead (#8895)
Motivation:

This PR fixes some non-negligible overhead discovered in the ByteBuf
accessibility (non-zero refcount) checking. The cause turned out to be
mostly twofold:
- Unnecessary operations used to calculate the refcount from the "raw"
encoded int field value
- Call stack depths exceeding the default limit for inlining, in some
places (CompositeByteBuf in particular)

It's a follow-on from #8882 which uses the maxCapacity field for a
simpler non-negative check. The performance gap between these two
variants appears to be _mostly_ closed, but there's one exception which
may warrant further analysis.

Modifications:

- Replace ABB.internalRefCount() with ByteBuf.isAccessible(), the
default still checks for non-zero refCnt()
- Just test for parity of raw refCnt instead of converting to "real",
with fast-path for specific small values
- Make sure isAccessible() is delegated by derived/wrapper ByteBufs
- Use existing freed flag in CompositeByteBuf for faster isAccessible()
- Manually inline some calls in methods like CompositeByteBuf.setLong()
and AbstractReferenceCountedByteBuf.isAccessible() to reduce stack
depths (to ensure default inlining limit isn't hit)
- Add ByteBufAccessBenchmark which is an extension of
UnsafeByteBufBenchmark (maybe latter could now be removed)

Results:

Before:

Benchmark   (bufferType)  (checkAccessible)  (checkBounds)   Mode  Cnt
Score          Error  Units
readBatch         UNSAFE               true           true  thrpt   30
84524972.863 ±   518338.811  ops/s
readBatch   UNSAFE_SLICE               true           true  thrpt   30
38608795.037 ±   298176.974  ops/s
readBatch           HEAP               true           true  thrpt   30
80003697.649 ±   974674.119  ops/s
readBatch      COMPOSITE               true           true  thrpt   30
18495554.788 ±   108075.023  ops/s
setGetLong        UNSAFE               true           true  thrpt   30
247069881.578 ± 10839162.593  ops/s
setGetLong  UNSAFE_SLICE               true           true  thrpt   30
196355905.206 ±  1802420.990  ops/s
setGetLong          HEAP               true           true  thrpt   30
245686644.713 ± 11769311.527  ops/s
setGetLong     COMPOSITE               true           true  thrpt   30
83170940.687 ±   657524.123  ops/s
setLong           UNSAFE               true           true  thrpt   30
278940253.918 ±  1807265.259  ops/s
setLong     UNSAFE_SLICE               true           true  thrpt   30
202556738.764 ± 11887973.563  ops/s
setLong             HEAP               true           true  thrpt   30
280045958.053 ±  2719583.400  ops/s
setLong        COMPOSITE               true           true  thrpt   30
121299806.002 ±  2155084.707  ops/s


After:

Benchmark   (bufferType)  (checkAccessible)  (checkBounds)   Mode  Cnt
Score          Error  Units
readBatch         UNSAFE               true           true  thrpt   30
101641801.035 ±  3950050.059  ops/s
readBatch   UNSAFE_SLICE               true           true  thrpt   30
84395902.846 ±  4339579.057  ops/s
readBatch           HEAP               true           true  thrpt   30
100179060.207 ±  3222487.287  ops/s
readBatch      COMPOSITE               true           true  thrpt   30
42288494.472 ±   294919.633  ops/s
setGetLong        UNSAFE               true           true  thrpt   30
304530755.027 ±  6574163.899  ops/s
setGetLong  UNSAFE_SLICE               true           true  thrpt   30
212028547.645 ± 14277828.768  ops/s
setGetLong          HEAP               true           true  thrpt   30
309335422.609 ±  2272150.415  ops/s
setGetLong     COMPOSITE               true           true  thrpt   30
160383609.236 ±   966484.033  ops/s
setLong           UNSAFE               true           true  thrpt   30
298055969.747 ±  7437449.627  ops/s
setLong     UNSAFE_SLICE               true           true  thrpt   30
223784178.650 ±  9869750.095  ops/s
setLong             HEAP               true           true  thrpt   30
302543263.328 ±  8140104.706  ops/s
setLong        COMPOSITE               true           true  thrpt   30
157083673.285 ±  3528779.522  ops/s

There's also a similar knock-on improvement to other benchmarks (e.g.
HPACK encoding/decoding) as shown in #8882.

For sanity I did a final comparison of the "fast path" tweak using one
of the HPACK benchmarks:

(rawCnt & 1) == 0:

Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode
Cnt      Score     Error  Units
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt
30  50914.479 ± 940.114  ops/s


rawCnt == 2 || rawCnt == 4 || rawCnt == 6 || rawCnt == 8 ||  (rawCnt &
1) == 0:

Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode
Cnt      Score      Error  Units
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt
30  60036.425 ± 1478.196  ops/s
2019-02-28 20:40:41 +01:00
Dmitriy Dumanskiy
b72fea340b Improve DateFormatter parsing performance (#8821)
Motivation:

Just was looking through code and found 1 interesting place DateFormatter.tryParseMonth that was not very effective, so I decided to optimize it a bit.

Modification:

Changed DateFormatter.tryParseMonth method. Instead of invocation regionMatch() for every month - compare chars one by one.

Result:

DateFormatter.parseHttpDate method performance improved from ~3% to ~15%.

Benchmark                                                                (DATE_STRING)   Mode  Cnt        Score       Error  Units
DateFormatter2Benchmark.parseHttpHeaderDateFormatter     Sun, 27 Jan 2016 19:18:46 GMT  thrpt    6  4142781.221 ± 82155.002  ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatter     Sun, 27 Dec 2016 19:18:46 GMT  thrpt    6  3781810.558 ± 38679.061  ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatterNew  Sun, 27 Jan 2016 19:18:46 GMT  thrpt    6  4372569.705 ± 30257.537  ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatterNew  Sun, 27 Dec 2016 19:18:46 GMT  thrpt    6  4339785.100 ± 57542.660  ops/s
2019-02-04 10:04:20 +01:00
Norman Maurer
cd3254df88
Update to new checkstyle plugin (#8777) (#8780)
Motivation:

We need to update to a new checkstyle plugin to allow the usage of lambdas.

Modifications:

- Update to new plugin version.
- Fix checkstyle problems.

Result:

Be able to use checkstyle plugin which supports new Java syntax.
2019-01-25 11:58:42 +01:00
Francesco Nigro
b8a3394f9b Adding an execute burst cost benchmark for Netty executors (#8594)
Motivation:

Netty executors doesn't have yet any means to compare with each others
nor to compare with the j.u.c. executors

Modifications:

A new benchmark measuring execute burst cost is being added

Result:

It's now possible to compare some of Netty executors with each others
and with the j.u.c. executors
2018-12-04 15:46:25 +01:00
Nick Hill
10539f4dc7 Streamline CompositeByteBuf internals (#8437)
Motivation:

CompositeByteBuf is a powerful and versatile abstraction, allowing for
manipulation of large data without copying bytes. There is still a
non-negligible cost to reading/writing however relative to "singular"
ByteBufs, and this can be mostly eliminated with some rework of the
internals.

My use case is message modification/transformation while zero-copy
proxying. For example replacing a string within a large message with one
of a different length

Modifications:

- No longer slice added buffers and unwrap added slices
   - Components store target buf offset relative to position in
composite buf
   - Less allocations, object footprint, pointer indirection, offset
arithmetic
- Use Component[] rather than ArrayList<Component>
   - Avoid pointer indirection and duplicate bounds check, more
efficient backing array growth
   - Facilitates optimization when doing bulk-inserts - inserting n
ByteBufs behind m is now O(m + n) instead of O(mn)
- Avoid unnecessary casting and method call indirection via superclass
- Eliminate some duplicate range/ref checks via non-checking versions of
toComponentIndex and findComponent
- Add simple fast-path for toComponentIndex(0); add racy cache of
last-accessed Component to findComponent(int)
- Override forEachByte0(...) and forEachByteDesc0(...) methods
- Make use of RecyclableArrayList in nioBuffers(int, int) (in line with
FasterCompositeByteBuf impl)
- Modify addComponents0(boolean,int,Iterable) to use the Iterable
directly rather than copy to an array first (and possibly to an
ArrayList before that)
- Optimize addComponents0(boolean,int,ByteBuf[],int) to not perform
repeated array insertions and avoid second loop for offset updates
- Simplify other logic in various places, in particular the general
pattern used where a sub-range is iterated over
- Add benchmarks to demonstrate some improvements

While refactoring I also came across a couple of clear bugs. They are
fixed in these changes but I will open another PR with unit tests and
fixes to the current version.

Result:

Much faster creation, manipulation, and access; many fewer allocations
and smaller footprint. Benchmark results to follow.
2018-11-03 10:37:07 +01:00
Nick Hill
583d838f7c Optimize AbstractByteBuf.getCharSequence() in US_ASCII case (#8392)
* Optimize AbstractByteBuf.getCharSequence() in US_ASCII case

Motivation:

Inspired by https://github.com/netty/netty/pull/8388, I noticed this
simple optimization to avoid char[] allocation (also suggested in a TODO
here).

Modifications:

Return an AsciiString from AbstractByteBuf.getCharSequence() if
requested charset is US_ASCII or ISO_8859_1 (latter thanks to
@Scottmitch's suggestion). Also tweak unit tests not to require Strings
and include a new benchmark to demonstrate the speedup.

Result:

Speed-up of AbstractByteBuf.getCharSequence() in ascii and iso 8859/1
cases
2018-10-26 15:32:38 -07:00
Norman Maurer
87ec2f882a
Reduce overhead by ByteBufUtil.decodeString(...) which is used by AbstractByteBuf.toString(...) and AbstractByteBuf.getCharSequence(...) (#8388)
Motivation:

Our current implementation that is used for toString(Charset) operations on AbstractByteBuf implementation is quite slow as it does a lot of uncessary memory copies. We should just use new String(...) as it has a lot of optimizations to handle these cases.

Modifications:

Rewrite ByteBufUtil.decodeString(...) to use new String(...)

Result:

Less overhead for toString(Charset) operations.

Benchmark                                         (charsetName)  (direct)  (size)   Mode  Cnt         Score         Error  Units
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII     false       8  thrpt   20  22401645.093 ? 4671452.479  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII     false      64  thrpt   20  23678483.384 ? 3749164.446  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII      true       8  thrpt   20  15731142.651 ? 3782931.591  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII      true      64  thrpt   20  16244232.229 ? 1886259.658  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8     false       8  thrpt   20  25983680.959 ? 5045782.289  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8     false      64  thrpt   20  26235589.339 ? 2867004.950  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8      true       8  thrpt   20  18499027.808 ? 4784684.268  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8      true      64  thrpt   20  16825286.141 ? 1008712.342  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16     false       8  thrpt   20   5789879.092 ? 1201786.359  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16     false      64  thrpt   20   2173243.225 ?  417809.341  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16      true       8  thrpt   20   5035583.011 ? 1001978.854  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16      true      64  thrpt   20   2162345.301 ?  402410.408  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1     false       8  thrpt   20  30039052.376 ? 6539111.622  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1     false      64  thrpt   20  31414163.515 ? 2096710.526  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1      true       8  thrpt   20  19538587.855 ? 4639115.572  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1      true      64  thrpt   20  19467839.722 ? 1672687.213  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII     false       8  thrpt   20  10787326.745 ? 1034197.864  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII     false      64  thrpt   20   7129801.930 ? 1363019.209  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII      true       8  thrpt   20   9002529.605 ? 2017642.445  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII      true      64  thrpt   20   3860192.352 ?  826218.738  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8     false       8  thrpt   20  10532838.027 ? 2151743.968  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8     false      64  thrpt   20   7185554.597 ? 1387685.785  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8      true       8  thrpt   20   7352253.316 ? 1333823.850  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8      true      64  thrpt   20   2825578.707 ?  349701.156  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16     false       8  thrpt   20   7277446.665 ? 1447034.346  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16     false      64  thrpt   20   2445929.579 ?  562816.641  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16      true       8  thrpt   20   6201174.401 ? 1236137.786  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16      true      64  thrpt   20   2310674.973 ?  525587.959  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1     false       8  thrpt   20  11142625.392 ? 1680556.468  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1     false      64  thrpt   20   8127116.405 ? 1128513.860  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1      true       8  thrpt   20   9405751.952 ? 2193324.806  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1      true      64  thrpt   20   3943282.076 ?  737798.070  ops/s

Benchmark result is saved to /home/norman/mainframer/netty/microbench/target/reports/performance/ByteBufUtilDecodeStringBenchmark.json
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1,030.173 sec - in io.netty.buffer.ByteBufUtilDecodeStringBenchmark
[1030.460s][info   ][gc,heap,exit ] Heap
[1030.460s][info   ][gc,heap,exit ]  garbage-first heap   total 516096K, used 257918K [0x0000000609a00000, 0x0000000800000000)
[1030.460s][info   ][gc,heap,exit ]   region size 2048K, 127 young (260096K), 2 survivors (4096K)
[1030.460s][info   ][gc,heap,exit ]  Metaspace       used 17123K, capacity 17438K, committed 17792K, reserved 1064960K
[1030.460s][info   ][gc,heap,exit ]   class space    used 1709K, capacity 1827K, committed 1920K, reserved 1048576K
2018-10-19 14:00:13 +02:00
Norman Maurer
e542a2cf26
Use a non-volatile read for ensureAccessible() whenever possible to reduce overhead and allow better inlining. (#8266)
Motiviation:

At the moment whenever ensureAccessible() is called in our ByteBuf implementations (which is basically on each operation) we will do a volatile read. That per-se is not such a bad thing but the problem here is that it will also reduce the the optimizations that the compiler / jit can do. For example as these are volatile it can not eliminate multiple loads of it when inline the methods of ByteBuf which happens quite frequently because most of them a quite small and very hot. That is especially true for all the methods that act on primitives.

It gets even worse as people often call a lot of these after each other in the same method or even use method chaining here.

The idea of the change is basically just ue a non-volatile read for the ensureAccessible() check as its a best-effort implementation to detect acting on already released buffers anyway as even with a volatile read it could happen that the user will release it in another thread before we actual access the buffer after the reference check.

Modifications:

- Try to do a non-volatile read using sun.misc.Unsafe if we can use it.
- Add a benchmark

Result:

Big performance win when multiple ByteBuf methods are called from a method.

With the change:
UnsafeByteBufBenchmark.setGetLongUnsafeByteBuf  thrpt   20  281395842,128 ± 5050792,296  ops/s

Before the change:
UnsafeByteBufBenchmark.setGetLongUnsafeByteBuf  thrpt   20  217419832,801 ± 5080579,030  ops/s
2018-09-07 07:47:02 +02:00
Norman Maurer
02d559e6a4
Remove flags when running benchmarks. (#8262)
Motivation:

Some of the flags we used are not supported anymore on more recent JDK versions. We should just remove all of them and only keep what we really need. This may also reflect better what people use in production.

Modifications:

Remove some flags when running the benchmarks.

Result:

Benchmarks also run with JDK11.
2018-09-05 19:05:02 +02:00
Carl Mastrangelo
379a56ca49 Add an Epoll benchmark
Motivation:
Optimizing the Epoll channel needs an objective measure of how fast
it is.

Modification:
Add a simple, closed loop,  ping-pong benchmark.

Result:
Benchmark can be used to measure #7816

Initial numbers:

```
Result "io.netty.microbench.channel.epoll.EpollSocketChannelBenchmark.pingPong":
  22614.403 ±(99.9%) 797.263 ops/s [Average]
  (min, avg, max) = (21093.160, 22614.403, 24977.387), stdev = 918.130
  CI (99.9%): [21817.140, 23411.666] (assumes normal distribution)

Benchmark                              Mode  Cnt      Score     Error  Units
EpollSocketChannelBenchmark.pingPong  thrpt   20  22614.403 ± 797.263  ops/s
```
2018-09-04 10:15:15 +02:00
Francesco Nigro
c78be33443 Added configurable ByteBuf bounds checking (#7521)
Motivation:

The JVM isn't always able to hoist out/reduce bounds checking (due to ref counting operations etc etc) hence making it configurable could improve performances for most CPU intensive use cases.

Modifications:

Each AbstractByteBuf bounds check has been tested against a new static final configuration property similar to checkAccessible ie io.netty.buffer.bytebuf.checkBounds.

Result:

Any user could disable ByteBuf bounds checking in order to get extra performances.
2018-09-03 20:33:47 +02:00
Norman Maurer
83710cb2e1
Replace toArray(new T[size]) with toArray(new T[0]) to eliminate zero-out and allow the VM to optimize. (#8075)
Motivation:

Using toArray(new T[0]) is usually the faster aproach these days. We should use it.

See also https://shipilev.net/blog/2016/arrays-wisdom-ancients/#_conclusion.

Modifications:

Replace toArray(new T[size]) with toArray(new T[0]).

Result:

Faster code.
2018-06-29 07:56:04 +02:00
unknown
4a8d3a274c Including the setup code in the benchmark method to avoid JMH Invocation level hiccups.
Motivation:

The usage of Invocation level for JMH fixture methods (setup/teardown) inccurs in a significant overhead
in the benchmark time (see org.openjdk.jmh.annotations.Level documentation).

In the case of CodecInputListBenchmark, benchmarks are far too small (less than 50ns) and the Invocation
level setup offsets the measurement considerably.
On such cases, the recommended fix patch is to include the setup/teardown code in the benchmark method.

Modifications:

Include the setup/teardown code in the relevant benchmark methods.
Remove the setup/teardown methods from the benchmark class.

Result:

We run the entire benchmark 10 times with default parameters we observed:
- ArrayList benchmark affected directly by JMH overhead is now from 15-80% faster.
- CodecList benchmark is now 50% faster than original (even with the setup code being measured).
- Recyclable ArrayList is ~30% slower.
- All benchmarks have significant different means (ANOVA) and medians (Moore)

Mode: Throughput (Higher the better)

Method	              Full params		Factor	    Modified (Median)	Original (Median)
recyclableArrayList	 (elements = 1)		0.615520967	21719082.75	        35285691.2
recyclableArrayList	 (elements = 4)		0.699553431	17149442.76	        24514843.31
arrayList	         (elements = 4)		1.152666631	27120407.18	        23528404.88
codecOutList	     (elements = 1)		1.527275908	67251089.04	        44033359.47
codecOutList	     (elements = 4)		1.596917095	59174088.78	        37055204.03
arrayList	         (elements = 1)		1.878616889	62188238.24	        33103204.06

Environment:
Tests run on a Computational server with CPU: E5-1660-3.3GHZ  (6 cores + HT), 64 GB RAM.
2018-06-21 12:22:13 +02:00
unknown
cb420a9ffc Including the setup code in the benchmark method to avoid JMH Invocation level hiccups.
Motivation:

The usage of Invocation level for JMH fixture methods (setup/teardown) inccurs in a significant impact in
in the benchmark time (see org.openjdk.jmh.annotations.Level documentation).

When the benchmark and the setup/teardown is too small (less than a milisecond) the Invocation level might saturate the system with
timestamp requests and iteration synchronizations which introduce artificial latency, throughput, and scalability bottlenecks.

In the HeadersBenchmark, all benchmarks take less than 100ns and the Invocation level setup offsets the measurement considerably.
As fixture methods is defined for the entire class, this overhead also impacts every single benchmark in this class, not only
the ones that use the emptyHttpHeaders object (cleaned in the setup).

The recommended fix patch here is to include the setup/teardown code in the benchmark where the object is used.

Modifications:

Include the setup/teardown code in the relevant benchmark methods.
Remove the setup/teardown method of Invocation level from the benchmark class.

Result:

We run all benchmarks from HeadersBenchmark 10 times with default parameter, we observe:
- Benchmarks that were not directly affected by the fix patch, improved execution time.
    For instance, http2Remove with (exampleHeader = THREE) had its median reported as 2x faster than the original version.
- Benchmarks that had the setup code inserted (eg. http2AddAllFastest) did not suffer a significant punch in the execution time,
as the benchmarks are not dominated by the clear().

Environment:
Tests run on a Computational server with CPU: E5-1660-3.3GHZ  (6 cores + HT), 64 GB RAM.
2018-06-21 12:21:19 +02:00
Scott Mitchell
9d51a40df0 Update NetUtilBenchmark (#7826)
Motivation:
NetUtilBenchmark is using out of date data, throws an exception in the benchmark, and allocates a Set on each run.

Modifications:
- Update the benchmark and reduce each run's overhead

Result:
NetUtilBenchmark is updated.
2018-03-31 08:27:08 +02:00
Francesco Nigro
ed46c4ed00 Copies from read-only heap ByteBuffer to direct ByteBuf can avoid stealth ByteBuf allocation and additional copies
Motivation:

Read-only heap ByteBuffer doesn't expose array: the existent method to perform copies to direct ByteBuf involves the creation of a (maybe pooled) additional heap ByteBuf instance and copy

Modifications:

To avoid stressing the allocator with additional (and stealth) heap ByteBuf allocations is provided a method to perform copies using the (pooled) internal NIO buffer

Result:

Copies from read-only heap ByteBuffer to direct ByteBuf won't create any intermediate ByteBuf
2018-02-27 09:54:21 +09:00
Julien Hoarau
3e6b54bb59 Fix failing h2spec tests 8.1.2.1 related to pseudo-headers validation
Motivation:

According to the spec:
All pseudo-header fields MUST appear in the header block before regular
header fields. Any request or response that contains a pseudo-header
field that appears in a header block after
a regular header field MUST be treated as malformed (Section 8.1.2.6).

Pseudo-header fields are only valid in the context in which they are defined.
Pseudo-header fields defined for requests MUST NOT appear in responses;
pseudo-header fields defined for responses MUST NOT appear in requests.
Pseudo-header fields MUST NOT appear in trailers.
Endpoints MUST treat a request or response that contains undefined or
invalid pseudo-header fields as malformed (Section 8.1.2.6).

Clients MUST NOT accept a malformed response. Note that these requirements
are intended to protect against several types of common attacks against HTTP;
they are deliberately strict because being permissive can expose
implementations to these vulnerabilities.

Modifications:

- Introduce validation in HPackDecoder

Result:

- Requests with unknown pseudo-field headers are rejected
- Requests with containing response specific pseudo-headers are rejected
- Requests where pseudo-header appear after regular header are rejected
- h2spec 8.1.2.1 pass
2018-01-29 19:42:56 -08:00
Norman Maurer
4c1e0f596a Use FastThreadLocal for CodecOutputList
Motivation:

We used Recycler for the CodecOutputList which is not optimized for the use-case of access only from the same Thread all the time.

Modifications:

- Use FastThreadLocal for CodecOutputList
- Add benchmark

Result:

Less overhead in our codecs.
2018-01-23 11:34:28 +01:00
Francesco Nigro
1cf2687244 Fixed JMH ByteBuf benchmark to avoid dead code elimination
Motivation:

The JMH doc suggests to use BlackHoles to avoid dead code elimination hence would be better to follow this best practice.

Modifications:

Each benchmark method is returning the ByteBuf/ByteBuffer to avoid the JVM to perform any dead code elimination.

Result:

The results are more reliable and comparable to the others provided by other ByteBuf benchmarks (eg HeapByteBufBenchmark)
2017-12-19 14:09:18 +01:00
Scott Mitchell
55ef09f191 Add HttpObjectEncoderBenchmark
Motivation:
Benchmark to measure HttpObjectEncoder performance.

Modifications:
- Create new benchmark HttpObjectEncoderBenchmark

Result:
JMH Microbenchmark for HttpObjectEncoder.
2017-12-16 13:47:34 +01:00
Scott Mitchell
5f0342ebe0 Add RedisEncoderBenchmark
Motivation:
Add a benchmark to measure RedisEncoder's performance

Modifications:
- Add RedisEncoderBenchmark

Result:
JMH benchmark exists to measure RedisEncoder's performance.
2017-12-16 13:42:50 +01:00
Scott Mitchell
93b144b7b4 HttpMethod#valueOf improvement
Motivation:
HttpMethod#valueOf shows up on profiler results in the top set of
results. Since it is a relatively simple operation it can be improved in
isolation.

Modifications:
- Introduce a special case map which assigns each HttpMethod to a unique
index in an array and provides constant time lookup from a hash code
algorithm. When the bucket is matched we can then directly do equality
comparison instead of potentially following a linked structure when
HashMap has hash collisions.

Result:
~10% improvement in benchmark results for HttpMethod#valueOf

Benchmark                                     Mode  Cnt   Score   Error   Units
HttpMethodMapBenchmark.newMapKnownMethods    thrpt   16  31.831 ± 0.928  ops/us
HttpMethodMapBenchmark.newMapMixMethods      thrpt   16  25.568 ± 0.400  ops/us
HttpMethodMapBenchmark.newMapUnknownMethods  thrpt   16  51.413 ± 1.824  ops/us
HttpMethodMapBenchmark.oldMapKnownMethods    thrpt   16  29.226 ± 0.330  ops/us
HttpMethodMapBenchmark.oldMapMixMethods      thrpt   16  21.073 ± 0.247  ops/us
HttpMethodMapBenchmark.oldMapUnknownMethods  thrpt   16  49.081 ± 0.577  ops/us
2017-11-20 11:07:50 -08:00
Scott Mitchell
e6126215e0 DefaultHttp2FrameWriter reduce object allocation
Motivation:
DefaultHttp2FrameWriter#writeData allocates a DataFrameHeader for each write operation. DataFrameHeader maintains internal state and allocates multiple slices of a buffer which is a maximum of 30 bytes. This 30 byte buffer may not always be necessary and the additional slice operations can utilize retainedSlice to take advantage of pooled objects. We can also save computation and object allocations if there is no padding which is a common case in practice.

Modifications:
- Remove DataFrameHeader
- Add a fast path for padding == 0

Result:
Less object allocation in DefaultHttp2FrameWriter
2017-11-20 08:10:59 -08:00